1
|
Parvizi M, Vaezi M, Jeddi F, Bakhshandeh M, Eghdam-Zamiri R, Mobaraki-Asl N, Esmati E, Karimi A. The role and diagnostic value of deregulated miRNAs in cervical cancer. Discov Oncol 2025; 16:922. [PMID: 40413660 DOI: 10.1007/s12672-025-02744-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 05/17/2025] [Indexed: 05/27/2025] Open
Abstract
Cervical cancer (CC) remains a significant global health concern, particularly affecting women in low-income countries. Despite advancements in screening programs, CC continues to pose a substantial mortality risk, highlighting the need to explore diagnostic and treatment modalities. This review focuses on the role of deregulated microRNAs (miRNAs) in CC development, emphasizing their potential as biomarkers for early detection and prognosis in body fluids. miRNAs have emerged as critical regulators of key cellular processes, including proliferation, migration, invasion, and apoptosis, and their dysregulation is closely linked to CC progression. Upregulated miRNAs such as miR-146b-3p, miR-1908, and miR-21 promote CC progression by targeting tumor suppressor genes, while downregulated miRNAs like miR-23-3p and miR-4262 are associated with reduced tumor aggressiveness. miRNAs also hold significant promise as non-invasive prognostic biomarkers. Their expression levels correlate with clinical outcomes, including tumor stage, metastasis, and overall survival, making them valuable tools for risk stratification and personalized treatment strategies. Liquid biopsies, which detect circulating miRNAs in bodily fluids, offer a minimally invasive approach to monitor tumor dynamics and predict patient outcomes. Furthermore, exosomal miRNAs are emerging as promising diagnostic and prognostic tools for CC. Advanced diagnostic technologies and bioinformatics tools are anticipated to enhance the identification of evident miRNA biomarkers in the clinical settings. Standardized protocols for sample collection and analysis will improve the reproducibility of miRNA studies, while a deeper understanding of miRNA biology may unlock their potential as therapeutic targets. In conclusion, this review consolidates current research on deregulated miRNAs in CC, highlighting their diagnostic and prognostic significance. The findings underscore the potential of miRNAs to revolutionize CC management through innovative diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Masoumeh Parvizi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Vaezi
- Obstetric and Oncology Department, School of Medicine, Women's Reproductive Health Research Center, Clinical Research Institute, Alzahra Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jeddi
- Department of Genetics and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Masoumeh Bakhshandeh
- Obstetric and Oncology Department, School of Medicine, Women's Reproductive Health Research Center, Clinical Research Institute, Alzahra Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Eghdam-Zamiri
- Department of Radiation Oncology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Noushin Mobaraki-Asl
- Department of Obstetrics and Gynecology, School of Medicine, Alavi Hospital, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ebrahim Esmati
- Department of Radiation Oncology, Cancer Institute, IKHC, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Karimi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Liang H, Yin G, Shi G, Liu X, Liu Z, Li J. Insights into the Molecular Mechanisms of Bushen Huoxue Decoction in Breast Cancer via Network Pharmacology and in vitro experiments. Curr Comput Aided Drug Des 2025; 21:50-66. [PMID: 39651565 DOI: 10.2174/0115734099269728231115060827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/23/2023] [Accepted: 10/13/2023] [Indexed: 12/11/2024]
Abstract
AIMS Breast cancer (BC) is by far seen as the most common malignancy globally, with 2.261 million patients newly diagnosed, accounting for 11.7% of all cancer patients, according to the Global Cancer Statistics Report (2020). The luminal A subtype accounts for at least half of all BC diagnoses. According to TCM theory, Bushen Huoxue Decoction (BSHXD) is a prescription used for cancer treatment that may influence luminal A subtype breast cancer (LASBC). OBJECTIVES To analyze the clinical efficacy and underlying mechanisms of BSHXD in LASBC. MATERIALS AND METHODS Network pharmacology and in vitro experiments were utilized to foresee the underlying mechanism of BSHXD for LASBC. RESULTS According to the bioinformatics analysis, BSHXD induced several proliferation and apoptosis processes against LASBC, and the presumed targets of active components in BSHXD were mainly enriched in the HIF-1 and PI3K/AKT pathways. Flow cytometry assay and western blotting results revealed that the rate of apoptosis enhanced in a dose-dependent manner with BSHXD concentration increasing, respectively. BSHXD notably downregulated the expressions of HIF-1α, P-PI3K, PI3K, P-AKT and AKT proteins. However, adding an HIF-1α agonist restored those protein levels. CONCLUSION The study proved that the mechanism of BSHXD in LASBC may be connected to suppressing proliferation by inhibiting the activity of the HIF-1α/PI3K/AKT signaling pathway and promoting apoptosis via the Caspase cascade in LASBC cells.
Collapse
Affiliation(s)
- Hongyi Liang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Guoliang Yin
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Guangxi Shi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiaofei Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhiyong Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jingwei Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
3
|
Chuang YT, Yen CY, Tang JY, Chang FR, Tsai YH, Wu KC, Chien TM, Chang HW. The modulation of immune cell death in connection to microRNAs and natural products. Front Immunol 2024; 15:1425602. [PMID: 39759512 PMCID: PMC11695430 DOI: 10.3389/fimmu.2024.1425602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/27/2024] [Indexed: 01/07/2025] Open
Abstract
Immunogenic cell death (ICD) spatiotemporally regulates damage-associated molecular patterns (DAMPs) derived from dying cancer cells to signal the immune response. Intriguingly, these DAMPs and cytokines also induce cellular responses in non-immune cells, particularly cancer cells. Several ICD-modulating natural products and miRNAs have been reported to regulate the DAMP, cytokine, and cell death responses, but they lack systemic organization and connection. This review summarizes the impacts of natural products and miRNAs on the DAMP and cytokine responses and cancer cell death responses (apoptosis, autophagy, ferroptosis, necroptosis, and pyroptosis). We establish the rationale that ICD inducers of natural products have modulating effects on miRNAs, targeting DAMPs and cytokines for immune and cancer cell death responses. In conclusion, DAMP, cytokine, and cell death responses are intricately linked in cancer cells, and they are influenced by ICD-modulating natural products and miRNAs.
Collapse
Affiliation(s)
- Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei, Taiwan
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hong Tsai
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
| | - Kuo-Chuan Wu
- Department of Computer Science and Information Engineering, National Pingtung University, Pingtung, Taiwan
| | - Tsu-Ming Chien
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Gangshan Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
4
|
Ahmadi M, Morshedzadeh F, Ghaderian SMH, Ghafouri-Fard S. Emerging role of miR-520a in human diseases. Pathol Res Pract 2024; 262:155545. [PMID: 39154603 DOI: 10.1016/j.prp.2024.155545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
hsa-miR-520a is derived from MIR520A located at 19q13.42 and has a significant part in the development of various disorders, including different types of cancers, recurrent pregnancy loss, cerebral ischemia/reperfusion injury, and sciatica. In relation to cancer, numerous studies have presented diverse findings regarding the function of this particular miRNA. To summarize, it has been observed to be down-regulated in pancreatic cancer, glioma, ovarian cancer, cervical cancer, uterine corpus endometrial carcinoma, lung cancer, and acute myeloid leukemia. The purpose of this review is to offer an inclusive overview of the role of has-miR-520a in these disorders, with a specific focus on its target mRNAs in each setting and the deregulated signaling pathways involved. Additionally, we aimed to summarize the implication of miR-520a as a prognostic factor in malignancies. Finally, we performed comprehensive in-silico analyses to uncover the biological roles of this miRNA and introducing innovative concepts for future research endeavors.
Collapse
Affiliation(s)
- Mohsen Ahmadi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Firouzeh Morshedzadeh
- Department of Genetics, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Nevskaya KV, Pershina AG, Hmelevskaya ES, Efimova LV, Ibragimova MK, Dolgasheva DS, Tsydenova IA, Ufandeev AA, Buyko EE, Perina EA, Gaptulbarova KA, Kravtsova EA, Krivoshchekov SV, Ivanov VV, Guriev AM, Udut EV, Litviakov NV. Prevention of Metastasis by Suppression of Stemness Genes Using a Combination of microRNAs. J Med Chem 2024; 67:5591-5602. [PMID: 38507819 DOI: 10.1021/acs.jmedchem.3c02199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
We propose an original strategy for metastasis prevention using a combination of three microRNAs that blocks the dedifferentiation of cancer cells in a metastatic niche owing to the downregulation of stemness genes. Transcriptome microarray analysis was applied to identify the effects of a mixture of microRNAs on the pattern of differentially expressed genes in human breast cancer cell lines. Treatment of differentiated CD44- cancer cells with the microRNA mixture inhibited their ability to form mammospheres in vitro. The combination of these three microRNAs encapsulated into lipid nanoparticles prevented lung metastasis in a mouse model of spontaneous metastasis. The mixture of three microRNAs (miR-195-5p/miR-520a/miR-630) holds promise for the development of an antimetastatic therapeutic that blocks tumor cell dedifferentiation, which occurs at secondary tumor sites and determines the transition of micrometastases to macrometastases.
Collapse
Affiliation(s)
- Kseniya V Nevskaya
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| | - Alexandra G Pershina
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
- Research School of Chemical and Biomedical Engineering, Tomsk Polytechnic University, Lenin Ave. 30, Tomsk 634050, Russia
| | - Ekaterina S Hmelevskaya
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| | - Lina V Efimova
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| | - Marina K Ibragimova
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
- Oncovirology Lab, Cancer Research Institute of Tomsk National Research Medical Center, Russian Academy of Sciences, Pereulok Kooperativnyi 5, Tomsk 634050, Russia
- Tomsk State University, Lenin Ave. 36, Tomsk 634050, Russia
| | - Darya S Dolgasheva
- Oncovirology Lab, Cancer Research Institute of Tomsk National Research Medical Center, Russian Academy of Sciences, Pereulok Kooperativnyi 5, Tomsk 634050, Russia
- Research School of Chemical and Biomedical Engineering, Tomsk Polytechnic University, Lenin Ave. 30, Tomsk 634050, Russia
| | - Irina A Tsydenova
- Oncovirology Lab, Cancer Research Institute of Tomsk National Research Medical Center, Russian Academy of Sciences, Pereulok Kooperativnyi 5, Tomsk 634050, Russia
- Tomsk State University, Lenin Ave. 36, Tomsk 634050, Russia
| | - Alexander A Ufandeev
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| | - Evgeny E Buyko
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| | - Ekaterina A Perina
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| | - Ksenia A Gaptulbarova
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
- Oncovirology Lab, Cancer Research Institute of Tomsk National Research Medical Center, Russian Academy of Sciences, Pereulok Kooperativnyi 5, Tomsk 634050, Russia
- Research School of Chemical and Biomedical Engineering, Tomsk Polytechnic University, Lenin Ave. 30, Tomsk 634050, Russia
| | - Ekaterina A Kravtsova
- Oncovirology Lab, Cancer Research Institute of Tomsk National Research Medical Center, Russian Academy of Sciences, Pereulok Kooperativnyi 5, Tomsk 634050, Russia
- Tomsk State University, Lenin Ave. 36, Tomsk 634050, Russia
| | - Sergei V Krivoshchekov
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| | - Vladimir V Ivanov
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| | - Artem M Guriev
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| | - Elena V Udut
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| | - Nikolai V Litviakov
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
- Oncovirology Lab, Cancer Research Institute of Tomsk National Research Medical Center, Russian Academy of Sciences, Pereulok Kooperativnyi 5, Tomsk 634050, Russia
- Research School of Chemical and Biomedical Engineering, Tomsk Polytechnic University, Lenin Ave. 30, Tomsk 634050, Russia
| |
Collapse
|
6
|
Siu MC, Voisey J, Zang T, Cuttle L. MicroRNAs involved in human skin burns, wound healing and scarring. Wound Repair Regen 2023; 31:439-453. [PMID: 37268303 DOI: 10.1111/wrr.13100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 06/04/2023]
Abstract
MicroRNAs are small, non-coding RNAs that regulate gene expression, and consequently protein synthesis. Downregulation and upregulation of miRNAs and their corresponding genes can alter cell apoptosis, proliferation, migration and fibroproliferative responses following a thermal injury. This review summarises the evidence for altered human miRNA expression post-burn, and during wound healing and scarring. In addition, the most relevant miRNA targets and their roles in potential pathways are described. Previous studies using molecular techniques have identified 197 miRNAs associated with human wound healing, burn wound healing and scarring. Five miRNAs alter the expression of fibroproliferative markers, proliferation and migration of fibroblasts and keratinocytes post-burn: hsa-miR-21 and hsa-miR-31 are increased after wounding, and hsa-miR-23b, hsa-miR-200b and hsa-let-7c are decreased. Four of these five miRNAs are associated with the TGF-β pathway. In the future, large scale, in vivo, longitudinal human studies utilising a range of cell types, ethnicity and clinical healing outcomes are fundamental to identify burn wound healing and scarring specific markers. A comprehensive understanding of the underlying pathways will facilitate the development of clinical diagnostic or prognostic tools for better scar management and the identification of novel treatment targets for improved healing outcomes in burn patients.
Collapse
Affiliation(s)
- Man Ching Siu
- Faculty of Health, School of Biomedical Sciences, Centre for Children's Health Research, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- Centre for Genomics and Personalised Health Research, QUT, Brisbane, Queensland, Australia
| | - Joanne Voisey
- Centre for Genomics and Personalised Health Research, QUT, Brisbane, Queensland, Australia
| | - Tuo Zang
- Faculty of Health, School of Biomedical Sciences, Centre for Children's Health Research, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Leila Cuttle
- Faculty of Health, School of Biomedical Sciences, Centre for Children's Health Research, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| |
Collapse
|
7
|
Israr M, DeVoti JA, Papayannakos CJ, Bonagura VR. Role of chemokines in HPV-induced cancers. Semin Cancer Biol 2022; 87:170-183. [PMID: 36402301 DOI: 10.1016/j.semcancer.2022.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Human papillomaviruses (HPVs) cause cancers of the uterine cervix, oropharynx, anus, and vulvovaginal tract. Low-risk HPVs, such as HPV6 and 11, can also cause benign mucosal lesions including genital warts, and in patients with recurrent respiratory papillomatosis, lesions in the larynx, and on occasion, in the lungs. However, both high and less tumorigenic HPVs share a striking commonality in manipulating both innate and adaptive immune responses in HPV- infected keratinocytes, the natural host for HPV infection. In addition, immune/inflammatory cell infiltration into the tumor microenvironment influences cancer growth and prognosis, and this process is tightly regulated by different chemokines. Chemokines are small proteins and exert their biological effects by binding with G protein-coupled chemokine receptors (GPCRs) that are found on the surfaces of select target cells. Chemokines are not only involved in the establishment of a pro-tumorigenic microenvironment and organ-directed metastases but also involved in disease progression through enhancing tumor cell growth and proliferation. Therefore, having a solid grasp on chemokines and immune checkpoint modulators can help in the treatment of these cancers. In this review, we discuss the recent advances on the expression patterns and regulation of the main chemokines found in HPV-induced cancers, and their effects on both immune and non-immune cells in these lesions. Importantly, we also present the current knowledge of therapeutic interventions on the expression of specific chemokine and their receptors that have been shown to influence the development and progression of HPV-induced cancers.
Collapse
Affiliation(s)
- Mohd Israr
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - James A DeVoti
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Christopher J Papayannakos
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Vincent R Bonagura
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States.
| |
Collapse
|
8
|
Muñoz JJAM, Dariolli R, da Silva CM, Neri EA, Valadão IC, Turaça LT, Lima VM, de Carvalho MLP, Velho MR, Sobie EA, Krieger JE. Time-regulated transcripts with the potential to modulate human pluripotent stem cell-derived cardiomyocyte differentiation. Stem Cell Res Ther 2022; 13:437. [PMID: 36056380 PMCID: PMC9438174 DOI: 10.1186/s13287-022-03138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/14/2022] [Indexed: 11/10/2022] Open
Abstract
Background Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are a promising disease model, even though hiPSC-CMs cultured for extended periods display an undifferentiated transcriptional landscape. MiRNA–target gene interactions contribute to fine-tuning the genetic program governing cardiac maturation and may uncover critical pathways to be targeted. Methods We analyzed a hiPSC-CM public dataset to identify time-regulated miRNA–target gene interactions based on three logical steps of filtering. We validated this process in silico using 14 human and mouse public datasets, and further confirmed the findings by sampling seven time points over a 30-day protocol with a hiPSC-CM clone developed in our laboratory. We then added miRNA mimics from the top eight miRNAs candidates in three cell clones in two different moments of cardiac specification and maturation to assess their impact on differentiation characteristics including proliferation, sarcomere structure, contractility, and calcium handling.
Results We uncovered 324 interactions among 29 differentially expressed genes and 51 miRNAs from 20,543 transcripts through 120 days of hiPSC-CM differentiation and selected 16 genes and 25 miRNAs based on the inverse pattern of expression (Pearson R-values < − 0.5) and consistency in different datasets. We validated 16 inverse interactions among eight genes and 12 miRNAs (Person R-values < − 0.5) during hiPSC-CMs differentiation and used miRNAs mimics to verify proliferation, structural and functional features related to maturation. We also demonstrated that miR-124 affects Ca2+ handling altering features associated with hiPSC-CMs maturation.
Conclusion We uncovered time-regulated transcripts influencing pathways affecting cardiac differentiation/maturation axis and showed that the top-scoring miRNAs indeed affect primarily structural features highlighting their role in the hiPSC-CM maturation. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03138-x.
Collapse
Affiliation(s)
- Juan J A M Muñoz
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil.,Universidad Señor de Sipán, Chiclayo, Perú
| | - Rafael Dariolli
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil.,Department of Pharmacological Sciences, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Caio Mateus da Silva
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Elida A Neri
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Iuri C Valadão
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Lauro Thiago Turaça
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Vanessa M Lima
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Mariana Lombardi Peres de Carvalho
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Mariliza R Velho
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Eric A Sobie
- Department of Pharmacological Sciences, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jose E Krieger
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil.
| |
Collapse
|
9
|
Chen XY, Qin XH, Xie XL, Liao CX, Liu DT, Li GW. Overexpression miR-520a-3p inhibits acute myeloid leukemia progression via targeting MUC1. Transl Oncol 2022; 22:101432. [PMID: 35649317 PMCID: PMC9156816 DOI: 10.1016/j.tranon.2022.101432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/14/2022] [Accepted: 04/11/2022] [Indexed: 11/09/2022] Open
Abstract
miR-520a-3p is downregulated and MUC1 is upregulated in AML patients. miR-520a-3p over-expression inhibits AML cell proliferation, accelerates apoptosis, and inhibits AML tumor growth. miR-520a-3p targets MUC1 and negatively regulates its expression. MUC1 knockdown supresses AML cell proliferation and promotes apoptosis. miR-520a-3p overexpression inhibits AML cell proliferation and accelerates cell apoptosis via regulating MUC1/Wnt/β-catenin axis.
Background Acute myeloid leukemia (AML) is one of the familiar malignant tumors in the hematological system. miR-520a-3p is reported to be involved in several cancers’ progression. However, miR-520a-3p role in AML remains unclear. In this study, we aimed to clarify the role and potential mechanism of miR-520a-3p in AML. Methods Cell viability, proliferation, cycle and apoptosis were detected by MTT assay, colony formation assay, flow cytometry, respectively. The levels of PNCA, Bcl-2, Cleaved caspase 3, Cleaved caspase 9 and β-catenin protein were detected by Western blot. Dual-luciferase reported assay was performed to detect the regulation between miR-520a-3p and MUC1. To verify the effect of miR-520a-3p on tumor proliferation in vivo, a non-homogenous transplant model of tumors was established. Results miR-520a-3p expression was down-regulated, and MUC1 expression was up-regulated in AML patients. miR-520a-3p overexpression suppressed THP-1 cell proliferation, induced cell cycle G0/G1 inhibition and promoted apoptosis. miR-520a-3p targeted MUC1 and negatively regulated its expression. MUC1 knockdown inhibited THP-1 cell proliferation and promoted apoptosis. miR-520a-3p overexpression inhibited AML tumors growth. Conclusion Overexpression miR-520a-3p inhibited AML cell proliferation, and promoted apoptosis via inhibiting MUC1 expression and repressing Wnt/β-catenin pathway activation.
Collapse
|
10
|
CircLATS2 Regulates miR-520a-3p/E2F7/p-VEGFR2 Signaling Pathway to Promote Hepatocellular Carcinoma Progression and Angiogenesis. JOURNAL OF ONCOLOGY 2022; 2022:3744560. [PMID: 35444695 PMCID: PMC9015858 DOI: 10.1155/2022/3744560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 12/01/2022]
Abstract
Objective To investigate the effect of circLATS2 on the progression and angiogenesis of hepatocellular carcinoma and its molecular mechanism. Methods The expression of circLATS2 in hepatocellular carcinoma was detected by qRT-PCR. The StarBase database was used to predict the potential miRNA, and the combination of the above was cytological verified by luciferase reporter gene assay and RNA pull down. The potential target genes of miRNA were predicted by TargetScan, verified by the above experiments, and the influence of circLATS2 on its expression was determined. The biological function of circLATS2 was investigated by in vitro and in vivo experiments. The effects of miRNA and target genes on the malignant behavior of HCC cells were determined by the reverse experiment. Results circLATS2 was highly expressed in HCC and was positively correlated with tumor size and tumor stage. miR-520a-3p was sponged by circLATS2 and was low expressed in HCC tissues. As the target gene of miR-520a-3p, the expression level of E2F7 is affected by circLATS2. In vitro experiments showed that circLATS2 knockdown inhibited the proliferation, clone formation, migration, and invasion ability of hepatocellular carcinoma cells. In vivo knockdown of circLATS2 inhibits the proliferation of HCC cells, while overexpression of circLATS2 promotes the proliferation of HCC cells. Overexpression of miR-520a-3p and E2F7 knockdown reversed the role of circLATS2 in promoting malignant behavior of HCC cells and affected phosphorylation of VEGFR2. Conclusion CircLATS2 promotes the progression of HCC by regulating miR-520a-3p/E2F7/P-VEGFR2 signaling pathway.
Collapse
|
11
|
The Role of Chemokines in Cervical Cancers. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57111141. [PMID: 34833360 PMCID: PMC8619382 DOI: 10.3390/medicina57111141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 12/12/2022]
Abstract
Both clinical-pathological and experimental studies have shown that chemokines play a key role in activating the immune checkpoint modulator in cervical cancer progression and are associated with prognosis in tumor cell proliferation, invasion, angiogenesis, chemoresistance, and immunosuppression. Therefore, a clear understanding of chemokines and immune checkpoint modulators is essential for the treatment of this disease. This review discusses the origins and categories of chemokines and the mechanisms that are responsible for activating immune checkpoints in cervical dysplasia and cancer, chemokines as biomarkers, and therapy development that targets immune checkpoints in cervical cancer research.
Collapse
|
12
|
Wu C, Ma C, Yuan J, Zhou P. Exploration of potential therapeutic and prognostic value of CXC chemokines in cervical squamous cell carcinoma and endocervical adenocarcinoma based on bioinformatics analysis. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:8201-8222. [PMID: 34814296 DOI: 10.3934/mbe.2021407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cervical cancer, as the second most common female malignancy, brings a great health burden to women worldwide. Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) are the most common histological subtypes of cervical cancer. CXC chemokines (CXCLs) within the tumor microenvironment can modulate carcinogenesis and progression. The present study aimed to explore the therapeutic and prognostic value of different CXCLs in CESC. ONCOMINE, GEPIA, cBioPortal, TRRUST, GeneMANIA, STRING and TIMER were utilized to explore the expression, mutation and function of CXCLs in CESC, as well as their correlation with pathological and survival features of CESC patients. We found that the mRNA expression levels of CXCL1/8/9/10/11/13/16/17 in CESC were upregulated compared with normal cervical tissues, whereas CXCL12 was downregulated. No significant correlation was found between the expression levels and pathological stage of CESC patients. CESC patients with high expression of CXCL1/2/3/4/5/8 were significantly associated with poor overall survival, additionally, low mRNA level of CXCL3 was associated with better disease-free survival. Besides, a high mutation rate (43%) of CXCLs in CESC was observed. Depicted by co-expression analysis, the expression of CXCL1/2/3/6/8 showed a modest to strong correlation, while that of CXCL9/10/11/13 showed a very strong correlation. Differentially expressed CXCLs primarily functioned in chemokine signaling pathway and inflammation response, such as cell chemotaxis, chemokine activity and chemokine receptor binding. We also found the association of CXCLs with the tumor-infiltration of six types of immune cells (B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils and dendritic cells) in CESC patients. The present study elucidated that CXCLs may have the potential to be novel therapeutic targets and prognosis predictors of CESC patients.
Collapse
Affiliation(s)
- Caiyun Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Cong Ma
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Jing Yuan
- Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Pei Zhou
- Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| |
Collapse
|