1
|
Sanghvi G, R R, Kashyap A, Sabarivani A, Ray S, Bhakuni PN. Identifying the function of kinesin superfamily proteins in gastric cancer: Implications for signal transduction, clinical significance, and potential therapeutic approaches. Clin Res Hepatol Gastroenterol 2025; 49:102571. [PMID: 40064398 DOI: 10.1016/j.clinre.2025.102571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/16/2025]
Abstract
Gastric cancer (GC), a leading cause of cancer-related mortality, poses a significant global health challenge. Given its complex etiology, understanding the molecular pathways driving GC progression is crucial for developing innovative therapeutic strategies. Among the diverse proteins involved in cellular transport and mitotic regulation, kinesin superfamily proteins (KIFs) have emerged as key players in tumor biology. These motor proteins mediate intracellular transport along microtubules and are essential for processes such as cell division, signaling, and organelle distribution. Evidence indicates that specific KIFs are dysregulated in GC, potentially driving cancer cell proliferation, metastasis, and chemoresistance. Moreover, aberrant KIF expression has been associated with poorer prognoses, highlighting their potential as biomarkers for early diagnosis and therapeutic intervention. This review explores the roles of KIFs in GC and assesses their implications for research and clinical applications. By elucidating the significance of KIFs in GC, this discussion aims to inspire novel insights in cancer biology and advance targeted therapeutic strategies.
Collapse
Affiliation(s)
- Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat 360003, India
| | - Roopashree R
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Aditya Kashyap
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab 140401, India
| | - A Sabarivani
- Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Subhashree Ray
- Department of Biochemistry, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India
| | - Pushpa Negi Bhakuni
- Department of Allied Science, Graphic Era Hill University, Bhimtal, Uttarakhand 248002, India; Graphic Era Deemed to be University, Dehradun, Uttarakhand, India.
| |
Collapse
|
2
|
Yin W, Chen G, Li Y, Li R, Jia Z, Zhong C, Wang S, Mao X, Cai Z, Deng J, Zhong W, Pan B, Lu J. Identification of a 9-gene signature to enhance biochemical recurrence prediction in primary prostate cancer: A benchmarking study using ten machine learning methods and twelve patient cohorts. Cancer Lett 2024; 588:216739. [PMID: 38395379 DOI: 10.1016/j.canlet.2024.216739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Prostate cancer (PCa) is a prevalent malignancy among men worldwide, and biochemical recurrence (BCR) after radical prostatectomy (RP) is a critical turning point commonly used to guide the development of treatment strategies for primary PCa. However, the clinical parameters currently in use are inadequate for precise risk stratification and informing treatment choice. To address this issue, we conducted a study that collected transcriptomic data and clinical information from 1662 primary PCa patients across 12 multicenter cohorts globally. We leveraged 101 algorithm combinations that consisted of 10 machine learning methods to develop and validate a 9-gene signature, named BCR SCR, for predicting the risk of BCR after RP. Our results demonstrated that BCR SCR generally outperformed 102 published prognostic signatures. We further established the clinical significance of these nine genes in PCa progression at the protein level through immunohistochemistry on Tissue Microarray (TMA). Moreover, our data showed that patients with higher BCR SCR tended to have higher rates of BCR and distant metastasis after radical radiotherapy. Through drug target prediction analysis, we identified nine potential therapeutic agents for patients with high BCR SCR. In conclusion, the newly developed BCR SCR has significant translational potential in accurately stratifying the risk of patients who undergo RP, monitoring treatment courses, and developing new therapies for the disease.
Collapse
Affiliation(s)
- Wenjun Yin
- Department of Andrology, Guangzhou First People's Hospital, South China University of Technology, 510180, Guangzhou, Guangdong, China; Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Guo Chen
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Yutong Li
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Ruidong Li
- Genetics, Genomics, and Bioinformatics Program, University of California, Riverside, CA, 92521, USA
| | - Zhenyu Jia
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Chuanfan Zhong
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Shuo Wang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Xiangming Mao
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Zhouda Cai
- Department of Andrology, Guangzhou First People's Hospital, South China University of Technology, 510180, Guangzhou, Guangdong, China
| | - Junhong Deng
- Department of Andrology, Guangzhou First People's Hospital, South China University of Technology, 510180, Guangzhou, Guangdong, China
| | - Weide Zhong
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, South China University of Technology, 510180, Guangzhou, Guangdong, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, 999078, Macau, China.
| | - Bin Pan
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China.
| | - Jianming Lu
- Department of Andrology, Guangzhou First People's Hospital, South China University of Technology, 510180, Guangzhou, Guangdong, China; Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, South China University of Technology, 510180, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Javed A, Yarmohammadi M, Korkmaz KS, Rubio-Tomás T. The Regulation of Cyclins and Cyclin-Dependent Kinases in the Development of Gastric Cancer. Int J Mol Sci 2023; 24:2848. [PMID: 36769170 PMCID: PMC9917736 DOI: 10.3390/ijms24032848] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer predominantly occurs in adenocarcinoma form and is characterized by uncontrolled growth and metastases of gastric epithelial cells. The growth of gastric cells is regulated by the action of several major cell cycle regulators including Cyclins and Cyclin-dependent kinases (CDKs), which act sequentially to modulate the life cycle of a living cell. It has been reported that inadequate or over-activity of these molecules leads to disturbances in cell cycle dynamics, which consequently results in gastric cancer development. Manny studies have reported the key roles of Cyclins and CDKs in the development and progression of the disease in either in vitro cell culture studies or in vivo models. We aimed to compile the evidence of molecules acting as regulators of both Cyclins and CDKs, i.e., upstream regulators either activating or inhibiting Cyclins and CDKs. The review entails an introduction to gastric cancer, along with an overview of the involvement of cell cycle regulation and focused on the regulation of various Cyclins and CDKs in gastric cancer. It can act as an extensive resource for developing new hypotheses for future studies.
Collapse
Affiliation(s)
- Aadil Javed
- Department of Bioengineering, Faculty of Engineering, Cancer Biology Laboratory, Ege University, Izmir 35040, Turkey
| | - Mahdieh Yarmohammadi
- Department of Biology, Faculty of Sciences, Central Tehran Branch, Islamic Azad University, Tehran 33817-74895, Iran
| | - Kemal Sami Korkmaz
- Department of Bioengineering, Faculty of Engineering, Cancer Biology Laboratory, Ege University, Izmir 35040, Turkey
| | - Teresa Rubio-Tomás
- School of Medicine, University of Crete, 70013 Herakleion, Crete, Greece
| |
Collapse
|
4
|
The Role of Hyperthermia in the Treatment of Peritoneal Surface Malignancies. Curr Oncol Rep 2022; 24:875-887. [PMID: 35325402 DOI: 10.1007/s11912-022-01275-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Hyperthermia is used to treat peritoneal surface malignancies (PSM), particularly during hyperthermic intraperitoneal chemotherapy (HIPEC). This manuscript provides a focused update of hyperthermia in the treatment of PSM. RECENT FINDINGS The heterogeneous response to hyperthermia in PSM can be explained by tumor and treatment conditions. PSM tumors may resist hyperthermia via metabolic and immunologic adaptation. The thermodynamics of HIPEC are complex and require computational fluid dynamics (CFD). The clinical evidence supporting the benefit of hyperthermia is largely observational. Continued research will allow clinicians to characterize and predict the individual response of PSM to hyperthermia. The application of hyperthermia in current HIPEC protocols is mostly empirical. Thus, modeling heat transfer with CFD is a necessary task if we are to achieve consistent and reproducible hyperthermia. Although observational evidence suggests a survival benefit of hyperthermia, no clinical trial has tested the individual role of hyperthermia in PSM.
Collapse
|