1
|
KRAS Affects the Lipid Composition by Regulating Mitochondrial Functions and MAPK Activation in Bovine Mammary Epithelial Cells. Animals (Basel) 2022; 12:ani12223070. [PMID: 36428301 PMCID: PMC9686882 DOI: 10.3390/ani12223070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS), or guanosine triphosphatase KRAS, is a proto-oncogene that encodes the small guanosine triphosphatase transductor protein. Previous studies have found that KRAS can promote cytokine secretion, cell chemotaxis, and survival. However, its effects on milk fat synthesis in bovine mammary epithelial cells are unclear. In this study, the effects of KRAS inhibition on cell metabolism, autophagy, oxidative stress, endoplasmic reticulum stress, mitochondrial function, and lipid composition as well as the potential mechanisms were detected in an immortalized dairy cow mammary epithelial cell line (MAC-T). The results showed that inhibition of KRAS changed the lipid composition (especially the triglyceride level), mitochondrial functions, autophagy, and endoplasmic reticulum stress in cells. Moreover, KRAS inhibition regulated the levels of the mammalian target of rapamycin and mitogen-activated protein kinase (extracellular regulated protein kinases, c-Jun N-terminal kinases, p38) activation. These results indicated that regulation of KRAS would affect the synthesis and composition of milk fat. These results are also helpful for exploring the synthesis and secretion of milk fat at the molecular level and provide a theoretical basis for improving the percentage of fat in milk and the yield of milk from cows.
Collapse
|
2
|
Xu X, Wu Y, Li H, Xie J, Cao D, Huang X. Notch pathway inhibitor DAPT accelerates in vitro proliferation and adipogenesis in infantile hemangioma stem cells. Oncol Lett 2021; 22:854. [PMID: 34777588 PMCID: PMC8581475 DOI: 10.3892/ol.2021.13115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/03/2021] [Indexed: 11/06/2022] Open
Abstract
The Notch signaling pathway is crucial in both adipogenesis and tumor development. It serves a vital role in the development and stability of blood vessels and may be involved in the proliferative phase of infantile hemangiomas, which express various related receptors. Therefore, it was hypothesized that the Notch signaling pathway inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), a γ-secretase inhibitor, might help accelerate the regression of infantile hemangiomas. The present in vitro study evaluated whether inhibition of the Notch signaling pathway using DAPT could alter adipogenesis in hemangioma stem cells (HemSCs) derived from infantile hemangioma (IH) specimens. A total of 20 infants (age, ≤6 months) with hemangiomas who had not yet received any treatment were selected, and their discarded hemangioma tissues were obtained. HemSCs were isolated from the fresh, sterile IH specimens and treated with DAPT. Reverse transcription-quantitative PCR and western blotting were used to demonstrate the inhibition of the Notch signaling pathway by DAPT. A proliferation assay (Cell Counting Kit-8), oil red O staining, flow cytometry and a transwell assay were used to detect proliferation, adipogenesis, apoptosis and migration of HemSCs. Treatment with DAPT upregulated the expression levels of CCAAT/enhancer-binding protein (C/EBP) α, C/EBPβ, peroxisome proliferator-activated receptor-γ, adiponectin and insulin-like growth factor 1, and promoted the proliferation, apoptosis, migration and lipid accumulation in HemSCs in vitro. Targeting the Notch signaling pathway using DAPT may potentially accelerate the regression of infantile hemangiomas.
Collapse
Affiliation(s)
- Xing Xu
- Department of Plastic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, P.R. China
| | - Yao Wu
- Department of Plastic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, P.R. China
| | - Honghong Li
- Department of Plastic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, P.R. China
| | - Juan Xie
- Department of Plastic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, P.R. China
| | - Dongsheng Cao
- Department of Plastic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, P.R. China
| | - Xueying Huang
- Department of Anatomy, Anhui Medical University, Hefei, Anhui 230000, P.R. China
| |
Collapse
|
3
|
Shao J, Bai X, Pan T, Li Y, Jia X, Wang J, Lai S. Genome-Wide DNA Methylation Changes of Perirenal Adipose Tissue in Rabbits Fed a High-Fat Diet. Animals (Basel) 2020; 10:E2213. [PMID: 33255930 PMCID: PMC7761299 DOI: 10.3390/ani10122213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/22/2022] Open
Abstract
DNA methylation is an epigenetic mechanism that plays an important role in gene regulation without an altered DNA sequence. Previous studies have demonstrated that diet affects obesity by partially mediating DNA methylation. Our study investigated the genome-wide DNA methylation of perirenal adipose tissue in rabbits to identify the epigenetic changes of high-fat diet-mediated obesity. Two libraries were constructed pooling DNA of rabbits fed a standard normal diet (SND) and DNA of rabbits fed a high-fat diet (HFD). Differentially methylated regions (DMRs) were identified using the option of the sliding window method, and online software DAVID Bioinformatics Resources 6.7 was used to perform Gene Ontology (GO) terms and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis of DMRs-associated genes. A total of 12,230 DMRs were obtained, of which 2305 (1207 up-regulated, 1098 down-regulated) and 601 (368 up-regulated, 233 down-regulated) of identified DMRs were observed in the gene body and promoter regions, respectively. GO analysis revealed that the DMRs-associated genes were involved in developmental process (GO:0032502), cell differentiation (GO:0030154), and lipid binding (GO:0008289), and KEGG pathway enrichment analysis revealed the DMRs-associated genes were enriched in linoleic acid metabolism (KO00591), DNA replication (KO03030), and MAPK signaling pathway (KO04010). Our study further elucidates the possible functions of DMRs-associated genes in rabbit adipogenesis, contributing to the understanding of HFD-mediated obesity.
Collapse
Affiliation(s)
- Jiahao Shao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.S.); (X.B.); (Y.L.); (X.J.); (J.W.)
| | - Xue Bai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.S.); (X.B.); (Y.L.); (X.J.); (J.W.)
| | - Ting Pan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Yanhong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.S.); (X.B.); (Y.L.); (X.J.); (J.W.)
| | - Xianbo Jia
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.S.); (X.B.); (Y.L.); (X.J.); (J.W.)
| | - Jie Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.S.); (X.B.); (Y.L.); (X.J.); (J.W.)
| | - Songjia Lai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.S.); (X.B.); (Y.L.); (X.J.); (J.W.)
| |
Collapse
|
4
|
Hutchings G, Janowicz K, Moncrieff L, Dompe C, Strauss E, Kocherova I, Nawrocki MJ, Kruszyna Ł, Wąsiatycz G, Antosik P, Shibli JA, Mozdziak P, Perek B, Krasiński Z, Kempisty B, Nowicki M. The Proliferation and Differentiation of Adipose-Derived Stem Cells in Neovascularization and Angiogenesis. Int J Mol Sci 2020; 21:ijms21113790. [PMID: 32471255 PMCID: PMC7312564 DOI: 10.3390/ijms21113790] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022] Open
Abstract
Neovascularization and angiogenesis are vital processes in the repair of damaged tissue, creating new blood vessel networks and increasing oxygen and nutrient supply for regeneration. The importance of Adipose-derived Mesenchymal Stem Cells (ASCs) contained in the adipose tissue surrounding blood vessel networks to these processes remains unknown and the exact mechanisms responsible for directing adipogenic cell fate remain to be discovered. As adipose tissue contains a heterogenous population of partially differentiated cells of adipocyte lineage; tissue repair, angiogenesis and neovascularization may be closely linked to the function of ASCs in a complex relationship. This review aims to investigate the link between ASCs and angiogenesis/neovascularization, with references to current studies. The molecular mechanisms of these processes, as well as ASC differentiation and proliferation are described in detail. ASCs may differentiate into endothelial cells during neovascularization; however, recent clinical trials have suggested that ASCs may also stimulate angiogenesis and neovascularization indirectly through the release of paracrine factors.
Collapse
Affiliation(s)
- Greg Hutchings
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (G.H.); (K.J.); (L.M.)
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (I.K.); (M.J.N.); (B.K.)
| | - Krzysztof Janowicz
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (G.H.); (K.J.); (L.M.)
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (I.K.); (M.J.N.); (B.K.)
| | - Lisa Moncrieff
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (G.H.); (K.J.); (L.M.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| | - Claudia Dompe
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (G.H.); (K.J.); (L.M.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
- Correspondence:
| | - Ewa Strauss
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland;
- Department of Vascular, Endovascular Surgery, Angiology and Phlebology Poznan University of Medical Sciences, 61-701 Poznan, Poland; (L.K.); (Z.K.)
| | - Ievgeniia Kocherova
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (I.K.); (M.J.N.); (B.K.)
| | - Mariusz J. Nawrocki
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (I.K.); (M.J.N.); (B.K.)
| | - Łukasz Kruszyna
- Department of Vascular, Endovascular Surgery, Angiology and Phlebology Poznan University of Medical Sciences, 61-701 Poznan, Poland; (L.K.); (Z.K.)
| | - Grzegorz Wąsiatycz
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (G.W.); (P.A.)
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (G.W.); (P.A.)
| | - Jamil A. Shibli
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, São Paulo 07023-070, Brazil;
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA;
| | - Bartłomiej Perek
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, 61-848 Poznań, Poland;
| | - Zbigniew Krasiński
- Department of Vascular, Endovascular Surgery, Angiology and Phlebology Poznan University of Medical Sciences, 61-701 Poznan, Poland; (L.K.); (Z.K.)
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (I.K.); (M.J.N.); (B.K.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (G.W.); (P.A.)
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 601 77 Brno, Czech Republic
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| |
Collapse
|
5
|
Wu Y, Li H, Xie J, Wang F, Cao D, Lou Y. miR‑139‑5p affects cell proliferation, migration and adipogenesis by targeting insulin‑like growth factor 1 receptor in hemangioma stem cells. Int J Mol Med 2019; 45:569-577. [PMID: 31894289 PMCID: PMC6984798 DOI: 10.3892/ijmm.2019.4430] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022] Open
Abstract
Infant hemangioma is the most common benign tumor in infancy. The pathological development process of this tumor is separated into the proliferation period, the involution period and the composite period in which a few residual capillary-like vessels grow through the loose fibrofatty tissue. Previous studies have confirmed that insulin-like growth factor 1 (IGF-1) is able to facilitate the cell proliferation of hemangioma stem cells (HemSCs) and the differentiation of HemSCs into adipocytes. Additionally, studies have confirmed that microRNAs (miRs) may serve a crucial function in regulating the IGF-1 receptor (IGF-1R). miR-139-5p often functions as a tumor suppressor. The present study was designed to investigate the mechanism of miR-139-5p in HemSCs. Dual luciferase reporter results verified that IGF-1R is the target gene of miR-139-5p. miR-139-5p overexpression reduced IGF-1R expression, and miR-139-5p inhibition increased IGF-1R expression. Cell Counting Kit-8 and Transwell migration assays demonstrated that miR-139-5p overexpression may target IGF-1R to inhibit the proliferation in addition to the migration of HemSCs. Reverse transcription-quantitative PCR, oil red o staining and western blot analysis confirmed that miR-139-5p overexpression was able to reduce adipogen-esis in HemSCs via the IGF-1/IGF-1R pathway. In contrary, miR-139-5p inhibition substantially enhanced the proliferation, migration and adipogenesis of HemSCs. Overall, miR-139-5p is able to affect the IGF-1/IGF-1R pathway by regulating IGF-1R expression, which ultimately affects the proliferation, migration and adipogenesis of HemSCs.
Collapse
Affiliation(s)
- Yao Wu
- Department of Plastic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Honghong Li
- Department of Plastic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Juan Xie
- Department of Plastic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Fan Wang
- Department of Plastic Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230012, P.R. China
| | - Dongsheng Cao
- Department of Plastic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Yin Lou
- Department of Plastic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| |
Collapse
|