1
|
Wu KJ, Wang WR, Cheng QH, Li H, Yan WZ, Zhou FR, Zhang RJ. Pyroptosis in neurodegenerative diseases: from bench to bedside. Cell Biol Toxicol 2023; 39:2467-2499. [PMID: 37491594 DOI: 10.1007/s10565-023-09820-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023]
Abstract
The central nervous system regulates all aspects of physiology to some extent. Neurodegenerative diseases (NDDs) lead to the progressive loss and dysfunction of neurons, which are particularly evident in Alzheimer's disease, Parkinson's disease, and many other conditions. NDDs are multifactorial diseases with complex pathogeneses, and there has been a rapid increase in the prevalence of NDDs. However, none of these diseases can be cured, making the development of novel treatment strategies an urgent necessity. Numerous studies have indicated how pyroptosis induces inflammation and affects many aspects of NDD. Therefore, components related to pyroptosis are potential therapeutic candidates and are attracting increasing attention. Here, we review the role of pyroptosis in the pathogenesis of NDDs and potential treatment options. Additionally, several of the current drugs and relevant inhibitors are discussed. Through this article, we provide theoretical support for exploring new therapeutic targets and updating clinical treatment strategies for NDDs. Notably, pyroptosis, a recently widely studied mode of cell death, is still under-researched compared to other traditional forms of cell death. Moreover, the focus of research has been on the onset and progression of NDDs, and the lack of organ-specific target discovery and drug development is a common problem for many basic studies. This urgent problem requires scientists and companies worldwide to collaborate in order to develop more effective drugs against NDDs.
Collapse
Affiliation(s)
- Ke-Jia Wu
- College of Life Sciences, Anhui Medical University, Tanghe Road, Hefei, 230012, Anhui, People's Republic of China
| | - Wan-Rong Wang
- College of Life Sciences, Anhui Medical University, Tanghe Road, Hefei, 230012, Anhui, People's Republic of China
| | - Qian-Hui Cheng
- College of Life Sciences, Anhui Medical University, Tanghe Road, Hefei, 230012, Anhui, People's Republic of China
| | - Hao Li
- College of Life Sciences, Anhui Medical University, Tanghe Road, Hefei, 230012, Anhui, People's Republic of China
| | - Wei-Zhen Yan
- College of Life Sciences, Anhui Medical University, Tanghe Road, Hefei, 230012, Anhui, People's Republic of China
| | - Fei-Ran Zhou
- College of Life Sciences, Anhui Medical University, Tanghe Road, Hefei, 230012, Anhui, People's Republic of China
| | - Rui-Jie Zhang
- College of Life Sciences, Anhui Medical University, Tanghe Road, Hefei, 230012, Anhui, People's Republic of China.
| |
Collapse
|
2
|
Jiao M, Wang J, Liu W, Zhao X, Qin Y, Zhang C, Yin H, Zhao C. VX-765 inhibits pyroptosis and reduces inflammation to prevent acute liver failure by upregulating PPARα expression. Ann Hepatol 2023; 28:101082. [PMID: 36893888 DOI: 10.1016/j.aohep.2023.101082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/29/2023] [Accepted: 02/23/2023] [Indexed: 03/11/2023]
Abstract
INTRODUCTION AND OBJECTIVES As a fatal clinical syndrome, acute liver failure (ALF) is characterized by overwhelming liver inflammation and hepatic cell death. Finding new therapeutic methods has been a challenge in ALF research. VX-765 is a known pyroptosis inhibitor and has been reported to prevent damage in a variety of diseases by reducing inflammation. However, the role of VX-765 in ALF is still unclear. MATERIALS AND METHODS ALF model mice were treated with D-galactosamine (D-GalN) and lipopolysaccharide (LPS). LO2 cells were stimulated with LPS. Thirty subjects were enrolled in clinical experiments. The levels of inflammatory cytokines, pyroptosis-associated proteins and peroxisome proliferator-activated receptor α (PPARα) were detected using quantitative reverse transcription-polymerase chain reaction (qRT‒PCR), western blotting and immunohistochemistry. An automatic biochemical analyzer was used to determine the serum aminotransferase enzyme levels. Hematoxylin and eosin (HE) staining was used to observe the pathological features of the liver. RESULTS With the progression of ALF, the expression levels of interleukin (IL) -1β, IL-18, caspase-1, and serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were increased. VX-765 could reduce the mortality rate of ALF mice, relieve liver pathological damage, and reduce inflammatory responses to protect against ALF. Further experiments showed that VX-765 could protect against ALF through PPARα, and this protective effect against ALF was reduced in the context of PPARα inhibition. CONCLUSIONS As ALF progresses, inflammatory responses and pyroptosis deteriorate gradually. VX-765 can inhibit pyroptosis and reduce inflammatory responses to protect against ALF by upregulating PPARα expression, thus providing a possible therapeutic strategy for ALF.
Collapse
Affiliation(s)
- Mingjing Jiao
- Department of Infectious Diseases, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiachao Wang
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Wenpeng Liu
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xin Zhao
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanjun Qin
- Emergency Department, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chunhuan Zhang
- Research Department, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongzhu Yin
- Department of Infectious Diseases, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Caiyan Zhao
- Department of Infectious Diseases, The Third Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
3
|
Cai J, Kong J, Ma S, Ban Y, Li J, Fan Z. Upregulation of TRPC6 inhibits astrocyte activation and proliferation after spinal cord injury in rats by suppressing AQP4 expression. Brain Res Bull 2022; 190:12-21. [PMID: 36115513 DOI: 10.1016/j.brainresbull.2022.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022]
Abstract
AIMS This work investigates the effects and mechanisms of inhibiting TRPC6 (a non-selective cation channel) downregulation on rat astrocyte activation and proliferation following spinal cord injury (SCI) by suppressing AQP4 expression. We used HYP9 (TRPC6-specific agonist) and TGN-020 (AQP4-specific inhibitor) to explore the relationship between TRPC6 and AQP4 and their probable protective effects on SCI. METHODS In a rat SCI model, we randomly assigned female Sprague-Dawley rats into the following four groups: Sham, SCI, SCI+HYP9, and SCI+TGN-020. Western blotting and immunofluorescence staining were used to determine protein expression among groups following SCI. TUNEL and immunofluorescence staining were used to identify changes in the rate of apoptosis and the fraction of surviving neurons after SCI. The Basso-Beattie-Bresnahan open-field locomotor scale was used to identify changes in motor function after SCI. In vitro astrocyte scratch model, we first used the CCK8 assay to test the effects of varying doses of HYP9 or TGN-020 on astrocytes and then split the astrocytes into four groups: Con, Scratch, Scratch+HYP9, and Scratch+TGN-020. Western blotting and immunofluorescence were used to identify changes in the expression of target proteins. RESULTS In vivo and in vitro models, SCI dramatically decreased TRPC6 while considerably upregulating AQP4, glial fibrillary acidic protein (GFAP), and proliferating cell nuclear antigen (PCNA) expression. However, HYP9 or TGN-020 significantly suppressed activation of astrocytes, promoted neurons survival in the anterior horn of the spinal cords, and benefited the recovery of motor function in the hind limbs of rats following SCI. Interestingly, TRPC6 agonists dramatically suppressed AQP4 overexpression, indicating that the probable mechanism of HYP9 benefiting alleviation of SCI may be connected to AQP4 inhibition and astrocyte activation and proliferation reduction. CONCLUSION we discovered for the first time that HYP9 inhibits astrocyte activation and proliferation by inhibiting AQP4 in SCI rats in vivo and in vitro models and that it preserves neuronal survival and functional recovery after SCI.
Collapse
Affiliation(s)
- Jiajun Cai
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Jundong Kong
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Song Ma
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Yaozu Ban
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Jian Li
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China.
| | - Zhongkai Fan
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China.
| |
Collapse
|
4
|
Shi YJ, Sheng WJ, Xue MT, Duan FX, Shen L, Ding SQ, Wang QY, Wang R, Lü HZ, Hu JG. Effect of morroniside on the transcriptome profiles of rat in injured spinal cords. Gene 2022; 823:146338. [PMID: 35245640 DOI: 10.1016/j.gene.2022.146338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/16/2022] [Accepted: 02/11/2022] [Indexed: 12/27/2022]
Abstract
We have previously reported that morroniside promoted motor activity after spinal cord injury (SCI) in rats. However, the mechanism by which morroniside induces recovery of injured spinal cord (SC) remains unknown. In the current study, RNA sequencing (RNA-seq) was employed to evaluate changes of gene expressions at the transcriptional level of the injured spinal cords in morroniside-administrated rats. Principal component analysis, analysis of enriched Gene Ontology (GO), enrichment analyses Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and other bioinformatics analyses were executed to distinguish differentially expressed genes (DEGs). The results of RNA-seq confirmed the anti-inflammatory and anti-apoptotic effects of morroniside on injured SC tissues, and provided the basis for additional research of the mechanisms involving the protective effects of morroniside on SCI.
Collapse
Affiliation(s)
- Yu-Jiao Shi
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Bengbu 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu 233004, PR China
| | - Wen-Jie Sheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Bengbu 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu 233004, PR China
| | - Meng-Tong Xue
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Bengbu 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu 233004, PR China
| | - Fei-Xiang Duan
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Bengbu 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu 233004, PR China
| | - Lin Shen
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu 233004, PR China
| | - Shu-Qin Ding
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Bengbu 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu 233004, PR China
| | - Qi-Yi Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Bengbu 233004, PR China
| | - Rui Wang
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu 233004, PR China
| | - He-Zuo Lü
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Bengbu 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu 233004, PR China; Department of Immunology, Bengbu Medical College, Bengbu 233030, PR China.
| | - Jian-Guo Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Bengbu 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu 233004, PR China.
| |
Collapse
|
5
|
Chen J, Chen YQ, Shi YJ, Ding SQ, Shen L, Wang R, Wang QY, Zha C, Ding H, Hu JG, Lü HZ. VX-765 reduces neuroinflammation after spinal cord injury in mice. Neural Regen Res 2021; 16:1836-1847. [PMID: 33510091 PMCID: PMC8328782 DOI: 10.4103/1673-5374.306096] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Inflammation is a major cause of neuronal injury after spinal cord injury. We hypothesized that inhibiting caspase-1 activation may reduce neuroinflammation after spinal cord injury, thus producing a protective effect in the injured spinal cord. A mouse model of T9 contusive spinal cord injury was established using an Infinite Horizon Impactor, and VX-765, a selective inhibitor of caspase-1, was administered for 7 successive days after spinal cord injury. The results showed that: (1) VX-765 inhibited spinal cord injury-induced caspase-1 activation and interleukin-1β and interleukin-18 secretion. (2) After spinal cord injury, an increase in M1 cells mainly came from local microglia rather than infiltrating macrophages. (3) Pro-inflammatory Th1Th17 cells were predominant in the Th subsets. VX-765 suppressed total macrophage infiltration, M1 macrophages/microglia, Th1 and Th1Th17 subset differentiation, and cytotoxic T cells activation; increased M2 microglia; and promoted Th2 and Treg differentiation. (4) VX-765 reduced the fibrotic area, promoted white matter myelination, alleviated motor neuron injury, and improved functional recovery. These findings suggest that VX-765 can reduce neuroinflammation and improve nerve function recovery after spinal cord injury by inhibiting caspase-1/interleukin-1β/interleukin-18. This may be a potential strategy for treating spinal cord injury. This study was approved by the Animal Care Ethics Committee of Bengbu Medical College (approval No. 2017-037) on February 23, 2017.
Collapse
Affiliation(s)
- Jing Chen
- Clinical Laboratory; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College; Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Bengbu, Anhui Province, China
| | - Yu-Qing Chen
- Clinical Laboratory; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College; Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Bengbu, Anhui Province, China
| | - Yu-Jiao Shi
- Clinical Laboratory; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - Shu-Qin Ding
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - Lin Shen
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - Rui Wang
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - Qi-Yi Wang
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - Cheng Zha
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - Hai Ding
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - Jian-Guo Hu
- Clinical Laboratory; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - He-Zuo Lü
- Clinical Laboratory; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College; Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Bengbu, Anhui Province, China
| |
Collapse
|