1
|
Huang X, Liao E, Chen A, Shao Y. Mechanism of mitochondrial dysfunction on placental trophoblastic cells in intrahepatic cholestasis of pregnancy. J Mol Histol 2025; 56:140. [PMID: 40278950 DOI: 10.1007/s10735-025-10427-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/13/2025] [Indexed: 04/26/2025]
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific disorder characterized by elevated serum bile acids and adverse fetal outcomes. Elevated bile acids can lead to excessive accumulation of reactive oxygen species (ROS) in the placenta, and high ROS levels can cause mitochondrial damage. This study primarily investigates the mechanisms of bile acid-induced mitochondrial dysfunction to provide precise targets for the treatment of ICP. Single-cell sequencing of human placental tissues was conducted to analyze changes in mitochondrial function of ICP placental trophoblasts. An ICP cell model was established using TCA, and the effects of TCA on trophoblast mitochondrial function were observed through detection of ROS, mitochondrial membrane potential, fluorescence confocal microscopy, and other methods. Single-cell sequencing indicated significant impairment of mitochondrial function in ICP placental trophoblasts, and electron microscopy results also suggested severe damage to the mitochondrial structure of ICP placental trophoblasts. Both the morphology and function of mitochondria in the ICP cell model were significantly altered, possibly due to impaired mitochondrial transcription mechanisms mediated by NRF1/PGC-1α pathway. Elevated serum bile acids in ICP pregnant women may lead to mitochondrial damage in placental trophoblasts through the NRF1/PGC-1α pathway, thereby affecting the function of placental trophoblasts.
Collapse
Affiliation(s)
- Xiaomei Huang
- The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - E Liao
- The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430000, Hubei Province, China
| | - Aixing Chen
- The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yong Shao
- The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
2
|
Zhao R, Hu J, Li Y, Chen X, Wang Q, Wu T, Zhou W, Bi Y, Shen S, Ge Z. Influence of maternal lipid levels on adverse pregnancy outcomes in women with gestational diabetes mellitus. Front Endocrinol (Lausanne) 2025; 16:1545393. [PMID: 40265162 PMCID: PMC12011850 DOI: 10.3389/fendo.2025.1545393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/13/2025] [Indexed: 04/24/2025] Open
Abstract
Objective This study aimed to investigate the effect of mid-pregnancy lipid levels on adverse outcomes in women with gestational diabetes mellitus (GDM) under adequate glycemic control. Whether this effect is independent of factors such as blood glucose was also analyzed. Methods We retrospectively analyzed 1,001 women with normal glucose tolerance (NGT) and 1,078 women with GDM under adequate glycemic control from 2015 to 2024. Logistic regression analysis was used to explore the relationship between blood lipids and adverse outcomes. Those with GDM were further classified according to their pre-pregnancy body mass index (BMI), gestational weight gain, glycosylated hemoglobin A1c (HbA1c), and fasting blood glucose (FBG). An interaction model between triglyceride (TG) and pre-pregnancy BMI, gestational weight gain, HbA1c, and FBG on adverse outcomes was constructed. Results In GDM, high levels of TG were independent risk factors for preeclampsia (OR = 1.51, 95%CI = 1.18-1.93), preterm birth (OR = 1.68, 95%CI = 1.30-2.18), macrosomia (OR = 1.48, 95%CI = 1.14-1.92), postpartum hemorrhage (OR = 1.33, 95%CI = 1.10-1.61), and intrauterine fetal distress (OR = 1.68, 95%CI = 1.13-2.51). Furthermore, TG had a greater impact on GDM women than on NGT women. In addition, in GDM, high levels of TG were independent risk factors for the above adverse outcomes in the subgroups of pre-pregnancy BMI, gestational weight gain, HbA1c, and FBG (interaction p > 0.05). Conclusions High levels of TG promoted the occurrence of preeclampsia, preterm birth, macrosomia, postpartum hemorrhage, and intrauterine fetal distress in women with GDM. Furthermore, TG had a greater effect on adverse outcomes in GDM than in NGT women.
Collapse
Affiliation(s)
- Ru Zhao
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Jun Hu
- Department of Health Management Centre, Huadong Sanatorium, Wuxi, China
| | - Yuanqin Li
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Xuetao Chen
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Qian Wang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Tingting Wu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Weihong Zhou
- Department of Health Management Centre, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yan Bi
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Shanmei Shen
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Zhijuan Ge
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| |
Collapse
|
3
|
Feng W, Chen N, Chen K, Chen T. Forkhead box O-1 regulates the biological behavior of BMP-2-induced human bone mesenchymal stem cells through mitochondrial dynamics and autophagy. BIOMOLECULES & BIOMEDICINE 2025; 25:869-882. [PMID: 39226107 PMCID: PMC11959391 DOI: 10.17305/bb.2024.10686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 09/05/2024]
Abstract
This study explored the mechanism by which forkhead box O-1 (FoxO1) modulates the biological behaviors of bone mesenchymal stem cell (BMSC). Human BMSCs were cultured for seven days in Dulbecco's modified Eagle medium (DMEM) containing bone morphogenetic protein-2 (BMP-2) and treated with a short hairpin-FoxO1 plasmid. The study assessed cell proliferation, migration, apoptosis, adenosine triphosphate (ATP) levels, mitochondrial DNA (mtDNA) levels, membrane potential (MMP), autophagy, and the levels of FoxO1, apoptosis-associated proteins, osteogenic differentiation-associated proteins, mitochondrial fusion and fission proteins, and mitochondrial autophagy-related proteins. The cells were also treated with the mitochondrial fusion activator MASM7 and the mitochondrial autophagy activator carbonyl cyanide 3-chlorophenylhydrazone (CCCP). The study evaluated whether mitochondrial dynamics and autophagy activation could rescue the FoxO1 knockdown-induced changes in BMSC biological behaviors, mitochondrial dynamics, and mitochondrial autophagy. BMP-2-induced BMSCs exhibited upregulated FoxO1 expression, enhanced proliferation and migration, and induced osteogenic differentiation, while FoxO1 knockdown inhibited BMP-2-induced BMSC proliferation, migration and osteogenic differentiation, increased apoptosis, and affected mitochondrial dynamics and autophagy. Promoting mitochondrial fusion partially reversed the regulatory effects of FoxO1 downregulation on mitochondrial autophagy and the inhibitory effects of FoxO1 silencing on BMP-2-induced BMSC biological behaviors. Activated mitochondrial autophagy facilitated the homeostasis of mitochondrial dynamics and partially counteracted the inhibitory effects of FoxO1 knockdown on BMP-2-induced BMSC biological behaviors. In conclusion, FoxO1 regulates mitochondrial dynamics and autophagy to modulate the osteogenic differentiation of BMP-2-induced human BMSCs.
Collapse
Affiliation(s)
- Weijia Feng
- Department of Pediatric Orthopaedic, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Nannan Chen
- The School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ke Chen
- Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Chen
- Department of Pediatric Orthopaedic, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Lin R, Weng X, Lin L, Hu X, Liu Z, Zheng J, Shen F, Li R. Identification and preliminary validation of biomarkers associated with mitochondrial and programmed cell death in pre-eclampsia. Front Immunol 2025; 15:1453633. [PMID: 39916955 PMCID: PMC11798957 DOI: 10.3389/fimmu.2024.1453633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/24/2024] [Indexed: 02/09/2025] Open
Abstract
Background The involvement of mitochondrial and programmed cell death (mtPCD)-related genes in the pathogenesis of pre-eclampsia (PE) remains inadequately characterized. Methods This study explores the role of mtPCD genes in PE through bioinformatics and experimental approaches. Differentially expressed mtPCD genes were identified as potential biomarkers from the GSE10588 and GSE98224 datasets and subsequently validated. Hub genes were determined using support vector machine, least absolute shrinkage and selection operator, and Boruta based on consistent expression profiles. Their performance was assessed through nomogram and artificial neural network models. Biomarkers were subjected to localization, functional annotation, regulatory network analysis, and drug prediction. Clinical validation was conducted via real-time quantitative polymerase chain reaction (RT-qPCR), immunofluorescence, and Western blot. Results Four genes [solute carrier family 25 member 5 (SLC25A5), acyl-CoA synthetase family member 2 (ACSF2), mitochondrial fission factor (MFF), and phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1)] were identified as biomarkers distinguishing PE from normal controls. Functional analysis indicated their involvement in various biological pathways. Immune analysis revealed associations between biomarkers and immune cell activity. A regulatory network was informed by biomarker expression and database predictions, in which KCNQ1OT1 modulates ACSF2 expression via hsa-miR-200b-3p. Drug predictions, including clodronic acid, were also proposed. Immunofluorescence, RT-qPCR, and Western blot confirmed reduced expression of SLC25A5, MFF, and PMAIP1 in PE, whereas ACSF2 was significantly upregulated. Conclusion These four mtPCD-related biomarkers may play a pivotal role in PE pathogenesis, offering new perspectives on the disease's diagnostic and mechanistic pathways.
Collapse
Affiliation(s)
- Rong Lin
- Medical Centre of Maternity and Child Health, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - XiaoYing Weng
- Medical Centre of Maternity and Child Health, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Liang Lin
- Medical Centre of Maternity and Child Health, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - XuYang Hu
- Medical Centre of Maternity and Child Health, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - ZhiYan Liu
- Medical Centre of Maternity and Child Health, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Jing Zheng
- Medical Centre of Maternity and Child Health, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - FenFang Shen
- Medical Centre of Maternity and Child Health, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Rui Li
- Medical Centre of Maternity and Child Health, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| |
Collapse
|
5
|
Li L, He H, Zheng Z, Zhao X. MLL1 promotes placental trophoblast ferroptosis and aggravates preeclampsia symptoms through epigenetic regulation of RBM15/TRIM72/ADAM9 axis. Biol Direct 2024; 19:133. [PMID: 39709463 DOI: 10.1186/s13062-024-00572-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024] Open
Abstract
This study explores the epigenetic mechanism of MLL1 regulating trophoblast ferroptosis in preeclampsia (PE). A murine model of PE was established, and HTR-8/SVneo cells were induced by Erastin to establish an in vitro cell model. GSH, MDA, Fe2+, and ROS levels were measured to assess ferroptosis. MLL1, RBM15, TRIM72, ADMAM9, ASCL4, GPX4, and FTH1 expressions were detected by qRT-PCR or Western blot. ChIP analyzed H3K4me3 enrichment and MLL1 enrichment on RBM15 promoter. The binding of YTHDF2 or m6A to TRIM72 mRNA was determined by RIP. TRIM72 mRNA stability was detected after actinomycin D treatment. The binding of TRIM72 to ADAM9 and the ADAM9 ubiquitination level were detected by Co-IP. MLL1 was highly expressed in placental tissues of PE mice. Inhibition of MLL1 improved PE symptoms in mice, repressed ferroptosis in placental tissues, and inhibited Erastin-induced ferroptosis in vitro. MLL1 elevated RBM15 expression by increasing H3K4me3 on RBM15 promoter. RBM15 promoted the binding of TRIM72 to YTHDF2 by enhancing m6A modification on TRIM72 mRNA, thereby repressing TRIM72 expression. TRIM72 bound to ADAM9 and ubiquitinated it for degradation. In conclusion, MLL1 promotes placental trophoblast ferroptosis and aggravates PE symptoms via epigenetic regulation of RBM15/TRIM72/ADAM9 axis.
Collapse
Affiliation(s)
- Lingling Li
- Department of Gynaecology and Obstetrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, 1st Ring Road, Qingyang District, Chengdu, 610072, Sichuan Province, China
| | - Haining He
- Department of Gynaecology and Obstetrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, 1st Ring Road, Qingyang District, Chengdu, 610072, Sichuan Province, China
| | - Zhenrong Zheng
- Department of Gynaecology and Obstetrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, 1st Ring Road, Qingyang District, Chengdu, 610072, Sichuan Province, China.
| | - Xiaolan Zhao
- Department of Gynaecology and Obstetrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, 1st Ring Road, Qingyang District, Chengdu, 610072, Sichuan Province, China.
| |
Collapse
|
6
|
Shi J, Shen L, Xiao Y, Wan C, Wang B, Zhou P, Zhang J, Han W, Hu R, Yu F, Wang H. Identification and validation of diagnostic biomarkers and immune cell abundance characteristics in Staphylococcus aureus bloodstream infection by integrative bioinformatics analysis. Front Immunol 2024; 15:1450782. [PMID: 39654884 PMCID: PMC11626409 DOI: 10.3389/fimmu.2024.1450782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/01/2024] [Indexed: 12/12/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is an opportunistic pathogen that could cause life-threatening bloodstream infections. The objective of this study was to identify potential diagnostic biomarkers of S. aureus bloodstream infection. Gene expression dataset GSE33341 was optimized as the discovery dataset, which contained samples from human and mice. GSE65088 dataset was utilized as a validation dataset. First, after overlapping the differentially expressed genes (DEGs) in S. aureus infection samples from GSE33341-human and GSE33341-mice samples, we detected 63 overlapping genes. Subsequently, the hub genes including DRAM1, PSTPIP2, and UPP1 were identified via three machine-learning algorithms: random forest, support vector machine-recursive feature elimination, and least absolute shrinkage and selection operator. Additionally, the receiver operating characteristic curve was leveraged to verify the efficacy of the hub genes. DRAM1 (AUC=1), PSTPIP2 (AUC=1), and UPP1 (AUC=1) were investigated and demonstrated significant expression differences (all P < 0.05) and diagnostic efficacy in the training and validation datasets. Furthermore, the relationship between the diagnostic markers and the abundance of immune cells was assessed using cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT). These three diagnostic indicators also correlated with multiple immune cells to varying degrees. The expression of DRAM1 was significantly positively correlated with B cell naive and mast cell activation, and negatively correlated with NK cells and CD4/CD8+ T cells. The expression of PSTPIP2 was significantly positively correlated with macrophage M0, macrophage M1, B cell naive, and dendritic cell activation, while the expression of PSTPIP2 was negatively correlated with NK cells and CD4/CD8+ T cells. Significant negative correlations between UPP1 expression and T cell CD4 memory rest and neutrophils were also observed. Finally, we established a mouse model of S. aureus bloodstream infection and collected the blood samples for RNA-Seq analysis and RT-qPCR experiments. The analysis results in RNA-Seq and RT-qPCR experiments further confirmed the significant expression differences (all P < 0.05) of these three genes. Overall, three candidate hub genes (DRAM1, PSTPIP2, and UPP1) were identified initially for S. aureus bloodstream infection diagnosis. Our study could provide potential diagnostic biomarkers for S. aureus bloodstream infection patients.
Collapse
Affiliation(s)
- Junhong Shi
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li Shen
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanghua Xiao
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Cailing Wan
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bingjie Wang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Peiyao Zhou
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiao Zhang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weihua Han
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rongrong Hu
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Fangyou Yu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hongxiu Wang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
7
|
Wu D, Zhou B, Hong L, Cen H, Wang L, Ma Y, Gong H. Trophoblast cell-derived extracellular vesicles regulate the polarization of decidual macrophages by carrying miR-141-3p in the pathogenesis of preeclampsia. Sci Rep 2024; 14:24529. [PMID: 39424901 PMCID: PMC11489854 DOI: 10.1038/s41598-024-76563-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 10/15/2024] [Indexed: 10/21/2024] Open
Abstract
Dysregulation of macrophage polarization can prevent the invasion of trophoblast cells and further limit spiral artery remodeling in preeclampsia (PE). However, its mechanism is obscure. HTR8-/Svneo cells were cultured under normoxic or hypoxic conditions and extracellular vesicles (EVs) in the culture supernatants were extracted. Next, the cells were incubated with those EVs to investigate their effects on trophoblasts. A co-culture system consisting of HTR8-/Svneo cells and macrophages was used to reveal how the trophoblast-derived EVs affected the macrophage subtype. Finally, a PE mouse model and miR-141-3p knockout mice were used to verify the function of miR-141-3p in PE. Hypoxia induced abnormal increases in the levels of miR-141-3p in HTR8-/Svneo cells and EVs. EVs from hypoxia-treated HTR8-/Svneo cells could downregulate PTEN, a potential target of miR-141-3p, and inhibit trophoblast mitophagy and invasion. However, HTR8-/Svneo cells transfected with an miR-141-3p inhibitor could attenuate the influence of EVs. In an HTR8-/Svneo cell plus macrophage co-culture system, hypoxia-pretreated cells promoted the transformation of macrophages into the M1-phenotye, and HTR8-/Svneo invasion was inhibited by the macrophages. MiR-141 from EVs could target and downregulate dual specificity phosphatase 1 (DUSP1) expression in macrophages, induce formation of the M1 macrophage phenotype in THP-1 cells, downregulate DUSP1 expression, and upregulate TAB2/TAK1 signaling. These results were also demonstrated in normal pregnant mice and PE pregnant mice. A hypoxic environment could upregulate miR-141 expression in the EVs of HTR8-/Svneo cells, and THP-1-derived macrophages could uptake EVs releasing miR-141 to downregulate DUSP1 expression and induce the formation of M1 macrophages, which can lead to the development of PE.
Collapse
Affiliation(s)
- Dongcai Wu
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Bo Zhou
- Hainan Medical University, Haikou, China
| | - Lan Hong
- Department of Gynecology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Hui Cen
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ling Wang
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for human reproductive medicine and Genetic Research & Hainan Provincial Clinical Research Center for Thalassemia & Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
| | - Humin Gong
- Department of Obstetrics, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, China.
| |
Collapse
|
8
|
Li J, Wang M, Zhou H, Jin Z, Yin H, Yang S. The role of pyroptosis in the occurrence and development of pregnancy-related diseases. Front Immunol 2024; 15:1400977. [PMID: 39351226 PMCID: PMC11439708 DOI: 10.3389/fimmu.2024.1400977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Pyroptosis is a form of programmed cell death that is crucial in the development of various diseases, including autoimmune diseases, atherosclerotic diseases, cancer, and pregnancy complications. In recent years, it has gained significant attention in national and international research due to its association with inflammatory immune overactivation and its involvement in pregnancy complications such as miscarriage and preeclampsia (PE). The mechanisms discussed include the canonical pyroptosis pathway of gasdermin activation and pore formation (caspase-1-dependent pyroptosis) and the non-canonical pyroptosis pathway (cysteoaspartic enzymes other than caspase-1). These pathways work on various cellular and factorial levels to influence normal pregnancy. This review aims to summarize and analyze the pyroptosis pathways associated with abnormal pregnancies and pregnancy complications. The objective is to enhance pregnancy outcomes by identifying various targets to prevent the onset of pyroptosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuli Yang
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin
University, Changchun, Jilin, China
| |
Collapse
|
9
|
Kobayashi H, Yoshimoto C, Matsubara S, Shigetomi H, Imanaka S. An integral role of mitochondrial function in the pathophysiology of preeclampsia. Mol Biol Rep 2024; 51:330. [PMID: 38393449 DOI: 10.1007/s11033-024-09285-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Preeclampsia (PE) is associated with high maternal and perinatal morbidity and mortality. The development of effective treatment strategies remains a major challenge due to the limited understanding of the pathogenesis. In this review, we summarize the current understanding of PE research, focusing on the molecular basis of mitochondrial function in normal and PE placentas, and discuss perspectives on future research directions. Mitochondria integrate numerous physiological processes such as energy production, cellular redox homeostasis, mitochondrial dynamics, and mitophagy, a selective autophagic clearance of damaged or dysfunctional mitochondria. Normal placental mitochondria have evolved innovative survival strategies to cope with uncertain environments (e.g., hypoxia and nutrient starvation). Cytotrophoblasts, extravillous trophoblast cells, and syncytiotrophoblasts all have distinct mitochondrial morphology and function. Recent advances in molecular studies on the spatial and temporal changes in normal mitochondrial function are providing valuable insight into PE pathogenesis. In PE placentas, hypoxia-mediated mitochondrial fission may induce activation of mitophagy machinery, leading to increased mitochondrial fragmentation and placental tissue damage over time. Repair mechanisms in mitochondrial function restore placental function, but disruption of compensatory mechanisms can induce apoptotic death of trophoblast cells. Additionally, molecular markers associated with repair or compensatory mechanisms that may influence the development and progression of PE are beginning to be identified. However, contradictory results have been obtained regarding some of the molecules that control mitochondrial biogenesis, dynamics, and mitophagy in PE placentas. In conclusion, understanding how the mitochondrial morphology and function influence cell fate decisions of trophoblast cells is an important issue in normal as well as pathological placentation biology. Research focusing on mitochondrial function will become increasingly important for elucidating the pathogenesis and effective treatment strategies of PE.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-cho, Kashihara, 634-0813, Japan.
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara, 634-8522, Japan.
| | - Chiharu Yoshimoto
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara, 634-8522, Japan
- Department of Obstetrics and Gynecology, Nara Prefecture General Medical Center, 2-897-5 Shichijyonishi-machi, Nara, 630-8581, Japan
| | - Sho Matsubara
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara, 634-8522, Japan
- Department of Medicine, Kei Oushin Clinic, 5-2-6, Naruo-cho, Nishinomiya, 663-8184, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara, 634-8522, Japan
- Department of Gynecology and Reproductive Medicine, Aska Ladies Clinic, 3-3-17 Kitatomigaoka-cho, Nara, 634- 0001, Japan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-cho, Kashihara, 634-0813, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara, 634-8522, Japan
| |
Collapse
|
10
|
Yu J, Liu C, Chen H, Xiang M, Hu X, Zhong Z, Liu Q, Wang D, Cheng L. Transcriptomic analysis of bovine endometrial epithelial cells in response to interferon tau and hormone stimulation. Front Vet Sci 2024; 11:1344259. [PMID: 38371594 PMCID: PMC10873918 DOI: 10.3389/fvets.2024.1344259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024] Open
Abstract
The embryonic loss during early stage of gestation is one of the major causes of infertility for domestic ruminants, causing huge economic losses to pasture. Maternal recognition of pregnancy and implantation are the crucial process for determining the successful establishment and development of pregnancy in cattle. The research on molecular mechanisms of pregnancy recognition will facilitate illustrating the complex process of pregnancy establishment and help to improve pregnancy outcomes. In this study, we performed transcriptomic analysis of primary bovine endometrial epithelial cells (BEND) with or without IFNT and hormones intervention through RNA sequencing. We eventually identified 608 differentially expressed genes (DEGs) including 409 up-regulated genes and 199 down-regulated genes in IFNT and hormones-treated group compared with control group. Gene Ontology (GO) enrichment analysis demonstrated that the majority of DEGs were implicated in immune system process, response to external stimulus, response to cytokine, regulation of response to stress. Results from KEGG analysis showed a significant enrichment of NOD-like receptor signaling pathway, antigen processing and presentation, necroptosis, oxidative phosphorylation, RIG-I-like receptor signaling pathway. Additionally, a set of promising candidate genes, including (USP18, STAT1, PSMB8, IFIH1, MX2, IFI44, DHX58, CASP8, DRAM1, CXCR4), were characterized by constructing an integrated interaction network. Specifically, the mRNA expression of HOXA11, PTGS1 and PTGS2 were remarkably suppressed by silencing DRAM1 under IFNT and hormone administration, thus speculating that DRAM1 might play a crucial role in early pregnancy by regulating endometrial function. The results of this study depicted a relatively comprehensive transcriptional profiles of BEND in response to IFNT and hormones, which contributes to a better understanding of gene interaction network and underlying regulatory mechanisms in endometrium of ruminants during early pregnancy.
Collapse
Affiliation(s)
- Jie Yu
- Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Chenhui Liu
- Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Hongbo Chen
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming and Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Min Xiang
- Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Xiuzhong Hu
- Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Zhuxia Zhong
- Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Qing Liu
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming and Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Dingfa Wang
- Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Lei Cheng
- Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
11
|
Ma Y, Zhou X, Gui M, Yao L, Li J, Chen X, Wang M, Lu B, Fu D. Mitophagy in hypertension-mediated organ damage. Front Cardiovasc Med 2024; 10:1309863. [PMID: 38239871 PMCID: PMC10794547 DOI: 10.3389/fcvm.2023.1309863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024] Open
Abstract
Hypertension constitutes a pervasive chronic ailment on a global scale, frequently inflicting damage upon vital organs, such as the heart, blood vessels, kidneys, brain, and others. And this is a complex clinical dilemma that requires immediate attention. The mitochondria assume a crucial function in the generation of energy, and it is of utmost importance to eliminate any malfunctioning or surplus mitochondria to uphold intracellular homeostasis. Mitophagy is considered a classic example of selective autophagy, an important component of mitochondrial quality control, and is closely associated with many physiological and pathological processes. The ubiquitin-dependent pathway, facilitated by PINK1/Parkin, along with the ubiquitin-independent pathway, orchestrated by receptor proteins such as BNIP3, NIX, and FUNDC1, represent the extensively investigated mechanisms underlying mitophagy. In recent years, research has increasingly shown that mitophagy plays an important role in organ damage associated with hypertension. Exploring the molecular mechanisms of mitophagy in hypertension-mediated organ damage could represent a critical avenue for future research in the development of innovative therapeutic modalities. Therefore, this article provides a comprehensive review of the impact of mitophagy on organ damage due to hypertension.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bo Lu
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Deyu Fu
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
12
|
Sun Y, Lv D, Xie Y, Xu H, Li X, Li F, Fan Y, Zhang X, Zhang Y, Chen S, He M, Deng D. PINK1-mediated mitophagy induction protects against preeclampsia by decreasing ROS and trophoblast pyroptosis. Placenta 2023; 143:1-11. [PMID: 37788592 DOI: 10.1016/j.placenta.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/17/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023]
Abstract
INTRODUCTION Preeclampsia (PE) is a multisystemic disorder attributed to the excessive presentation of placenta-derived immunoinflammatory factors. PTEN-induced putative kinase 1 (PINK1)-mediated mitophagy participates in the development and persistence of the inflammation. We hypothesized that dysregulated mitophagy might be involved in the pathogenesis of PE by promoting the activation of trophoblast pyroptosis that augment inflammation. METHODS The morphology of mitochondrial in placenta were observed by transmission electron microscopy. The localization of PINK1 in the placenta was determined by immunohistochemistry. The expression levels of PINK1, PARKIN, LC3B, and SQSTM1 and pyroptosis-related molecules were compared between normal pregnancies and PE. We used hypoxia/reoxygenation (H/R) to stimulate the trophoblast hypoxia environment. HTR-8/SVneo cells were transfected with PINK1 plasmid and si-PINK1, respectively, and then were treated with H/R, to determine whether PINK1 regulated ROS and HTR-8/Svneo pyroptosis. Finally, ROS production was inhibited by MitoTEMPO to observe whether the pro-pyroptosis effect of PINK1 knockdown is alleviated. RESULTS Swollen mitochondrial were accumulated in the PE placentae. PINK1 is localized on villus trophoblast (VTs) and extravillous trophoblast (EVTs). PINK1-mediated mitophagy was abolished in the PE placenta, while the levels of pyroptosis were induced. H/R stimulation aggravated the downregulation of mitophagy and the up-regulation of pyroptosis. Overexpression of PINK1 mitigated H/R-induced upregulation of ROS and pyroptosis while silencing PINK1 did the opposite. Reducing ROS production can effectively resist the pro-pyroptosis effect of PINK1 knockdown. DISCUSSION This study demonstrated that PINK1-mediated mitophagy might played a protective role in PE by reducing ROS and trophoblast pyroptosis.
Collapse
Affiliation(s)
- Yanan Sun
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Dan Lv
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Yin Xie
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, No. 745, Wuluo Road, Hongshan, 430070, PR China
| | - Heze Xu
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Xuanxuan Li
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Fanfan Li
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Yao Fan
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Xiaolei Zhang
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Yanling Zhang
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Suhua Chen
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Mengzhou He
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Dongrui Deng
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| |
Collapse
|
13
|
Mishra A, Betancourt A, Vidyadharan VA, Blesson CS, Belfort M, Yallampalli C, Chauhan M. Calcitonin gene-related peptide protects from soluble fms-like tyrosine kinase-1-induced vascular dysfunction in a preeclampsia mouse model. Front Physiol 2023; 14:1221684. [PMID: 37719463 PMCID: PMC10500126 DOI: 10.3389/fphys.2023.1221684] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/07/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction: Preeclampsia (PE) is a hypertensive disorder during pregnancy associated with elevated levels of soluble FMS-like tyrosine kinase (sFLT-1) and increased vascular sensitivity to angiotensin II (ATII). Calcitonin gene-related peptide (CALCA) is a potent vasodilator that inhibits the ATII-induced increase in blood pressure and protects against ATII-induced increases in oxidative stress through a mitochondrial-dependent pathway in male mice. In rodent pregnancy, CALCA facilitates pregnancy-induced vascular adaptation. Most of the vascular effects of CALCA are mediated by vascular smooth muscle cells (VSMCs). We recently reported that CALCA treatment inhibits sFLT-1-induced decreases in cAMP synthesis in omental artery smooth muscle cells (OASMCs) isolated from pregnant women and has relaxant effects in omental arteries (OAs) isolated from pregnant women with preeclamptic (PE) pregnancies. The current study was designed to assess the effects of sFLT-1 on mitochondrial bioenergetics in OASMCs isolated from pregnant women in the presence or absence of CALCA and assess the development of vascular dysfunction in sFLT-1 using a mouse model of PE pregnancy. Methods: OASMCs were isolated from pregnant women to assess the effects of sFLT-1 on mitochondrial bioenergetics and oxidative stress using the Seahorse assay and quantitative PCR. Pregnant mice overexpressing sFLT-1 via adenoviral delivery were used to assess the effects of CALCA infusion on the sFLT-1-induced increase in blood pressure, ATII hypersensitivity, fetal growth restriction, and the elevated albumin-creatinine ratio. Systemic blood pressure was recorded in conscious, freely moving mice using implantable radio telemetry devices. Results: CALCA inhibited the following sFLT-1-induced effects: 1) increased oxidative stress and the decreased oxygen consumption rate (OCR) in response to maximal respiration and ATP synthesis; 2) increases in the expression of mitochondrial enzyme complexes in OASMCs; 3) increased mitochondrial fragmentation in OASMCs; 4) decreased expression of mitophagy-associated PINK1 and DRAM1 mRNA expression in OASMCs; and 5) increased blood pressure, ATII hypersensitivity, fetal growth restriction, and the albumin-creatinine ratio in sFLT-1-overexpressing pregnant mice. Conclusion: CALCA inhibits sFLT-1-induced alterations in mitochondrial bioenergetics in vascular smooth muscle cells and development of maternal vascular dysfunction in a mouse model of PE.
Collapse
Affiliation(s)
| | | | | | | | | | - Chandra Yallampalli
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, United States
| | - Madhu Chauhan
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
14
|
Hu XQ, Zhang L. Oxidative Regulation of Vascular Ca v1.2 Channels Triggers Vascular Dysfunction in Hypertension-Related Disorders. Antioxidants (Basel) 2022; 11:antiox11122432. [PMID: 36552639 PMCID: PMC9774363 DOI: 10.3390/antiox11122432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Blood pressure is determined by cardiac output and peripheral vascular resistance. The L-type voltage-gated Ca2+ (Cav1.2) channel in small arteries and arterioles plays an essential role in regulating Ca2+ influx, vascular resistance, and blood pressure. Hypertension and preeclampsia are characterized by high blood pressure. In addition, diabetes has a high prevalence of hypertension. The etiology of these disorders remains elusive, involving the complex interplay of environmental and genetic factors. Common to these disorders are oxidative stress and vascular dysfunction. Reactive oxygen species (ROS) derived from NADPH oxidases (NOXs) and mitochondria are primary sources of vascular oxidative stress, whereas dysfunction of the Cav1.2 channel confers increased vascular resistance in hypertension. This review will discuss the importance of ROS derived from NOXs and mitochondria in regulating vascular Cav1.2 and potential roles of ROS-mediated Cav1.2 dysfunction in aberrant vascular function in hypertension, diabetes, and preeclampsia.
Collapse
|
15
|
SUMOylation targeting mitophagy in cardiovascular diseases. J Mol Med (Berl) 2022; 100:1511-1538. [PMID: 36163375 DOI: 10.1007/s00109-022-02258-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022]
Abstract
Small ubiquitin-like modifier (SUMO) plays a key regulatory role in cardiovascular diseases, such as cardiac hypertrophy, hypertension, atherosclerosis, and cardiac ischemia-reperfusion injury. As a multifunctional posttranslational modification molecule in eukaryotic cells, SUMOylation is essentially associated with the regulation of mitochondrial dynamics, especially mitophagy, which is involved in the progression and development of cardiovascular diseases. SUMOylation targeting mitochondrial-associated proteins is admittedly considered to regulate mitophagy activation and mitochondrial functions and dynamics, including mitochondrial fusion and fission. SUMOylation triggers mitochondrial fusion to promote mitochondrial dysfunction by modifying Fis1, OPA1, MFN1/2, and DRP1. The interaction between SUMO and DRP1 induces SUMOylation and inhibits lysosomal degradation of DRP1, which is further involved in the regulation of mitochondrial fission. Both SUMOylation and deSUMOylation contribute to the initiation and activation of mitophagy by regulating the conjugation of MFN1/2 SERCA2a, HIF1α, and PINK1. SUMOylation mediated by the SUMO molecule has attracted much attention due to its dual roles in the development of cardiovascular diseases. In this review, we systemically summarize the current understanding underlying the expression, regulation, and structure of SUMO molecules; explore the biochemical functions of SUMOylation in the initiation and activation of mitophagy; discuss the biological roles and mechanisms of SUMOylation in cardiovascular diseases; and further provide a wider explanation of SUMOylation and deSUMOylation research to provide a possible therapeutic strategy for cardiovascular diseases. Considering the precise functions and exact mechanisms of SUMOylation in mitochondrial dysfunction and mitophagy will provide evidence for future experimental research and may serve as an effective approach in the development of novel therapeutic strategies for cardiovascular diseases. Regulation and effect of SUMOylation in cardiovascular diseases via mitophagy. SUMOylation is involved in multiple cardiovascular diseases, including cardiac hypertrophy, hypertension, atherosclerosis, and cardiac ischemia-reperfusion injury. Since it is expressed in multiple cells associated with cardiovascular disease, SUMOylation can be regulated by numerous ligases, including the SENP family proteins PIAS1, PIASy/4, UBC9, and MAPL. SUMOylation regulates the activation and degradation of PINK1, SERCA2a, PPARγ, ERK5, and DRP1 to mediate mitochondrial dynamics, especially mitophagy activation. Mitophagy activation regulated by SUMOylation further promotes or inhibits ventricular diastolic dysfunction, perfusion injury, ventricular remodelling and ventricular noncompaction, which contribute to the development of cardiovascular diseases.
Collapse
|
16
|
Mitochondrial Dysfunction, Mitophagy and Their Correlation with Perinatal Complications: Preeclampsia and Low Birth Weight. Biomedicines 2022; 10:biomedicines10102539. [PMID: 36289801 PMCID: PMC9599185 DOI: 10.3390/biomedicines10102539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/18/2022] Open
Abstract
Mitochondria are essential organelles and crucial for cellular survival. Mitochondrial biogenesis and mitophagy are dynamic features that are essential for both maintaining the health of the mitochondrial network and cellular demands. The accumulation of damaged mitochondria has been shown to be related to a wide range of pathologies ranging from neurological to musculoskeletal. Mitophagy is the selective autophagy of mitochondria, eliminating dysfunctional mitochondria in cells by engulfment within double-membraned vesicles. Preeclampsia and low birth weight constitute prenatal complications during pregnancy and are leading causes of maternal and fetal mortality and morbidity. Both placental implantation and fetal growth require a large amount of energy, and a defect in the mitochondrial quality control mechanism may be responsible for the pathophysiology of these diseases. In this review, we compiled current studies investigating the role of BNIP3, DRAM1, and FUNDC1, mediators of receptor-mediated mitophagy, in the progression of preeclampsia and the role of mitophagy pathways in the pathophysiology of low birth weight. Recent studies have indicated that mitochondrial dysfunction and accumulation of reactive oxygen species are related to preeclampsia and low birth weight. However, due to the lack of studies in this field, the results are controversial. Therefore, mitophagy-related pathways associated with these pathologies still need to be elucidated. Mitophagy-related pathways are among the promising study targets that can reveal the pathophysiology behind preeclampsia and low birth weight.
Collapse
|
17
|
Li C, Li Z, Yi H, Liu Z. Effect of lncRNA00511 on Non-Small Cell Lung Cancer by Regulating miR-29b-3p. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study assessed the effect of LINC00511 on NSCLC cells through regulating miR-29b-3p/DRAM1 axis. LINC00511 expression in NSCLC tissue and para-carcinoma tissue was analyzed and its correlation with TNM stage was assessed. Lung carcinoma cells as A549 cells were cultivated in
vitro and transfected with LINC00511 siRNA or plasmid with DRAM1 overexpression followed by analysis of LINC00511 and miR-184 expression by RT-PCR, cell proliferation and invasion, Bcl-2, Bax and DRAM1 expression by Western Blot. LINC00511 was significantly upregulated in NSCLC tissue
and positively correlated with the TNM staging. However, miR-29b-3p was significantly downregulated in NSCLC tissue. The miR-29b-3p was a target of LINC00511. The DRAM1 was a target of miR-29b-3p. Downregulation of LINC00511 restrained proliferation and invasion of A549 cells and promoted
cell apoptosis. The development of NSCLC could be prompted by increasing the presentation of LINC00511 through increasing presentation of DRAM1 and being targeted with miR-29b-3p. It could be restrained through reducing the presentation of LINC00511.
Collapse
Affiliation(s)
- Chunlin Li
- Department of Thoracic Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, Inner Mongolia Autonomous Region, 010000, P. R. China
| | - Zhenyu Li
- Department of Thoracic Surgery, Inner Mongolia Armed Police Hospital, Hohhot, Inner Mongolia, 010000, China
| | - Hua Yi
- Department of Pathology Department, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010000, China
| | - Zhidong Liu
- Department of Thoracic Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, Inner Mongolia Autonomous Region, 010000, P. R. China
| |
Collapse
|
18
|
Mitochondria Targeted Antioxidant Significantly Alleviates Preeclampsia Caused by 11β-HSD2 Dysfunction via OPA1 and MtDNA Maintenance. Antioxidants (Basel) 2022; 11:antiox11081505. [PMID: 36009224 PMCID: PMC9404992 DOI: 10.3390/antiox11081505] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/03/2022] Open
Abstract
We have previously demonstrated that placental 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) dysfunction contributes to PE pathogenesis. We sought to elucidate molecular mechanisms underlying 11β-HSD2 dysfunction-induced PE and to seek potential therapeutic targets using a 11β-HSD2 dysfunction-induced PE-like rat model as well as cultured extravillous trophoblasts (EVTs) since PE begins with impaired function of EVTs. In 11β-HSD2 dysfunction-induced PE-like rat model, we revealed that placental mitochondrial dysfunction occurred, which was associated with mitDNA instability and impaired mitochondrial dynamics, such as decreased optic atrophy 1 (OPA1) expression. MitoTEMPO treatment significantly alleviated the hallmark of PE-like features and improved mitDNA stability and mitochondrial dynamics in the placentas of rat PE-like model. In cultured human EVTs, we found that 11β-HSD2 dysfunction led to mitochondrial dysfunction and disrupted mtDNA stability. MitoTEMPO treatment improved impaired invasion and migration induced by 11β-HSD2 dysfunction in cultured EVTs. Further, we revealed that OPA1 was one of the key factors that mediated 11β-HSD2 dysfunction-induced excess ROS production, mitochondrial dysfunction and mtDNA reduction. Our data indicates that 11β-HSD2 dysfunction causes mitochondrial dysfunctions, which impairs trophoblast function and subsequently results in PE development. Our study immediately highlights that excess ROS is a potential therapeutic target for PE.
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Preeclampsia complicates 5-10% of all pregnancies and is a leading cause of maternal and perinatal mortality and morbidity. The placenta plays a pivotal role in determining pregnancy outcome by supplying the fetus with oxygen and nutrients and by synthesizing hormones. Placental function is highly dependent on energy supplied by mitochondria. It is well-known that preeclampsia is originated from placental dysfunction, although the etiology of it remains elusive. RECENT FINDINGS During the last three decades, substantial evidence suggests that mitochondrial abnormality is a major contributor to placental dysfunction. In addition, mitochondrial damage caused by circulating bioactive factors released from the placenta may cause endothelial dysfunction and subsequent elevation in maternal blood pressure. In this review, we summarize the current knowledge of mitochondrial abnormality in the pathogenesis of preeclampsia and discuss therapeutic approaches targeting mitochondria for treatment of preeclampsia.
Collapse
|
20
|
Yang L, Liu C, Zhang C, Shang R, Zhang Y, Wu S, Long Y. LncRNA small nucleolar RNA host gene 5 inhibits trophoblast autophagy in preeclampsia by targeting microRNA-31-5p and promoting the transcription of secreted protein acidic and rich in cysteine. Bioengineered 2022; 13:7221-7237. [PMID: 35259061 PMCID: PMC8973888 DOI: 10.1080/21655979.2022.2040873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Preeclampsia (PE) is a pregnancy-related complication. Dysregulation of long non-coding RNAs (lncRNAs) contributes to the pathogenesis of PE. The current study sought to investigate the effect of lncRNA small nucleolar RNA host gene 5 (SNHG5) on trophoblast autophagy in PE. A PE mouse model was established, followed by detection of parameters such as blood pressure, proteinuria, triglycerides, total cholesterol, low-density lipoprotein, and high-density lipoprotein, observation of alterations of mouse placenta and kidney, and detection of B-cell chronic lymphocytic leukemia/lymphoma-2, Bcl-2-associated X protein, and SNHG5 expression patterns. The expressions of LC3, Beclin-1, and p62 in the placenta of PE mice were detected. Moreover, the SNHG5 expression was downregulated in the established HTR-8/SVneo trophoblast model, followed by evaluation of cell proliferation, apoptosis, and autophagy. After combination treatment with 3-MA (an autophagy inhibitor) and si-SNHG5, the behaviors of HTR-8/SVneo cells were observed. The binding relations between SNHG5 and miR-31-5p, and miR-31-5p and SPARC were verified. The expressions of miR-31-5p and SPARC in the placenta of mice and trophoblasts were determined. Our results demonstrated a poor expression of lncRNA SNHG5 in PE mice. SNHG5 overexpression reduced the PE phenotype and tissue damage in mice. SNHG5 silencing reduced the proliferation, migration, and invasion of trophoblasts, but elevated apoptosis and autophagy. SNHG5 sponged miR-31-5p to promote SPARC transcription. Additionally, miR-31-5p knockdown or 3-MA treatment reverted the stimulative effect of SNHG5 silencing on trophoblast autophagy. Collectively, our study demonstrated that lncRNA SNHG5 alleviated the PE phenotype and inhibited trophoblast autophagy by sponging miR-31-5p and promoting SPARC transcription.
Collapse
Affiliation(s)
- Lei Yang
- Department of Gynecology & Obstetrics, Beijing Friendship Hospital, Capital Medical University, Beijing, Xicheng, China
| | - Chao Liu
- Department of Gynecology & Obstetrics, Beijing Friendship Hospital, Capital Medical University, Beijing, Xicheng, China
| | - Chao Zhang
- Department of Gynecology & Obstetrics, Beijing Friendship Hospital, Capital Medical University, Beijing, Xicheng, China
| | - Ruotian Shang
- Department of Gynecology & Obstetrics, Beijing Friendship Hospital, Capital Medical University, Beijing, Xicheng, China
| | - Yichen Zhang
- Department of Gynecology & Obstetrics, Beijing Friendship Hospital, Capital Medical University, Beijing, Xicheng, China
| | - Shiyuan Wu
- Department of Gynecology & Obstetrics, Beijing Friendship Hospital, Capital Medical University, Beijing, Xicheng, China
| | - Yan Long
- Department of Gynecology & Obstetrics, Beijing Friendship Hospital, Capital Medical University, Beijing, Xicheng, China
| |
Collapse
|
21
|
Peng X, Hou R, Yang Y, Luo Z, Cao Y. Current Studies of Mitochondrial Quality Control in the Preeclampsia. Front Cardiovasc Med 2022; 9:836111. [PMID: 35295266 PMCID: PMC8920482 DOI: 10.3389/fcvm.2022.836111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/02/2022] [Indexed: 01/22/2023] Open
Abstract
Mitochondria are cellular energy powerhouses that play important roles in regulating cellular processes. Mitochondrial quality control (mQC), including mitochondrial biogenesis, mitophagy, mitochondrial fusion and fission, maintains physiological demand and adapts to changed conditions. mQC has been widely investigated in neurodegeneration, cardiovascular disease and cancer because of the high demand for ATP in these diseases. Although placental implantation and fetal growth similarly require a large amount of energy, the investigation of mQC in placental-originated preeclampsia (PE) is limited. We elucidate mitochondrial morphology and function in different pregnancy stages, outline the role of mQC in cellular homeostasis and PE and summarize the current findings of mQC-related PE studies. This review also provides suggestions on the future investigation of mQC in PE, which will lead to the development of new prevention and therapy strategies for PE.
Collapse
Affiliation(s)
- Xiaoqing Peng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, China
| | - Ruirui Hou
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, China
| | - Yuanyuan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhigang Luo
- Department of Cardiovascular, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Zhigang Luo
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- *Correspondence: Yunxia Cao
| |
Collapse
|
22
|
Is Mitochondrial Oxidative Stress a Viable Therapeutic Target in Preeclampsia? Antioxidants (Basel) 2022; 11:antiox11020210. [PMID: 35204094 PMCID: PMC8868187 DOI: 10.3390/antiox11020210] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 01/31/2023] Open
Abstract
Despite considerable research efforts over the past few decades, the pathology of preeclampsia (PE) remains poorly understood with no new FDA-approved treatments. There is a substantial amount of work being conducted by investigators around the world to identify targets to develop therapies for PE. Oxidative stress has been identified as one of the crucial players in pathogenesis of PE and has garnered a great deal of attention by several research groups including ours. While antioxidants have shown therapeutic benefit in preclinical models of PE, the clinical trials evaluating antioxidants (vitamin E and vitamin C) were found to be disappointing. Although the idea behind contribution of mitochondrial oxidative stress in PE is not new, recent years have seen an enormous interest in exploring mitochondrial oxidative stress as an important pathological mediator in PE. We and others using animals, cell models, and preeclamptic patient samples have shown the evidence for placental, renal, and endothelial cell mitochondrial oxidative stress, and its significance in PE. These studies offer promising results; however, the important and relevant question is can we translate these results into clinical efficacy in treating PE. Hence, the purpose of this review is to review the existing literature and offer our insights on the potential of mitochondrial antioxidants in treating PE.
Collapse
|
23
|
Peng H, You L, Yang C, Wang K, Liu M, Yin D, Xu Y, Dong X, Yin X, Ni J. Ginsenoside Rb1 Attenuates Triptolide-Induced Cytotoxicity in HL-7702 Cells via the Activation of Keap1/Nrf2/ARE Pathway. Front Pharmacol 2022; 12:723784. [PMID: 35046796 PMCID: PMC8762226 DOI: 10.3389/fphar.2021.723784] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Triptolide (TP) is the major bioactive compound extracted from Tripterygium wilfordii Hook F. It exerts anti-inflammatory, antirheumatic, antineoplastic, and neuroprotective effects. However, the severe hepatotoxicity induced by TP limits its clinical application. Ginsenoside Rb1 has been reported to possess potential hepatoprotective effects, but its mechanism has not been fully investigated. This study was aimed at investigating the effect of ginsenoside Rb1 against TP-induced cytotoxicity in HL-7702 cells, as well as the underlying mechanism. The results revealed that ginsenoside Rb1 effectively reversed TP-induced cytotoxicity in HL-7702 cells. Apoptosis induced by TP was suppressed by ginsenoside Rb1 via inhibition of death receptor-mediated apoptotic pathway and mitochondrial-dependent apoptotic pathway. Pretreatment with ginsenoside Rb1 significantly reduced Bax/Bcl-2 ratio and down-regulated the expression of Fas, cleaved poly ADP-ribose polymerase (PARP), cleaved caspase-3, and -9. Furthermore, ginsenoside Rb1 reversed TP-induced cell cycle arrest in HL-7702 cells at S and G2/M phase, via upregulation of the expressions of cyclin-dependent kinase 2 (CDK2), cyclin E, cyclin A, and downregulation of the expressions of p53, p21, and p-p53. Ginsenoside Rb1 increased glutathione (GSH) and superoxide dismutase (SOD) levels, but decreased the reactive oxygen species (ROS) and malondialdehyde (MDA) levels. Pretreatment with ginsenoside Rb1 enhanced the expression levels of nuclear factor-erythroid 2-related factor 2 (Nrf2), total Nrf2, NAD(P)H: quinone oxidoreductases-1 (NQO-1), heme oxygenase-1 (HO-1), and Kelch-like ECH-associated protein 1 (Keap1)/Nrf2 complex. Therefore, ginsenoside Rb1 effectively alleviates TP-induced cytotoxicity in HL-7702 cells through activation of the Keap1/Nrf2/ARE antioxidant pathway.
Collapse
Affiliation(s)
- Hulinyue Peng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Longtai You
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chunjing Yang
- Department of Pharmacy, Beijing Shijitan Hospital Affiliated to Capital University of Medical Sciences, Beijing, China
| | - Kaixin Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Manting Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Dongge Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuchen Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoxv Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xingbin Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jian Ni
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
24
|
Chen G, Chen L, Huang Y, Zhu X, Yu Y. Increased FUN14 domain containing 1 (FUNDC1) ubiquitination level inhibits mitophagy and alleviates the injury in hypoxia-induced trophoblast cells. Bioengineered 2021; 13:3620-3633. [PMID: 34699308 PMCID: PMC8974051 DOI: 10.1080/21655979.2021.1997132] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Preeclampsia (PE) is a pregnancy disorder characterized by excessive trophoblast cell death. This study aims to explore the exact mechanism of the ubiquitination level of FUN14 domain containing 1 (FUNDC1) in mitophagy and injury in hypoxic trophoblast cells. In this study, HTR-8/SVneo trophoblast cells were cultured under normoxic and hypoxic conditions and PE mouse model was established. We found low ubiquitination level of FUNDC1 in hypoxic trophoblast cells and placenta of pregnant women with PE. Proteasome inhibitor MG-132 and protease activator MF-094 were added into HTR-8/SVneo trophoblast cells. Proteasome inhibitor MG-132 decreased FUNDC1 ubiquitination level while protease activator MF-094 increased FUNDC1 ubiquitination level. Inhibition of FUNDC1 ubiquitination promoted mitophagy and mitochondrial membrane potential (Δψm) in normoxic trophoblast cells, increased levels of reactive oxygen species (ROS) and malondialdehyde (MDA) and decreased levels of glutathione (GSH) and superoxide dismutase (SOD). In addition, FUNDC1 ubiquitination alleviated cell injury in PE mice in vivo. In conclusion, increased FUNDC1 ubiquitination level inhibited mitophagy and Δψm changes in hypoxic trophoblast cells, and thus alleviated oxidative injury.
Collapse
Affiliation(s)
- GuoQing Chen
- Department of Obstetrics, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong 518028; China
| | - Lu Chen
- Department of Obstetrics, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong 518028; China
| | - Yan Huang
- Department of Obstetrics, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong 518028; China
| | - XiongShan Zhu
- Department of Obstetrics, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong 518028; China
| | - YuanLan Yu
- Department of Emergency, Shenzhen Children's Hospital, Shenzhen, Guangdong 518026, China
| |
Collapse
|
25
|
Oxidative stress-induced impairment of trophoblast function causes preeclampsia through the unfolded protein response pathway. Sci Rep 2021; 11:18415. [PMID: 34531444 PMCID: PMC8446002 DOI: 10.1038/s41598-021-97799-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022] Open
Abstract
Pre-eclampsia (PE) is a pregnancy-specific disorder, characterized by hypertension and proteinuria. In PE, trophoblasts mediated inadequate remodeling of uterine spiral arteries seem to interrupt uteroplacental blood flow, one of the hallmarks in the early onset of PE (EO-PE). This, in turn, results in placental ischemia–reperfusion injury during hypoxia and reoxygenation episodes, leading to the generation of reactive oxygen species (ROS) and oxidative stress (OS). But still it is debatable if OS is a cause or consequence of PE. In this present study, we have investigated the effects of OS on PE placentae and trophoblast cell functions using BeWo and HTR8/SVneo cell lines. PE placental tissues showed abnormal ultrastructure, high level of reactive oxygen species (ROS) with altered unfolded protein responses (UPR) in compare with term placental tissues. Similar to PE placentae, during OS induction, the trophoblast cells showed altered invasion and migration properties with significantly variable expression of differentiation and invasion markers, e.g., syncytin and MMPs. The effect was rescued by antioxidant, N-acetyl cysteine, thereby implying a ROS-specific effect and in the trophoblast cells, OS triggers UPR pathway through IRE1α-XBP1 axis. Taken together, these findings highlight the harmful effect of unfolded protein response, which was induced due to OS on trophoblast cells and deformed invasion and differentiation programme and can be extended further to clinical settings to identify clinically approved antioxidants during pregnancy as a therapeutic measure to reduce the onset of PE.
Collapse
|
26
|
Dual Role of Mitophagy in Cardiovascular Diseases. J Cardiovasc Pharmacol 2021; 78:e30-e39. [PMID: 34232224 DOI: 10.1097/fjc.0000000000001046] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/08/2021] [Indexed: 01/13/2023]
Abstract
ABSTRACT Mitophagy is involved in the development of various cardiovascular diseases, such as atherosclerosis, heart failure, myocardial ischemia/reperfusion injury, and hypertension. Mitophagy is essential for maintaining intracellular homeostasis and physiological function in most cardiovascular origin cells, such as cardiomyocytes, endothelial cells, and vascular smooth muscle cells. Mitophagy is crucial to ensuring energy supply by selectively removing dysfunctional mitochondria, maintaining a balance in the number of mitochondria in cells, ensuring the integrity of mitochondrial structure and function, maintaining homeostasis, and promoting cell survival. Substantial research has indicated a "dual" effect of mitophagy on cardiac function, with inadequate and increased mitochondrial degradation both likely to influence the progression of cardiovascular disease. This review summarizes the main regulatory pathways of mitophagy and emphasizes that an appropriate amount of mitophagy can prevent endothelial cell injury, vascular smooth muscle cell proliferation, macrophage polarization, and cardiomyocyte apoptosis, avoiding further progression of cardiovascular diseases.
Collapse
|