1
|
|
Kaundal B, Kushwaha AC, Srivastava AK, Karmakar S, Choudhury SR. A non-viral nano-delivery system targeting epigenetic methyltransferase EZH2 for precise acute myeloid leukemia therapy. J Mater Chem B 2020; 8:8658-70. [PMID: 32844866 DOI: 10.1039/d0tb01177k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Acute myeloid leukemia (AML), which is common in the elderly population, accounts for poor long-term survival with a high possibility of relapse. The associated lack of currently developed therapeutics is directing the search for new therapeutic targets relating to AML. EZH2 (Enhancer of Zeste Homolog 2) is a histone methyltransferase member of the polycomb-group (PcG) family, and its significant overexpression in AML means it has emerged as a potential epigenetic target. Here, we propose the human serum albumin (HSA) nanoparticle based delivery of small interfering RNA (siRNA), which can target EZH2-expressing genes in AML. EZH2 specific siRNA loaded in a polyethyleneimine (PEI) conjugated HSA nanocarrier can overcome the systemic instability of siRNA and precisely target the AML cell population for increased EZH2 gene silencing. A stable nanosized complex (HSANPs-PEI@EZH2siRNA), achieved via the electrostatic interaction of PEI and EZH2 siRNA, shows increased systemic stability and hemocompatibility, and enhanced EZH2 gene silencing activity in vitro, compared to conventional transfection reagents. HSANPs-PEI@EZH2siRNA-treated AML cells showed downregulated EZH2, which is associated with a reduced level of Bmi-1 protein, and H3K27me3 and H2AK119ub modification. The ubiquitin-mediated proteasomal degradation pathway plays a critical role in the downregulation of associated proteins following HSANPs-PEI@EZH2siRNA exposure to AML cells. c-Myb is the AML-responsive transcription factor that directly binds on the EZH2 promoter and was downregulated in HSANPs-PEI@EZH2siRNA-treated AML cells. The systemic exposure to HSANPs-PEI@EZH2siRNA of AML engrafted immunodeficient nude mice displayed efficient EZH2 gene silencing and a reduced AML cell population in peripheral blood and bone marrow. The present study demonstrates a non-viral siRNA delivery system for epigenetic targeting based superior anti-leukemic therapy.
Collapse
Affiliation(s)
- Babita Kaundal
- Institute of Nano Science and Technology, Mohali, Punjab, India.
| | | | | | - Surajit Karmakar
- Institute of Nano Science and Technology, Mohali, Punjab, India.
| | | |
Collapse
|
2
|
|
Li Y, Wang H, Zhang R, Zhang G, Yang Y, Liu Z. Leukemia growth is inhibited by benzoxime without causing any harmful effect in rats bearing RBL-1 ×enotransplants. Oncol Lett 2019; 17:1934-8. [PMID: 30675257 DOI: 10.3892/ol.2018.9783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/16/2018] [Indexed: 12/13/2022] Open
Abstract
The present study aimed to investigate the effect of benzoxime on leukemia RBL-1 cell proliferation and a leukemic Sprague-Dawley rat model. Proliferation of RBL-1 cells was determined using an MTT assay. Sprague-Dawley rats were assigned randomly into three groups of 10 animals each, where the positive control group was administered an intravenous injection of normal saline, the negative control group was administered 1×106 RBL-1 cells and the treatment group was administered with 1×106 RBL-1 cells and then benzoxime (50 mg/kg/day) for 1 week. Increased dosage of benzoxime reduced RBL-1 cell viability from 92 at 2 µM to ٢١٪ at ١٢ µM after ٢٤ h. Benzoxime treatment prevented the loss of body weight in the rats with leukemia. Compared with the negative control rats, the body weight was determined to be significantly reduced (P<0.05) in the positive control rats. The weight of the spleen and liver was determined to be significantly increased (P<0.02) in the positive control rats and the benzoxime-treated rats compared with that in the negative control group on day 35 of RBL-1 cell implantation. Analysis of leukocytes in rats on day 35 demonstrated a significant reduction (P<0.05) in the cluster of differentiation (CD)11b and CD45 level in the positive control group compared with that in the negative control group. The level of CD11b and CD45 was determined to be similar in the rats in the benzoxime treatment and negative control groups. Analysis of the level of serum glutamic pyruvic transaminase, serum glutamic oxaloacetic transaminase and blood urea nitrogen indicated that all three components exhibited no significant changes in the rats following treatment with benzoxime compared with the component levels in the negative control group. The levels of these three components were in the normal range in rats treated with benzoxime on day 35 of cell implantation. These data demonstrated that the liver and kidneys are not influenced by benzoxime in rats with leukemia. In summary, the present study demonstrated that benzoxime efficiently prevents leukemia growth without inducing any harmful effects in rat models through targeting CD11b and CD45 level; thus, benzoxime should be evaluated further regarding its use in the treatment of leukemia.
Collapse
Affiliation(s)
- Yingchun Li
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110021, P.R. China
| | - Huihan Wang
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110021, P.R. China
| | - Rong Zhang
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110021, P.R. China
| | - Guojun Zhang
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110021, P.R. China
| | - Ying Yang
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110021, P.R. China
| | - Zhuogang Liu
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110021, P.R. China
| |
Collapse
|
3
|
|
Manivannan E, Amawi H, Hussein N, Karthikeyan C, Fetcenko A, Narayana Moorthy NSH, Trivedi P, Tiwari AK. Design and discovery of silybin analogues as antiproliferative compounds using a ring disjunctive - Based, natural product lead optimization approach. Eur J Med Chem 2017; 133:365-78. [PMID: 28411546 DOI: 10.1016/j.ejmech.2017.03.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/10/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
Abstract
The present study reports the synthesis and anticancer activity evaluation of twelve novel silybin analogues designed using a ring disjunctive-based natural product lead (RDNPL) optimization approach. All twelve compounds were tested against a panel of cancer cells (i.e. breast, prostate, pancreatic, and ovarian) and compared with normal cells. While all of the compounds had significantly greater efficacy than silybin, derivative 15k was found to be highly potent (IC50 < 1 μM) and selective against ovarian cancer cell lines, as well as other cancer cell lines, compared to normal cells. Preliminary mechanistic studies indicated that the antiproliferative efficacy of 15k was mediated by its induction of apoptosis, loss of mitochondrial membrane potential and cell cycle arrest at the sub-G1 phase. Furthermore, 15k inhibited cellular microtubules dynamic and assembly by binding to tubulin and inhibiting its expression and function. Overall, the results of the study establish 15k as a novel tubulin inhibitor with significant activity against ovarian cancer cells.
Collapse
Affiliation(s)
| | - Haneen Amawi
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, OH, USA
| | - Noor Hussein
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, OH, USA
| | - Chandrabose Karthikeyan
- School of Pharmaceutical Sciences, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Airport Bypass Road, Gandhi Nagar, Bhopal, MP 462036, India
| | - Aubry Fetcenko
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, OH, USA
| | - N S Hari Narayana Moorthy
- School of Pharmaceutical Sciences, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Airport Bypass Road, Gandhi Nagar, Bhopal, MP 462036, India
| | - Piyush Trivedi
- School of Pharmaceutical Sciences, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Airport Bypass Road, Gandhi Nagar, Bhopal, MP 462036, India
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, OH, USA.
| |
Collapse
|
4
|
|
Lin CF, Yang JS, Lin C, Tsai FJ, Lu CC, Lee MR. CCY-1a-E2 induces G2/M phase arrest and apoptotic cell death in HL-60 leukemia cells through cyclin-dependent kinase 1 signaling and the mitochondria-dependent caspase pathway. Oncol Rep 2016; 36:1633-9. [PMID: 27461132 DOI: 10.3892/or.2016.4970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/22/2016] [Indexed: 11/05/2022] Open
Abstract
Our previous study demonstrated that 2-[(3-methoxybenzyl)oxy]benzaldehyde (CCY-1a-E2) is a potent compound that acts against multiple human leukemia cell lines. CCY-1a-E2 was also shown to have efficacious anti‑leukemic activity in vivo. However, the molecular mechanism of action of CCY‑1a‑E2 attributed to its anticancer effect remains poorly understood. In the present study, CCY‑1a‑E2 suppressed cell viability in multiple leukemia cell lines (HL‑60, K562, KG‑1 and KG‑1a) via inhibition of cell proliferation, cell cycle arrest and induction of apoptosis. CCY‑1a‑E2 exhibited a marked toxic effect on HL‑60 cells and displayed low cytotoxicity in normal human peripheral blood mononuclear cells (PBMCs). Results from flow cytometric analysis indicated that CCY‑1a‑E2 promoted G2/M phase arrest and promoted apoptosis in the HL‑60 cells. CCY‑1a‑E2 treatment upregulated cyclin B, cyclin‑dependent kinase 1 (CDK1), cell division cycle 25C (cdc25C) and p21 protein expression. CCY‑1a‑E2 caused apoptotic cell death and DNA fragmentation as determined by 4',6‑diamidino‑2‑phenylindole (DAPI) staining and DNA gel electrophoresis. Elevated activities of caspase‑8, ‑9 and ‑3 were observed during CCY‑1a‑E2‑induced cell apoptosis; their specific inhibitors were found to block CCY‑1a‑E2‑induced apoptosis, respectively. Moreover, CCY‑1a‑E2 time‑dependently disrupted the mitochondrial membrane potential (ΔΨm), and it enhanced the protein levels of Fas/CD95, cytochrome c, Bax, cleaved PARP, as well as attenuated Bcl‑2 expression in the HL‑60 cells. Our results provide direct evidence that supports the future potential therapeutic application of CCY-1a-E2 in leukemia.
Collapse
Affiliation(s)
- Chin-Fen Lin
- Department of Biochemistry, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Chingju Lin
- Department of Physiology, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Fuu-Jen Tsai
- Human Genetic Center, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
| | - Chi-Cheng Lu
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| | - Miau-Rong Lee
- Department of Biochemistry, China Medical University, Taichung 404, Taiwan, R.O.C
| |
Collapse
|