1
|
Iftode L, Cadinoiu AN, Raţă DM, Atanase LI, Vochiţa G, Rădulescu L, Popa M, Gherghel D. Double Peptide-Functionalized Carboxymethyl Chitosan-Coated Liposomes Loaded with Dexamethasone as a Potential Strategy for Active Targeting Drug Delivery. Int J Mol Sci 2025; 26:922. [PMID: 39940692 PMCID: PMC11816442 DOI: 10.3390/ijms26030922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/10/2025] [Accepted: 01/19/2025] [Indexed: 02/16/2025] Open
Abstract
Liposomes are intensively used as nanocarriers for biology, biochemistry, medicine, and in the cosmetics industry and their non-toxic and biocompatible nature makes these vesicles attractive systems for biomedical applications. Moreover, the conjugation of specific ligands to liposomes increases their cellular uptake and therapeutic efficiency. Considering these aspects, the aim of the present study was to obtain new formulations of cationic liposomes coated with dual-peptide functionalized carboxymethyl chitosan (CMCS) for the treatment of inner ear diseases. In order to achieve efficient active targeting and ensuring a high efficacy of the treatment, CMCS was functionalized with Tet1 peptide, to target specific ear cells, and TAT peptide, to ensure cellular penetration. Furthermore, dexamethasone phosphate was loaded as a model drug for the treatment of ear inflammation. The infrared spectroscopy confirmed the functionalization of CMCS with the two specific peptides. The mean diameter of the uncovered liposomes varied between 167 and 198 nm whereas the CMCS-coated liposomes ranged from 179 to 202 nm. TEM analysis showed the spherical shape and unilamellar structure of liposomes. The release efficiency of dexamethasone phosphate after 24 h from the uncoated liposomes was between 37 and 40% and it appeared that the coated liposomes modulated this release. The obtained results demonstrated that the liposomes are hemocompatible since, for a tested concentration of 100 µg/mL, the liposome suspension had a lysis of erythrocytes lower than 2.5% after 180 min of incubation. In addition, the peptide-functionalized CMCS-coated liposomes induced a non-significant effect on the viability of normal V79-4 cells after 48 h, at the highest doses. Values of 71.31% were recorded (CLCP-1), 77.28% (CLCP-2) and 74.36% (CLCP-3), correlated with cytotoxic effects of 28.69%, 22.72%, and 25.64%.
Collapse
Affiliation(s)
- Loredana Iftode
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.I.); (L.R.)
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University, 700050 Iasi, Romania
| | - Anca Niculina Cadinoiu
- Department of Biomaterials, Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania; (D.M.R.); (L.I.A.)
| | - Delia Mihaela Raţă
- Department of Biomaterials, Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania; (D.M.R.); (L.I.A.)
| | - Leonard Ionuț Atanase
- Department of Biomaterials, Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania; (D.M.R.); (L.I.A.)
- Academy of Romanian Scientists, 050044 Bucharest, Romania
| | - Gabriela Vochiţa
- Institute of Biological Research Iasi, Branch of NIRDBS—National Institute of Research and Development of Biological Sciences Bucharest, 700107 Iasi, Romania; (G.V.); (D.G.)
| | - Luminița Rădulescu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.I.); (L.R.)
| | - Marcel Popa
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University, 700050 Iasi, Romania
- Department of Biomaterials, Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania; (D.M.R.); (L.I.A.)
- Academy of Romanian Scientists, 050044 Bucharest, Romania
| | - Daniela Gherghel
- Institute of Biological Research Iasi, Branch of NIRDBS—National Institute of Research and Development of Biological Sciences Bucharest, 700107 Iasi, Romania; (G.V.); (D.G.)
| |
Collapse
|
2
|
Askarizadeh A, Vahdat-Lasemi F, Karav S, Kesharwani P, Sahebkar A. Lipid nanoparticle-based delivery of small interfering RNAs: New possibilities in the treatment of diverse diseases. Eur Polym J 2025; 223:113624. [DOI: 10.1016/j.eurpolymj.2024.113624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Kawale SA, Na GS, Kumar S, Joo JU, Kang DC, Kim DP. Facile scalable one-flow synthesis of ionizable cationic lipid library as precursors of nanoparticle carriers. Int J Pharm 2024; 662:124513. [PMID: 39069145 DOI: 10.1016/j.ijpharm.2024.124513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
A variety of ionizable and cationic lipids have been synthesized as precursors for nanoparticle carriers. However, the laborious synthetic routes in batch reactors often involve the use of toxic and carcinogenic agents, as well as challenge of removing gaseous byproducts. In this study, we present facile one-flow micro-reaction process that enables the synthesis of 11 ionizable lipids as well as 7 cationic lipids, including the well-known DODAP and DOTAP. These lipids can be scaled up to produce approximately ∼10g/h by using a straightforward size-up approach. The development of the lipid library was involved generating highly moisture-sensitive acyl chloride at 25 °C for 1.5 min. The toxic byproducts such as HCl, CO2 and CO were subsequently removed using a liquid-gas separator. The esterification with dimethylamino-1,2-diol at 25 °C for 3 min, monitored in-line with FTIR, completed the process. Additionally, the synthesized ionizable lipids were converted to cationic lipids with methyl sulfate, chloride ions via dimethyl sulfate and Steglich esterification in a continuous flow system. Finally, the produced DODAP was transformed into a uniform-sized LNPs (64 nm, PDI 0.07) and liposomal nanoparticles (72 nm, PDI 0.05) while DOTAP was converted to liposomes (55 nm, PDI 0.08) using a custom micro-mixer. This efficient platform for lipid synthesis significantly contributes to the practical applications of lipid-based nanomedicines.
Collapse
Affiliation(s)
- Sanket A Kawale
- Center for Intelligent Micro-process of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Gi-Su Na
- Center for Intelligent Micro-process of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Sanjeev Kumar
- Center for Intelligent Micro-process of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Jeong-Un Joo
- Center for Intelligent Micro-process of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Dong-Chang Kang
- Center for Intelligent Micro-process of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Dong-Pyo Kim
- Center for Intelligent Micro-process of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea.
| |
Collapse
|
4
|
Kawai A, Noda M, Hirata H, Munakata L, Matsuda T, Omata D, Takemura N, Onoe S, Hirose M, Kato T, Saitoh T, Hirai T, Suzuki R, Yoshioka Y. Lipid Nanoparticle with 1,2-Di-O-octadecenyl-3-trimethylammonium-propane as a Component Lipid Confers Potent Responses of Th1 Cells and Antibody against Vaccine Antigen. ACS NANO 2024; 18:16589-16609. [PMID: 38885198 PMCID: PMC11223497 DOI: 10.1021/acsnano.4c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/21/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024]
Abstract
Adjuvants are effective tools to enhance vaccine efficacy and control the type of immune responses such as antibody and T helper 1 (Th1)- or Th2-type responses. Several studies suggest that interferon (IFN)-γ-producing Th1 cells play a significant role against infections caused by intracellular bacteria and viruses; however, only a few adjuvants can induce a strong Th1-type immune response. Recently, several studies have shown that lipid nanoparticles (LNPs) can be used as vaccine adjuvants and that each LNP has a different adjuvant activity. In this study, we screened LNPs to develop an adjuvant that can induce Th1 cells and antibodies using a conventional influenza split vaccine (SV) as an antigen in mice. We observed that LNP with 1,2-di-O-octadecenyl-3-trimethylammonium-propane (DOTMA) as a component lipid (DOTMA-LNP) elicited robust SV-specific IgG1 and IgG2 responses compared with SV alone in mice and was as efficient as SV adjuvanted with other adjuvants in mice. Furthermore, DOTMA-LNPs induced robust IFN-γ-producing Th1 cells without inflammatory responses compared to those of other adjuvants, which conferred strong cross-protection in mice. We also demonstrated the high versatility of DOTMA-LNP as a Th1 cell-inducing vaccine adjuvant using vaccine antigens derived from severe acute respiratory syndrome coronavirus 2 and Streptococcus pneumoniae. Our findings suggest the potential of DOTMA-LNP as a safe and effective Th1 cell-inducing adjuvant and show that LNP formulations are potentially potent adjuvants to enhance the effectiveness of other subunit vaccines.
Collapse
Affiliation(s)
- Atsushi Kawai
- Laboratory
of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masahiro Noda
- Laboratory
of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Haruki Hirata
- Laboratory
of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Lisa Munakata
- Laboratory
of Drug and Gene Delivery Research, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Teppei Matsuda
- Laboratory
of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Daiki Omata
- Laboratory
of Drug and Gene Delivery Research, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Naoki Takemura
- Laboratory
of Bioresponse Regulation, Graduate School
of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Sakura Onoe
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mika Hirose
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takayuki Kato
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center
for Advanced Modalities and DDS, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tatsuya Saitoh
- Laboratory
of Bioresponse Regulation, Graduate School
of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center
for Infectious Disease Education and Research, Osaka University, 3-1
Yamadaoka, Suita, Osaka 565-0871, Japan
- Global
Center for Medical Engineering and Informatics, Osaka University, 3-1
Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshiro Hirai
- Laboratory
of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryo Suzuki
- Laboratory
of Drug and Gene Delivery Research, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Yasuo Yoshioka
- Laboratory
of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center
for Advanced Modalities and DDS, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center
for Infectious Disease Education and Research, Osaka University, 3-1
Yamadaoka, Suita, Osaka 565-0871, Japan
- Global
Center for Medical Engineering and Informatics, Osaka University, 3-1
Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, The Research Foundation for Microbial Diseases of
Osaka University, 3-1
Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
5
|
El-Zahaby SA, Kaur L, Sharma A, Prasad AG, Wani AK, Singh R, Zakaria MY. Lipoplexes' Structure, Preparation, and Role in Managing Different Diseases. AAPS PharmSciTech 2024; 25:131. [PMID: 38849687 DOI: 10.1208/s12249-024-02850-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Lipid-based vectors are becoming promising alternatives to traditional therapies over the last 2 decades specially for managing life-threatening diseases like cancer. Cationic lipids are the most prevalent non-viral vectors utilized in gene delivery. The increasing number of clinical trials about lipoplex-based gene therapy demonstrates their potential as well-established technology that can provide robust gene transfection. In this regard, this review will summarize this important point. These vectors however have a modest transfection efficiency. This limitation can be partly addressed by using functional lipids that provide a plethora of options for investigating nucleic acid-lipid interactions as well as in vitro and in vivo nucleic acid delivery for biomedical applications. Despite their lower gene transfer efficiency, lipid-based vectors such as lipoplexes have several advantages over viral ones: they are less toxic and immunogenic, can be targeted, and are simple to produce on a large scale. Researchers are actively investigating the parameters that are essential for an effective lipoplex delivery method. These include factors that influence the structure, stability, internalization, and transfection of the lipoplex. Thorough understanding of the design principles will enable synthesis of customized lipoplex formulations for life-saving therapy.
Collapse
Affiliation(s)
- Sally A El-Zahaby
- Department of Pharmaceutics and Industrial Pharmacy, PharmD Program, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt.
| | - Lovepreet Kaur
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, 144411, Punjab, India
| | - Ankur Sharma
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Aprameya Ganesh Prasad
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, 144411, Punjab, India
| | - Rattandeep Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, 144411, Punjab, India
| | - Mohamed Y Zakaria
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Port Said University, Port Said, 42526, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Salman International University, Ras Sudr, 46612, South Sinai, Egypt
| |
Collapse
|
6
|
Katawale S, Tank S, Dhaygude H, Holm R, Shah S, Shinde U, Shidhaye S, Aswal V, Kumar S, Nagarsenker M. Impact of formulation parameters on self-assembled liposomes (LeciPlex® III): A detailed investigation. Int J Pharm 2024; 657:124147. [PMID: 38657715 DOI: 10.1016/j.ijpharm.2024.124147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/30/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
The present study investigated the feasibility of fabricating self-assembled liposomes, LeciPlex®, a phospholipid-based vesicular nanocarrier using cationic, anionic, and nonionic stabilizers. The phospholipid investigated was soy phosphatidylcholine and the nano-precipitation method based on solvent diffusion was applied as the fabrication technique of liposomes in this study. The effects of various formulation variables, such as lipid and stabilizer concentration, total solid concentration, and solvent type on the self-assembly of vesicles were studied for physical characterization including particle size analysis, differential scanning calorimetry, viscosity, optical transmittance, transmission electron microscopy, and small angle neutron scattering. All three LeciPlex® systems exhibited a direct relationship between particle size and phospholipid concentration. The two categoric variables, solvent, and stabilizer used to prepare LeciPlex® demonstrated a significant effect on particle size for all three LeciPlex® systems. Small angle neutron scattering, and optical transmittance confirmed the formation of micellar systems at a phospholipid: stabilizer ratio of 1:2 and vesicular systems at a ratio of 2:1 for the systems stabilized with anionic and nonionic surfactants. In contrast to this, the LeciPlex® formed with the cationic stabilizer Dioctadecyldimethylammonium bromide (DODAB), formed vesicles at both ratios. From these investigations, it was clear that the formulation space for LeciPlex® was diversified by the addition of cationic, anionic, and non-ionic stabilizers.
Collapse
Affiliation(s)
- Saurabh Katawale
- Department of Pharmaceutics, Bombay College of Pharmacy, Kalina, Santacruz, Mumbai 400 098, India
| | - Shivali Tank
- Department of Pharmaceutics, VES College of Pharmacy, Chembur, Mumbai 400 074, India
| | - Harshali Dhaygude
- Department of Pharmaceutics, Bombay College of Pharmacy, Kalina, Santacruz, Mumbai 400 098, India
| | - René Holm
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55 5230, Odense, Denmark
| | - Sanket Shah
- Therapeutics Development and Supply, Janssen Pharmaceutica NV, A Johnson & Johnson Company, Turnhoutseweg 30 2340, Beerse, Belgium
| | - Ujwala Shinde
- Department of Pharmaceutics, Bombay College of Pharmacy, Kalina, Santacruz, Mumbai 400 098, India
| | - Supriya Shidhaye
- Department of Pharmaceutics, VES College of Pharmacy, Chembur, Mumbai 400 074, India
| | - Vinod Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India; Homi Bhabha National Institute, Mumbai 400 094, India
| | - Sugam Kumar
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India; Homi Bhabha National Institute, Mumbai 400 094, India
| | - Mangal Nagarsenker
- Department of Pharmaceutics, Bombay College of Pharmacy, Kalina, Santacruz, Mumbai 400 098, India; Department of Pharmaceutics, VES College of Pharmacy, Chembur, Mumbai 400 074, India.
| |
Collapse
|
7
|
Fedorovskiy AG, Antropov DN, Dome AS, Puchkov PA, Makarova DM, Konopleva MV, Matveeva AM, Panova EA, Shmendel EV, Maslov MA, Dmitriev SE, Stepanov GA, Markov OV. Novel Efficient Lipid-Based Delivery Systems Enable a Delayed Uptake and Sustained Expression of mRNA in Human Cells and Mouse Tissues. Pharmaceutics 2024; 16:684. [PMID: 38794346 PMCID: PMC11125954 DOI: 10.3390/pharmaceutics16050684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Over the past decade, mRNA-based therapy has displayed significant promise in a wide range of clinical applications. The most striking example of the leap in the development of mRNA technologies was the mass vaccination against COVID-19 during the pandemic. The emergence of large-scale technology and positive experience of mRNA immunization sparked the development of antiviral and anti-cancer mRNA vaccines as well as therapeutic mRNA agents for genetic and other diseases. To facilitate mRNA delivery, lipid nanoparticles (LNPs) have been successfully employed. However, the diverse use of mRNA therapeutic approaches requires the development of adaptable LNP delivery systems that can control the kinetics of mRNA uptake and expression in target cells. Here, we report effective mRNA delivery into cultured mammalian cells (HEK293T, HeLa, DC2.4) and living mouse muscle tissues by liposomes containing either 1,26-bis(cholest-5-en-3β-yloxycarbonylamino)-7,11,16,20-tetraazahexacosane tetrahydrochloride (2X3) or the newly applied 1,30-bis(cholest-5-en-3β-yloxycarbonylamino)-9,13,18,22-tetraaza-3,6,25,28-tetraoxatriacontane tetrahydrochloride (2X7) cationic lipids. Using end-point and real-time monitoring of Fluc mRNA expression, we showed that these LNPs exhibited an unusually delayed (of over 10 h in the case of the 2X7-based system) but had highly efficient and prolonged reporter activity in cells. Accordingly, both LNP formulations decorated with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPE-PEG2000) provided efficient luciferase production in mice, peaking on day 3 after intramuscular injection. Notably, the bioluminescence was observed only at the site of injection in caudal thigh muscles, thereby demonstrating local expression of the model gene of interest. The developed mRNA delivery systems hold promise for prophylactic applications, where sustained synthesis of defensive proteins is required, and open doors to new possibilities in mRNA-based therapies.
Collapse
Affiliation(s)
- Artem G. Fedorovskiy
- Belozersky Institute of Physico-Chemical Biology, Department of Materials Science, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.G.F.); (M.V.K.); (E.A.P.)
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 119571 Moscow, Russia; (P.A.P.); (D.M.M.); (E.V.S.); (M.A.M.)
| | - Denis N. Antropov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.N.A.); (A.S.D.); (A.M.M.); (G.A.S.)
| | - Anton S. Dome
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.N.A.); (A.S.D.); (A.M.M.); (G.A.S.)
| | - Pavel A. Puchkov
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 119571 Moscow, Russia; (P.A.P.); (D.M.M.); (E.V.S.); (M.A.M.)
| | - Daria M. Makarova
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 119571 Moscow, Russia; (P.A.P.); (D.M.M.); (E.V.S.); (M.A.M.)
| | - Maria V. Konopleva
- Belozersky Institute of Physico-Chemical Biology, Department of Materials Science, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.G.F.); (M.V.K.); (E.A.P.)
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 119571 Moscow, Russia; (P.A.P.); (D.M.M.); (E.V.S.); (M.A.M.)
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Anastasiya M. Matveeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.N.A.); (A.S.D.); (A.M.M.); (G.A.S.)
| | - Eugenia A. Panova
- Belozersky Institute of Physico-Chemical Biology, Department of Materials Science, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.G.F.); (M.V.K.); (E.A.P.)
| | - Elena V. Shmendel
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 119571 Moscow, Russia; (P.A.P.); (D.M.M.); (E.V.S.); (M.A.M.)
| | - Mikhail A. Maslov
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 119571 Moscow, Russia; (P.A.P.); (D.M.M.); (E.V.S.); (M.A.M.)
| | - Sergey E. Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Department of Materials Science, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.G.F.); (M.V.K.); (E.A.P.)
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Grigory A. Stepanov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.N.A.); (A.S.D.); (A.M.M.); (G.A.S.)
| | - Oleg V. Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.N.A.); (A.S.D.); (A.M.M.); (G.A.S.)
| |
Collapse
|
8
|
Nele V, Campani V, Alia Moosavian S, De Rosa G. Lipid nanoparticles for RNA delivery: Self-assembling vs driven-assembling strategies. Adv Drug Deliv Rev 2024; 208:115291. [PMID: 38514018 DOI: 10.1016/j.addr.2024.115291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
Among non-viral vectors, lipid nanovectors are considered the gold standard for the delivery of RNA therapeutics. The success of lipid nanoparticles for RNA delivery, with three products approved for human use, has stimulated further investigation into RNA therapeutics for different pathologies. This requires decoding the pathological intracellular processes and tailoring the delivery system to the target tissue and cells. The complexity of the lipid nanovectors morphology originates from the assembling of the lipidic components, which can be elicited by various methods able to drive the formation of nanoparticles with the desired organization. In other cases, pre-formed nanoparticles can be mixed with RNA to induce self-assembly and structural reorganization into RNA-loaded nanoparticles. In this review, the most relevant lipid nanovectors and their potentialities for RNA delivery are described on the basis of the assembling mechanism and of the particle architecture.
Collapse
Affiliation(s)
- Valeria Nele
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano, 49 80131 Naples, Italy
| | - Virginia Campani
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano, 49 80131 Naples, Italy
| | - Seyedeh Alia Moosavian
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano, 49 80131 Naples, Italy
| | - Giuseppe De Rosa
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano, 49 80131 Naples, Italy.
| |
Collapse
|
9
|
Verma R, Rao L, Nagpal D, Yadav M, Kumar V, Kumar V, Kumar H, Parashar J, Bansal N, Kumar M, Pandey P, Mittal V, Kaushik D. Emerging Nanotechnology-based Therapeutics: A New Insight into Promising Drug Delivery System for Lung Cancer Therapy. RECENT PATENTS ON NANOTECHNOLOGY 2024; 18:395-414. [PMID: 37537775 DOI: 10.2174/1872210517666230613154847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Lung cancer is a foremost global health issue due to its poor diagnosis. The advancement of novel drug delivery systems and medical devices will aid its therapy. OBJECTIVE In this review, the authors thoroughly introduce the ideas and methods for improving nanomedicine- based approaches for lung cancer therapy. This article provides mechanistic insight into various novel drug delivery systems (DDSs) including nanoparticles, solid lipid nanoparticles, liposomes, dendrimers, niosomes, and nanoemulsions for lung cancer therapy with recent research work. This review provides insights into various patents published for lung cancer therapy based on nanomedicine. This review also highlights the current status of approved and clinically tested nanoformulations for their treatment. METHODOLOGY For finding scholarly related data for the literature search, many search engines were employed including PubMed, Science Direct, Google, Scihub, Google Scholar, Research Gate, Web of Sciences, and several others. Various keywords and phrases were used for the search such as "nanoparticles", "solid lipid nanoparticles", "liposomes", "dendrimers", "niosomes", "nanoemulsions", "lung cancer", "nanomedicine", "nanomaterial", "nanotechnology", "in vivo" and "in vitro". The most innovative and cutting-edge nanotechnology-based approaches that are employed in pre-clinical and clinical studies to address problems associated with lung cancer therapies are also mentioned in future prospects. A variety of problems encountered with current lung cancer therapy techniques that frequently led to inadequate therapeutic success are also discussed in the end. CONCLUSION The development of nanoformulations at the pilot scale still faces some difficulties, but their prospects for treating lung cancer appear to be promising in the future. Future developments and trends are anticipated as the evaluation comes to a close.
Collapse
Affiliation(s)
- Ravinder Verma
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, 127021, India
| | - Lakshita Rao
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, India
| | - Diksha Nagpal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Manish Yadav
- Department of Pharmacy, G.D. Goenka University, Sohna Road, Gurugram, 122103, India
| | - Vivek Kumar
- Department of Pharmacy, Shri Ram College of Pharmacy, Karnal, India
| | - Vikram Kumar
- Shri Baba Mastnath Institute of Pharmaceutical Sciences and Research, Baba Mastnath University, Rohtak, 124001, India
| | - Harish Kumar
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, 127021, India
| | - Jatin Parashar
- B.S. Anangpuria Institute of Pharmacy, Faridabad-121004, India
| | - Nitin Bansal
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, 127021, India
| | - Manish Kumar
- School of Pharmaceutical Sciences, CT University, Ludhiana- 142024 Punjab, India
| | - Parijat Pandey
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| |
Collapse
|
10
|
Hattori Y, Tang M, Aoki A, Ezaki M, Sakai H, Ozaki KI. Effect of the combination of cationic lipid and phospholipid on gene-knockdown using siRNA lipoplexes in breast tumor cells and mouse lungs. Mol Med Rep 2023; 28:180. [PMID: 37594053 PMCID: PMC10463231 DOI: 10.3892/mmr.2023.13067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/27/2023] [Indexed: 08/19/2023] Open
Abstract
Previously, using three types of cationic lipids, the effect of phospholipids in liposomal formulations on gene-knockdown efficacy was determined after in vitro and in vivo transfection with small interfering RNA (siRNA)/cationic liposome complexes (siRNA lipoplexes) containing various cationic lipids and phospholipids. In the present study, six other types of cationic lipids, namely N,N-dimethyl-N-tetradecyltetradecan-1-aminium bromide, N-hexadecyl-N,N-dimethylhexadecan-1-aminium bromide (DC-1-16), 2-[bis{2-(tetradecanoyloxy)ethyl}amino]-N,N,N-trimethyl-2-oxoethan-1-aminium chloride (DC-6-14), 1,2-di-O-octadecenyl-3-trimethylammonium propane chloride (DOTMA), 1,2-distearoyl-3-trimethylammonium-propane chloride (DSTAP) and 1,2-dioleoyl-3-dimethylammonium-propane were selected, and the effect of phospholipids in liposomal formulations containing each cationic lipid on gene-knockdown was evaluated. A total of 30 types of cationic liposomes composed of each cationic lipid with phosphatidylethanolamine containing unsaturated or saturated diacyl chains (C14, C16 or C18) were prepared. Regardless of the type of cationic lipid, the inclusion of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) in the liposomal formulations resulted in injectable size of siRNA lipoplexes after mixing of siRNA and cationic liposomes. Transfection of their lipoplexes with luciferase (Luc) siRNA into human breast cancer MCF-7-Luc cells stably expressing Luc led to a strong knockdown of Luc. Furthermore, the systemic injection of siRNA lipoplexes composed of DC-1-16, DC-6-14, DOTMA or DSTAP with DOPE resulted in siRNA accumulation in the lungs. Significant gene-knockdown was observed in the lungs of mice following the systemic injection of siRNA lipoplexes containing DC-1-16 and DOPE. Cationic liposomes composed of DC-1-16 and DOPE serve as potential carriers for in vitro and in vivo siRNA transfection.
Collapse
Affiliation(s)
- Yoshiyuki Hattori
- Department of Molecular Pharmaceutics, Hoshi University, Tokyo 142-8501, Japan
| | - Min Tang
- Department of Molecular Pharmaceutics, Hoshi University, Tokyo 142-8501, Japan
| | - Aya Aoki
- Department of Molecular Pharmaceutics, Hoshi University, Tokyo 142-8501, Japan
| | - Momoka Ezaki
- Department of Molecular Pharmaceutics, Hoshi University, Tokyo 142-8501, Japan
| | - Hana Sakai
- Department of Molecular Pharmaceutics, Hoshi University, Tokyo 142-8501, Japan
| | - Kei-Ichi Ozaki
- Department of Molecular Pathology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto 610-0395, Japan
| |
Collapse
|
11
|
Wang X, Liisberg MB, Vonlehmden GL, Fu X, Cerretani C, Li L, Johnson LA, Vosch T, Richards CI. DNA-AgNC Loaded Liposomes for Measuring Cerebral Blood Flow Using Two-Photon Fluorescence Correlation Spectroscopy. ACS NANO 2023; 17:12862-12874. [PMID: 37341451 PMCID: PMC11065323 DOI: 10.1021/acsnano.3c04489] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Unraveling the transport of drugs and nanocarriers in cerebrovascular networks is important for pharmacokinetic and hemodynamic studies but is challenging due to the complexity of sensing individual particles within the circulatory system of a live animal. Here, we demonstrate that a DNA-stabilized silver nanocluster (DNA-Ag16NC) that emits in the first near-infrared window upon two-photon excitation in the second NIR window can be used for multiphoton in vivo fluorescence correlation spectroscopy for the measurement of cerebral blood flow rates in live mice with high spatial and temporal resolution. To ensure bright and stable emission during in vivo experiments, we loaded DNA-Ag16NCs into liposomes, which served the dual purposes of concentrating the fluorescent label and protecting it from degradation. DNA-Ag16NC-loaded liposomes enabled the quantification of cerebral blood flow velocities within individual vessels of a living mouse.
Collapse
Affiliation(s)
- Xiaojin Wang
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Mikkel B. Liisberg
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Georgia L. Vonlehmden
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Xu Fu
- Light Microscopy Core, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Cecilia Cerretani
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Lan Li
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Lance A. Johnson
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536, United States
- Sanders Brown Center on Aging, University of Kentucky, Lexington, Kentucky 40508, United States
| | - Tom Vosch
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
- Nanoscience Center, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | | |
Collapse
|
12
|
Subhan MA, Filipczak N, Torchilin VP. Advances with Lipid-Based Nanosystems for siRNA Delivery to Breast Cancers. Pharmaceuticals (Basel) 2023; 16:970. [PMID: 37513882 PMCID: PMC10386415 DOI: 10.3390/ph16070970] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Breast cancer is the most frequently diagnosed cancer among women. Breast cancer is also the key reason for worldwide cancer-related deaths among women. The application of small interfering RNA (siRNA)-based drugs to combat breast cancer requires effective gene silencing in tumor cells. To overcome the challenges of drug delivery to tumors, various nanosystems for siRNA delivery, including lipid-based nanoparticles that protect siRNA from degradation for delivery to cancer cells have been developed. These nanosystems have shown great potential for efficient and targeted siRNA delivery to breast cancer cells. Lipid-based nanosystems remain promising as siRNA drug delivery carriers for effective and safe cancer therapy including breast cancer. Lipid nanoparticles (LNPs) encapsulating siRNA enable efficient and specific silencing of oncogenes in breast tumors. This review discusses a variety of lipid-based nanosystems including cationic lipids, sterols, phospholipids, PEG-lipid conjugates, ionizable liposomes, exosomes for effective siRNA drug delivery to breast tumors, and the clinical translation of lipid-based siRNA nanosystems for solid tumors.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, ShahJalal University of Science and Technology, Sylhet 3114, Bangladesh
- Division of Nephrology, University of Rochester Medical Center, School of Medicine and Dentistry, 601 Elmwood Ave, Box 675, Rochester, NY 14642, USA
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
13
|
Nsairat H, Alshaer W, Odeh F, Esawi E, Khater D, Bawab AA, El-Tanani M, Awidi A, Mubarak MS. Recent advances in using liposomes for delivery of nucleic acid-based therapeutics. OPENNANO 2023; 11:100132. [DOI: 10.1016/j.onano.2023.100132] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
14
|
Balgobind A, Daniels A, Ariatti M, Singh M. HER2/neu Oncogene Silencing in a Breast Cancer Cell Model Using Cationic Lipid-Based Delivery Systems. Pharmaceutics 2023; 15:pharmaceutics15041190. [PMID: 37111675 PMCID: PMC10142055 DOI: 10.3390/pharmaceutics15041190] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The overexpression of the human epidermal growth factor 2 (HER2/neu) oncogene is predictive of adverse breast cancer prognosis. Silencing the HER2/neu overexpression using siRNA may be an effective treatment strategy. Major requirements for siRNA-based therapy are safe, stable, and efficient delivery systems to channel siRNA into target cells. This study assessed the efficacy of cationic lipid-based systems for the delivery of siRNA. Cationic liposomes were formulated with equimolar ratios of the respective cholesteryl cytofectins, 3β-N-(N', N'-dimethylaminopropyl)-carbamoyl cholesterol (Chol-T) or N, N-dimethylaminopropylaminylsuccinylcholesterylformylhydrazide (MS09), with the neutral helper lipid, dioleoylphosphatidylethanolamine (DOPE), with and without a polyethylene glycol stabilizer. All cationic liposomes efficiently bound, compacted, and protected the therapeutic siRNA against nuclease degradation. Liposomes and siRNA lipoplexes were spherical, <200 nm in size, with moderate particle size distributions (PDI < 0.4). The siRNA lipoplexes exhibited minimal dose-dependent cytotoxicity and effective HER2/neu siRNA transfection in the HER2/neu overexpressing SKBR-3 cells. The non-PEGylated Chol-T-siRNA lipoplexes induced the highest HER2/neu silencing at the mRNA (10000-fold decrease) and protein levels (>111.6-fold decrease), surpassing that of commercially available Lipofectamine 3000 (4.1-fold reduction in mRNA expression). These cationic liposomes are suitable carriers of HER2/neu siRNA for gene silencing in breast cancer.
Collapse
Affiliation(s)
- Adhika Balgobind
- Nano-Gene and Drug Delivery Laboratory, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Aliscia Daniels
- Nano-Gene and Drug Delivery Laboratory, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Mario Ariatti
- Nano-Gene and Drug Delivery Laboratory, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Moganavelli Singh
- Nano-Gene and Drug Delivery Laboratory, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
15
|
Tang M, Sagawa A, Inoue N, Torii S, Tomita K, Hattori Y. Efficient mRNA Delivery with mRNA Lipoplexes Prepared Using a Modified Ethanol Injection Method. Pharmaceutics 2023; 15:pharmaceutics15041141. [PMID: 37111627 PMCID: PMC10146866 DOI: 10.3390/pharmaceutics15041141] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Messenger RNA (mRNA)-based therapies are a novel class of therapeutics used in vaccination and protein replacement therapies for monogenic diseases. Previously, we developed a modified ethanol injection (MEI) method for small interfering RNA (siRNA) transfection, in which cationic liposome/siRNA complexes (siRNA lipoplexes) were prepared by mixing a lipid-ethanol solution with a siRNA solution. In this study, we applied the MEI method to prepare mRNA lipoplexes and evaluated the in vitro and in vivo protein expression efficiencies. We selected six cationic lipids and three neutral helper lipids to generate 18 mRNA lipoplexes. These were composed of cationic lipids, neutral helper lipids, and polyethylene glycol-cholesteryl ether (PEG-Chol). Among them, mRNA lipoplexes containing N-hexadecyl-N,N-dimethylhexadecan-1-aminium bromide (DC-1-16) or 11-((1,3-bis(dodecanoyloxy)-2-((dodecanoyloxy)methyl) propan-2-yl) amino)-N,N,N-trimethyl-11-oxoundecan-1-aminium bromide (TC-1-12) with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and PEG-Chol exhibited high protein expression in cells. Furthermore, mRNA lipoplexes composed of DC-1-16, DOPE, and PEG-Chol exhibited high protein expression in the lungs and spleen of mice after systemic injection and induced high antigen-specific IgG1 levels upon immunization. These results suggest that the MEI method can potentially increase the efficiency of mRNA transfection, both in vitro and in vivo.
Collapse
Affiliation(s)
- Min Tang
- Department of Molecular Pharmaceutics, Hoshi University, 2-4-41 Ebara, Shinagawa, Tokyo 142-8501, Japan
| | - Ayane Sagawa
- Department of Molecular Pharmaceutics, Hoshi University, 2-4-41 Ebara, Shinagawa, Tokyo 142-8501, Japan
| | - Nodoka Inoue
- Department of Molecular Pharmaceutics, Hoshi University, 2-4-41 Ebara, Shinagawa, Tokyo 142-8501, Japan
| | - Satomi Torii
- Department of Molecular Pharmaceutics, Hoshi University, 2-4-41 Ebara, Shinagawa, Tokyo 142-8501, Japan
| | - Kana Tomita
- Department of Molecular Pharmaceutics, Hoshi University, 2-4-41 Ebara, Shinagawa, Tokyo 142-8501, Japan
| | - Yoshiyuki Hattori
- Department of Molecular Pharmaceutics, Hoshi University, 2-4-41 Ebara, Shinagawa, Tokyo 142-8501, Japan
| |
Collapse
|
16
|
Tang M, Sakasai S, Onishi H, Kawano K, Hattori Y. Effect of PEG anchor in PEGylation of folate-modified cationic liposomes with PEG-derivatives on systemic siRNA delivery into the Tumor. J Drug Target 2023; 31:74-88. [PMID: 35864749 DOI: 10.1080/1061186x.2022.2104860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this study, we prepared small interfering RNA (siRNA)/cationic liposome complexes (lipoplexes) modified with folate (FA)-polyethylene glycol (PEG, MW 2000, 3400 or 5000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) to facilitate their uptake into tumor cells via folate receptor (FR), and with PEG1600-cholesterol (PEG1600-Chol) or PEG2000-chondroitin sulfate conjugate (PEG2000-CS), to enhance their systemic stability. Among the FA-PEG-modified siRNA lipoplexes, 0.5 mol% FA-PEG5000-DSPE-modified lipoplexes with 2.5 mol% PEG2000-CS or PEG1600-Chol (LP-0.5F5/2.5P2-CS and LP-0.5F5/2.5P1.6-CL, respectively) exhibited selective growth inhibition of human nasopharyngeal carcinoma KB cells through transduction with polo-like kinase 1 (PLK1) siRNA. Furthermore, the LP-0.5F5/2.5P2-CS and LP-0.5F5/2.5P1.6-CL lipoplexes exhibited decreased agglutination with erythrocytes through PEGylation, and markedly decreased the accumulation of siRNA in murine lungs after systemic injection. Finally, systemic injection of LP-0.5F5/2.5P2-CS and LP-0.5F5/2.5P1.6-CL lipoplexes resulted in accumulation of siRNA in KB tumor xenografts. These findings suggest that PEGylation of FA-PEG5000-DSPE-modified siRNA lipoplexes with PEG2000-CS or PEG1600-Chol might improve their systemic stability without the loss of selective transfection activity in tumor cells.
Collapse
Affiliation(s)
- Min Tang
- Department of Molecular Pharmaceutics, Hoshi University, Shinagawa, Tokyo, Japan
| | - Sho Sakasai
- Department of Molecular Pharmaceutics, Hoshi University, Shinagawa, Tokyo, Japan
| | - Hiraku Onishi
- Department of Drug Delivery Research, Hoshi University, Shinagawa, Tokyo, Japan
| | - Kumi Kawano
- Department of Molecular Pharmaceutics, Hoshi University, Shinagawa, Tokyo, Japan
| | - Yoshiyuki Hattori
- Department of Molecular Pharmaceutics, Hoshi University, Shinagawa, Tokyo, Japan
| |
Collapse
|
17
|
Hattori Y, Saito H, Nakamura K, Yamanaka A, Tang M, Ozaki KI. In vitro and in vivo transfections using siRNA lipoplexes prepared by mixing siRNAs with a lipid-ethanol solution. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|