1
|
Jinzhong Wang MS, Jian Fu MS. STAT3/FoxO3a/Sirt1 pathway inhibition by ginsenoside Rc ameliorates cardiomyocyte damage in septic cardiomyopathy by altering macrophage polarization. J Mol Histol 2025; 56:148. [PMID: 40293549 DOI: 10.1007/s10735-025-10417-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 04/04/2025] [Indexed: 04/30/2025]
Abstract
This study explored the role and mechanism of action of ginsenoside Rc in treating septic cardiomyopathy. Ginsenoside Rc mitigated LPS-induced oxidative stress, inflammation, apoptosis, and mitochondrial dysfunction in cardiomyocytes and inhibited M1 polarization in macrophages. Ginsenoside Rc reduced the stimulating effect of M1-polarized macrophages on LPS-induced cardiomyocyte injury. Network pharmacological analysis suggested that ginsenoside Rc may play a role in septic cardiomyopathy through modulation of the STAT3/FoxO3a/Sirt1 pathway, which was validated in in vitro experiments. Ginsenoside Rc suppressed the expression of STAT3/FoxO3a pathway proteins and upregulated Sirt1. Moreover, influences of ginsenoside Rc on LPS-induced cardiomyocyte injury and macrophage polarization were abolished by ML115, a STAT3 agonist. In vivo, ginsenoside Rc notably improved myocardial injury and attenuated macrophage activation and inflammation in septic mice. Collectively, Ginsenoside Rc can ameliorate septic cardiomyopathy by modulating the STAT3/FoxO3a/Sirt1 pathway and altering macrophage polarization.
Collapse
Affiliation(s)
- M S Jinzhong Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Hainan Medical University, No. 48. Baishuitang Road, Haikou City, Hainan province, 570311, China.
| | - M S Jian Fu
- Department of Infectious Disease, Hainan General Hospital, Hainan Medical University, Haikou, Hainan, 570311, China
| |
Collapse
|
2
|
Liu Z, Li F, Li N, Chen Y, Chen Z. MicroRNAs as regulators of cardiac dysfunction in sepsis: pathogenesis and diagnostic potential. Front Cardiovasc Med 2025; 12:1517323. [PMID: 40041174 PMCID: PMC11876399 DOI: 10.3389/fcvm.2025.1517323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/29/2025] [Indexed: 03/06/2025] Open
Abstract
Introduction Sepsis, a life-threatening condition arising from an uncontrolled immune response to infection, can lead to organ dysfunction, with severe inflammation potentially causing multiple organ failures. Sepsis-induced cardiac dysfunction (SIMD) is a common and severe complication of sepsis, significantly increasing patient mortality. Understanding the pathogenesis of SIMD is crucial for improving treatment, and microRNAs (miRNAs) have emerged as important regulators in this process. Methods A comprehensive literature search was conducted in PubMed, Science Direct, and Embase databases up to September 2024. The search terms included ["miRNA" or "microRNA"] and ["Cardiac" or "Heart"] and ["Sepsis" or "Septic"], with the language limited to English. After initial filtering by the database search engine, Excel software was used to further screen references. Duplicate articles, those without abstracts or full texts, and review/meta-analyses or non-English articles were excluded. Finally, 106 relevant research articles were included for data extraction and analysis. Results The pathogenesis of SIMD is complex and involves mitochondrial dysfunction, oxidative stress, cardiomyocyte apoptosis and pyroptosis, dysregulation of myocardial calcium homeostasis, myocardial inhibitory factors, autonomic nervous regulation disorders, hemodynamic changes, and myocardial structural alterations. miRNAs play diverse roles in SIMD. They are involved in regulating the above-mentioned pathological processes. Discussion Although significant progress has been made in understanding the role of miRNAs in SIMD, there are still challenges. Some studies on the pathogenesis of SIMD have limitations such as small sample sizes and failure to account for confounding factors. Research on miRNAs also faces issues like inconsistent measurement techniques and unclear miRNA-target gene relationships. Moreover, the translation of miRNA-based research into clinical applications is hindered by problems related to miRNA stability, delivery mechanisms, off-target effects, and long-term safety. In conclusion, miRNAs play a significant role in the pathogenesis of SIMD and have potential as diagnostic biomarkers. Further research is needed to overcome existing challenges and fully exploit the potential of miRNAs in the diagnosis and treatment of SIMD.
Collapse
Affiliation(s)
- Zhen Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Feiyang Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ningcen Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yong Chen
- Department of Critical Care Medicine, Tianjin Hospital of ITCWM Nankai Hospital, Tianjin, China
| | - Zelin Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
3
|
Guerrero-Orriach JL, Carmona-Luque MD, Rodriguez-Capitan MJ, Quesada-Muñoz G. MicroRNA-197-3p Transfection: Variations in Cardiomyocyte Gene Expression with Anaesthetics Drugs in a Model of Hypoxia/Reperfusion. Pharmaceuticals (Basel) 2025; 18:146. [PMID: 40005961 PMCID: PMC11858145 DOI: 10.3390/ph18020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/06/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Our research team analyzed the microRNA (miRNA)-197-3p involved in cardioprotection, and we demonstrated that the overexpression of miRNA-197-3p could be linked to a higher risk of cardiac damage. Recent research indicated that miRNA-197-3p inhibits the effector proteins of the anaesthetic preconditioning mechanism of halogenated drugs. In this scenario, we proposed to determine the role of miRNA-197-3p in cardiac injury and its effects on myocardial conditioning under halogenated exposure. Hypothesis: Patients having myocardial revascularization surgery have increased heart damage due to postoperative miRNA-197-3p upregulation. Methods: Human cardiac myocytes (HCMs) were used in an in vitro hypoxia/reperfusion (H/R) model. The miRNA-197-3p-MIMIC was transfected into the HCMs. Three H/R-induced HCM groups were performed: negative MIMIC-control transfected, MIMIC transfected, and non-transfected. Each H/R cell group was exposed to Propofol (P), Sevoflurane (S), or non-exposed. Healthy cell cultures were the control group. ELISA assays were used to assess the Akt1 and p53 cell secretion capacity, and the Next Generation Sequencing assay was used to measure the differential expression of miRNA targets. Results: The secretion capacity of H/R-induced HCMs transfected with the MIMIC was higher under sevoflurane exposure regarding Akt-1 cytokine (I/R + S: 0.80 ± 0.06 ng/mL; I/R + P: 0.45 ± 0.28 ng/mL; p > 0.05), and lower regarding p53 cytokine (I/R + S: 38.62 ± 6.93 ng/mL; I/R + P: 43.34 ± 15.20 ng/mL; p > 0.05) compared to propofol. In addition, a significant gene overexpression of five miRNAs, in the sevoflurane group, was linked to cardioprotection: miRNA-29-3p, 24-3p, 21-3p, 532, and miRNA-335-5p. Conclusions: miRNA-197-3p inhibits the cardioprotection induced by halogenated exposure and can be considered a biomarker of cardiac damage. Additional research is required to validate our findings in other clinical settings.
Collapse
Affiliation(s)
- Jose Luis Guerrero-Orriach
- Institute of Biomedical Research in Malaga, 29010 Malaga, Spain;
- Department of Anesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain;
- Department of Pharmacology and Pediatrics, School of Medicine, University of Malaga, 29010 Malaga, Spain
| | | | | | - Guillermo Quesada-Muñoz
- Institute of Biomedical Research in Malaga, 29010 Malaga, Spain;
- Department of Anesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain;
| |
Collapse
|
4
|
Keane AJ, Sanz-Nogués C, Jayasooriya D, Creane M, Chen X, Lyons CJ, Sikri I, Goljanek-Whysall K, O'Brien T. miR-1, miR-133a, miR-29b and skeletal muscle fibrosis in chronic limb-threatening ischaemia. Sci Rep 2024; 14:29393. [PMID: 39592654 PMCID: PMC11599917 DOI: 10.1038/s41598-024-76415-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/14/2024] [Indexed: 11/28/2024] Open
Abstract
Chronic limb-threatening ischaemia (CLTI), the most severe manifestation of peripheral arterial disease (PAD), is associated with a poor prognosis and high amputation rates. Despite novel therapeutic approaches being investigated, no significant clinical benefits have been observed yet. Understanding the molecular pathways of skeletal muscle dysfunction in CLTI is crucial for designing successful treatments. This study aimed to identify miRNAs dysregulated in muscle biopsies from PAD cohorts. Using MIcroRNA ENrichment TURned NETwork (MIENTURNET) on a publicly accessible RNA-sequencing dataset of PAD cohorts, we identified a list of miRNAs that were over-represented among the upregulated differentially expressed genes (DEGs) in CLTI. Next, we validated the altered expression of these miRNAs and their targets in mice with hindlimb ischaemia (HLI). Our results showed a significant downregulation of miR-1, miR-133a, and miR-29b levels in the ischaemic limbs versus the contralateral non-ischaemic limb. A miRNA target protein-protein interaction network identified extracellular matrix components, including collagen-1a1, -3a1, and -4a1, fibronectin-1, fibrin-1, matrix metalloproteinase-2 and -14, and Sparc, which were upregulated in the ischaemic muscle of mice. This is the first study to identify miR-1, miR-133a, and miR-29b as potential contributors to fibrosis and vascular pathology in CLTI muscle, which supports their potential as novel therapeutic agents for this condition.
Collapse
Affiliation(s)
- Alan J Keane
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland
| | - Clara Sanz-Nogués
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland.
- CÚRAM SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland.
| | - Dulan Jayasooriya
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland
| | - Michael Creane
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland
| | - Xizhe Chen
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland
| | - Caomhán J Lyons
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland
| | - Isha Sikri
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland
| | - Katarzyna Goljanek-Whysall
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland
- CÚRAM SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| |
Collapse
|
5
|
Jiang Y, Xu J, Zeng H, Lin Z, Yi Q, Guo J, Xiao F. miR-29b-1-5p exacerbates myocardial injury induced by sepsis in a mouse model by targeting TERF2. Acta Biochim Biophys Sin (Shanghai) 2024; 56:607-620. [PMID: 38414350 DOI: 10.3724/abbs.2024020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
Myocardial damage is a critical complication and a significant contributor to mortality in sepsis. MicroRNAs (miRNAs) have emerged as key players in sepsis pathogenesis. In this study, we explore the effect and mechanisms of miR-29b-1-5p on sepsis-induced myocardial damage. Sepsis-associated Gene Expression Omnibus datasets (GSE72380 and GSE29914) are examined for differential miRNAs. The mouse sepsis-induced cardiac injury was established by Lipopolysaccharide (LPS) or cecal ligation and puncture (CLP). LPS-treated HL-1 mouse cardiomyocytes simulate myocardial injury in vitro. miR-29b-1-5p is co-upregulated in both datasets and in cardiac tissue from sepsis mouse and HL-1 cell models. miR-29b-1-5p expression downregulation was achieved by antagomir transduction and confirmed by real-time quantitative reverse transcription PCR. Survival analysis and echocardiography examination show that miR-29b-1-5p inhibition improves mice survival cardiac function in LPS- and CLP-induced sepsis mice. Hematoxylin and eosin and Masson's trichrome staining and Immunohistochemistry analysis of mouse myocardial α-smooth muscle actin show that miR-29b-1-5p inhibition reduces myocardial tissue injury and fibrosis. The inflammatory cytokines and cardiac troponin I (cTnI) levels in mouse serum and HL-1 cells are also decreased by miR-29b-1-5p inhibition, as revealed by enzyme-linked immunosorbent assay. The expressions of autophagy-lysosomal pathway-related and apoptosis-related proteins in the mouse cardiac tissues and HL-1 cells are evaluated by western blot analysis. The sepsis-induced activation of the autophagy-lysosomal pathway and apoptosis are also reversed by miR-29b-1-5p antagomir. MTT and flow cytometry measurement further confirm the protective role of miR-29b-1-5p antagomir in HL-1 cells by increasing cell viability and suppressing cell apoptosis. Metascape functionally enriches TargetScan-predicted miR-29b-1-5p target genes. TargetScan prediction and dual luciferase assay validate the targeting relationship between miR-29b-1-5p and telomeric repeat-binding factor 2 (TERF2). The expression and function of TERF2 in HL-1 cells and mice are also evaluated. MiR-29b-1-5p negatively regulates the target gene TERF2. TERF2 knockdown partly restores miR-29b-1-5p antagomir function in LPS-stimulated HL-1 cells. In summary, miR-29b-1-5p targetedly inhibits TERF2, thereby enhancing sepsis-induced myocardial injury.
Collapse
Affiliation(s)
- Yaqing Jiang
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Junmei Xu
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Hua Zeng
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zhaojing Lin
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Qiong Yi
- Department of Intensive Care Unit, the First Hospital of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410007, China
| | - Jiali Guo
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Feng Xiao
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| |
Collapse
|
6
|
Wagh V, Nguemo F, Kiseleva Z, Mader RM, Hescheler J, Mohl W. Circulating microRNAs and cardiomyocyte proliferation in heart failure patients related to 10 years survival. ESC Heart Fail 2023; 10:3559-3572. [PMID: 37752740 PMCID: PMC10682869 DOI: 10.1002/ehf2.14516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/17/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023] Open
Abstract
AIMS Mechanochemical signalling drives organogenesis and is highly conserved in mammal evolution. Regaining recovery in myocardial jeopardy by inducing principles linking cardiovascular therapy and clinical outcome has been the dream of scientists for decades. Concepts involving embryonic pathways to regenerate adult failing hearts became popular in the early millennium. Since then, abundant data on stem cell research have been published, never reaching widespread application in heart failure therapy. Another conceptual access, using mechanotransduction in cardiac veins to limit myocardial decay, is pressure-controlled intermittent coronary sinus occlusion (PICSO). Recently, we reported acute molecular signs and signals of PICSO activating regulatory miRNA and inducing cell proliferation mimicking cardiac development in adult failing hearts. According to a previously formulated hypothesis, 'embryonic recall', this study aimed to define molecular signals involved in endogenous heart repair during PICSO and study their relation to patient survival. METHODS AND RESULTS We previously reported a study on the acute molecular effects of PICSO in an observational non-randomized study. Eight out of the thirty-two patients with advanced heart failure undergoing cardiac resynchronization therapy (CRT) were treated with PICSO. Survival was monitored over 10 years, and coronary sinus blood samples were collected during intervention before and after 20 min and tested for miRNA signalling and proliferation when co-cultured with cardiomyocytes. A numerically lower death rate post-CRT and PICSO as compared with control CRT only, and a non-significant reduction in all-cause mortality risk of 42% was observed (37.5% vs. 54.0%, relative risk = 0.58, 95% confidence interval: 0.17-2.05; P = 0.402). Four miRNAs involved in cell cycle, proliferation, morphogenesis, embryonic development, and apoptosis significantly increased concomitantly in survivors and PICSO compared with a decrease in non-survivors (hsa-miR Let7b, P < 0.01; hsa-miR- 421, P < 0.006; hsa-miR 363-3p, P < 0.03 and hsa-miR 19b-3p P < 0.01). In contrast, three miRNAs involved in proliferation and survival, determining cell fate, and recycling endosomes decreased in survivors and PICSO (hsa miR 101-3p, P < 0.03; hsa-miR 25-3p, P < 002; hsa-miR 30d-5p P < 0.04). In vitro cellular proliferation increased in survivors and lowered in non-survivors showing a pattern distinction, discriminating longevity according to up to 10-year survival in heart failure patients. CONCLUSIONS This study proposes that generating regenerative signals observed during PICSO intervention relate to patient outcomes. Morphogenetic pathways induced by periods of flow reversal in cardiac veins in a domino-like pattern transform embryonic into regenerative signals. Studies supporting the conversion of mechanochemical signals into regenerative molecules during PICSO are warranted to substantiate predictive power on patient longevity, opening new therapeutic avenues in otherwise untreatable heart failure.
Collapse
Affiliation(s)
- Vilas Wagh
- Merck Research LabsBostonMAUSA
- Center of Physiology and Pathophysiology, Institute of NeurophysiologyUniversity of CologneCologneGermany
| | - Filomain Nguemo
- Center of Physiology and Pathophysiology, Institute of NeurophysiologyUniversity of CologneCologneGermany
| | - Zlata Kiseleva
- Department of Cardiac Surgery emeritusMedical University ViennaViennaAustria
| | - Robert M. Mader
- Department of Medicine IMedical University ViennaViennaAustria
| | - Juergen Hescheler
- Center of Physiology and Pathophysiology, Institute of NeurophysiologyUniversity of CologneCologneGermany
| | - Werner Mohl
- Department of Cardiac Surgery emeritusMedical University ViennaViennaAustria
| |
Collapse
|
7
|
Ghafouri-Fard S, Askari A, Hussen BM, Rasul MF, Taheri M, Ayatollahi SA. A review on the role of LINC00472 in malignant and non-malignant disorders. Pathol Res Pract 2023; 247:154549. [PMID: 37235910 DOI: 10.1016/j.prp.2023.154549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Long intergenic non-protein coding RNA 472 (LINC00472) has been shown to regulate diverse cellular functions and contribute to the etiology of human disorders. LINC00472 gene is located on 6q13 and has different alternatively spliced transcripts. Expression pattern and function of LINC00472 have been evaluated in different types of cancers and some other disorders, including atherosclerosis, sepsis-induced acute hepatic injury, atrial fibrillation, neuropathic pain, primary biliary cholangitis and sepsis-induced cardiac dysfunction. This lincRNA can serve as a sponge for miR-24-3p, miR-196b-5p, miR-23a-3p, miR-93-5p, miR-4311, miR-455-3p and a number of other miRNAs. LINC00472 is able to regulate several pathways, including MEK/ERK, NF-kB, PTEN/PI3K/AKT, and STAT3 signaling pathways. This raises some concerning aspects that need to be investigated further and clarified in relation to diseases. Increasing our understanding of LINC00472's crucial roles will open new doors for creating effective therapeutic approaches against cancer and related diseases. The current study aims at providing an overview of functions of LINC00472 in malignant and non-malignant disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arian Askari
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
8
|
Lu C, Lei W, Sun M, Wu X, Liu Q, Liu J, Yang Y, Yang W, Zhang Z, Li X, Zhou Y, Deng C, Chen Y, Tian Y, Yang Y. Identification of CCR2 as a hub in septic myocardial injury and cardioprotection of silibinin. Free Radic Biol Med 2023; 197:46-57. [PMID: 36693441 DOI: 10.1016/j.freeradbiomed.2023.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/14/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Myocardial injury is a serious complication of sepsis associated with high morbidity and mortality. Our previous work has confirmed that silibinin (SIL) alleviates septic myocardial injury, but the specific molecular mechanism has not been fully elucidated. This study aimed to identify its potential targets through network pharmacology combined with experimental verification. Firstly, a total of 29 overlapping genes between sepsis and SIL targets were obtained from RNA-seq analysis and the known databases. Subsequently, KEGG and GO analysis showed that these genes were enriched in immune response and cytokine-cytokine receptor interaction pathways. Notably, CCR2 was identified as an important candidate hub by protein-protein interaction analysis and molecular docking approach. In vivo experiments showed that SIL treatment significantly improved survival rate and cardiac function in septic mice, accompanied by decreased CCR2 expression. Moreover, in vitro experiments obtained the similar results. Especially, CCR2 siRNA attenuated inflammation response. In conclusion, this study systematically elucidated the key target of SIL in the treatment of septic myocardial injury. These findings provide valuable insights into the targets of sepsis and offer new avenues for exploring drug effect systematically.
Collapse
Affiliation(s)
- Chenxi Lu
- Department of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Wangrui Lei
- Department of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Meng Sun
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xue Wu
- Department of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Qiong Liu
- Department of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Jie Liu
- Department of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yaru Yang
- Department of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Wenwen Yang
- Department of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Zhe Zhang
- Department of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Xiaoru Li
- Department of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yazhe Zhou
- Department of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ying Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ye Tian
- Department of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences and Medicine, Northwest University, Xi'an, China.
| | - Yang Yang
- Department of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences and Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
9
|
Systems Biology in Chronic Heart Failure-Identification of Potential miRNA Regulators. Int J Mol Sci 2022; 23:ijms232315226. [PMID: 36499552 PMCID: PMC9740605 DOI: 10.3390/ijms232315226] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Heart failure (HF) is a complex disease entity with high clinical impact, poorly understood pathophysiology and scantly known miRNA-mediated epigenetic regulation. We have analysed miRNA patterns in patients with chronic HF (cHF) and a sex- and age-matched reference group and pursued an in silico system biology analysis to discern pathways involved in cHF pathophysiology. Twenty-eight miRNAs were identified in cHF that were up-regulated in the reference group, and eight of them were validated by RT-qPCR. In silico analysis of predicted targets by STRING protein-protein interaction networks revealed eight cluster networks (involving seven of the identified miRNAs) enriched in pathways related to cell cycle, Ras, chemokine, PI3K-AKT and TGF-β signaling. By ROC curve analysis, combined probabilities of these seven miRNAs (let-7a-5p, miR-107, miR-125a-5p, miR-139-5p, miR-150-5p, miR-30b-5p and miR-342-3p; clusters 1-4 [C:1-4]), discriminated between HF with preserved ejection fraction (HFpEF) and HF with reduced ejection fraction (HFrEF), and ischaemic and non-ischaemic aetiology. A combination of miR-107, miR-139-5p and miR-150-5p, involved in clusters 5 and 7 (C:5+7), discriminated HFpEF from HFrEF. Pathway enrichment analysis of miRNAs present in C:1-4 (let-7a-5p, miR-125a-5p, miR-30b-5p and miR-342-3p) revealed pathways related to HF pathogenesis. In conclusion, we have identified a differential signature of down-regulated miRNAs in the plasma of HF patients and propose novel cellular mechanisms involved in cHF pathogenesis.
Collapse
|
10
|
Duecker RP, De Mir Messa I, Jerkic S, Kochems A, Gottwald G, Moreno‐Galdó A, Rosewich M, Gronau L, Zielen S, Geburtig‐Chiocchetti A, Kreyenberg H, Schubert R. Epigenetic regulation of inflammation by microRNAs in post‐infectious bronchiolitis obliterans. Clin Transl Immunology 2022; 11:e1376. [PMID: 35228871 PMCID: PMC8859819 DOI: 10.1002/cti2.1376] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 11/14/2021] [Accepted: 02/04/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- Ruth P Duecker
- Division for Allergy, Pneumology and Cystic Fibrosis Department for Children and Adolescence Goethe University Frankfurt Germany
| | - Ines De Mir Messa
- Allergy, Pulmonology and Cystic Fibrosis Section Department of Pediatrics Vall d’Hebron Hospital Universitari Universitat Autònoma de Barcelona Barcelona Spain
| | - Silvija‐Pera Jerkic
- Division for Allergy, Pneumology and Cystic Fibrosis Department for Children and Adolescence Goethe University Frankfurt Germany
| | - Annalena Kochems
- Division for Allergy, Pneumology and Cystic Fibrosis Department for Children and Adolescence Goethe University Frankfurt Germany
| | - Gabriele Gottwald
- Division for Allergy, Pneumology and Cystic Fibrosis Department for Children and Adolescence Goethe University Frankfurt Germany
| | - Antonio Moreno‐Galdó
- Allergy, Pulmonology and Cystic Fibrosis Section Department of Pediatrics Vall d’Hebron Hospital Universitari Universitat Autònoma de Barcelona Barcelona Spain
- CIBER of Rare Diseases (CIBERER) Instituto de Salud Carlos III (ISCIII) Madrid Spain
| | - Martin Rosewich
- Division for Allergy, Pneumology and Cystic Fibrosis Department for Children and Adolescence Goethe University Frankfurt Germany
| | - Lucia Gronau
- Division for Allergy, Pneumology and Cystic Fibrosis Department for Children and Adolescence Goethe University Frankfurt Germany
| | - Stefan Zielen
- Division for Allergy, Pneumology and Cystic Fibrosis Department for Children and Adolescence Goethe University Frankfurt Germany
| | - Andreas Geburtig‐Chiocchetti
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy Goethe University Frankfurt Germany
| | - Hermann Kreyenberg
- Division for Stem Cell Transplantation and Immunology Department for Children and Adolescence Goethe University Frankfurt Germany
| | - Ralf Schubert
- Division for Allergy, Pneumology and Cystic Fibrosis Department for Children and Adolescence Goethe University Frankfurt Germany
| |
Collapse
|