1
|
Panji M, Behmard V, Zare Z, Malekpour M, Nejadbiglari H, Yavari S, Nayerpour Dizaj T, Safaeian A, Bakhshi A, Abazari O, Abbasi M, Khanicheragh P, Shabanzadeh M. Synergistic effects of green tea extract and paclitaxel in the induction of mitochondrial apoptosis in ovarian cancer cell lines. Gene 2021; 787:145638. [PMID: 33848578 DOI: 10.1016/j.gene.2021.145638] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Green tea is a natural compound with anti-neoplastic properties. Paclitaxel (PTX) is a natural anti-tumor medication used to manage patients with advanced ovarian cancer. This manuscript evaluated the cytotoxic effects of green tea extract combined with PTX drug in two human ovarian cancer cell lines (p53-negative cell line, SKOV-3; and mutant type p53 cell line, OVCAR-3) and underlying mechanisms. METHODS The human ovarian cancer cell lines were treated with green tea extract, PTX, and green tea plus PTX for 24 h, and cell viability was assessed using the MTT method. Flow cytometric analyses were carried out to detect apoptosis. For the apoptotic process, quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting analysis were applied to study pAkt, Bax, Bcl-2, Cytochrome C (Cyt-C), cleaved-caspase-3, and cleaved-caspase-9 levels after drug treatments. RESULTS Our results pointed out that various green tea (25 and 50 µg/ml) concentrations combined with PTX (20 and 40 µg/ml) synergistically inhibited cell viability of cancer cells more than green tea or PTX alone after 24 h of treatment. Also, green tea and PTX combination induced apoptosis in ovarian cancer cells by blocking the phosphorylation of Akt and the expression of Bcl-2 while inducing Bax, Cyt-C, cleaved-caspase 3, and cleaved-caspase 9. CONCLUSION Our results showed that the combination of green tea and PTX could be more potent than the individual drug to induce cytotoxicity and apoptosis in ovarian cancer cells.
Collapse
Affiliation(s)
- Mohammad Panji
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahideh Behmard
- Student Research Committee, Department of Midwifery, School of Medical, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Zahra Zare
- Department of Biology, Farhangian University, Tehran, Iran
| | - Monireh Malekpour
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hasan Nejadbiglari
- Department of Nursing, Sirjan Branch, Islamic Azad University, Sirjan, Iran
| | - Saeede Yavari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Tina Nayerpour Dizaj
- Department of Medical Biotechnology, Faculty of Modern Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azadeh Safaeian
- Department of Physiology, Faculty of Medicine, Shahid Sadoughy University of Medical Sciences, Yazd, Iran
| | - Ali Bakhshi
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Omid Abazari
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran.
| | - Mojtaba Abbasi
- Veterinary Medicine, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran; Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Parisa Khanicheragh
- Department of Clinical Biochemistry, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Maryam Shabanzadeh
- Department of Medical Radiation, Faculty of Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| |
Collapse
|
2
|
Smith PG, Roque D, Ching MM, Fulton A, Rao G, Reader JC. The Role of Eicosanoids in Gynecological Malignancies. Front Pharmacol 2020; 11:1233. [PMID: 32982722 PMCID: PMC7479818 DOI: 10.3389/fphar.2020.01233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
Eicosanoids, bio-active lipid molecules, evoke a multitude of biological effects that directly affect cancer cells and indirectly affect tumor microenvironment. An emerging role has been shown for eicosanoids in the pathogenesis of gynecological malignancies which include cancers of the vulva, vagina, cervix, uterine, and ovary. Eicosanoid biosynthesis pathways start at the metabolism of phospholipids by phospholipase A2 then proceeding to one of three pathways: the cyclooxygenase (COX), lipoxygenase (LOX), or P450 epoxygenase pathways. The most studied eicosanoid pathways include COX and LOX; however, more evidence is appearing to support further study of the P450 epoxygenase pathway in gynecologic cancers. In this review, we present the current knowledge of the role of COX, LOX and P450 pathways in the pathogenesis of gynecologic malignancies. Vulvar and vaginal cancer, the rarest subtypes, there is association of COX-2 expression with poor disease specific survival in vulvar cancer and, in vaginal cancer, COX-2 expression has been found to play a role in mucosal inflammation leading to disease susceptibility and transmission. Cervical cancer is associated with COX-2 levels 7.4 times higher than in healthy tissues. Additionally, HPV elevates COX-2 levels through the EGFR pathway and HIV promotes elevated COX-2 levels in cervical tissue as well as increases PGE2 levels eliciting inflammation and progression of cancer. Evidence supports significant roles for both the LOX and COX pathways in uterine cancer. In endometrial cancer, there is increased expression of 5-LOX which is associated with adverse outcomes. Prostanoids in the COX pathway PGE2 and PGF2α have been shown to play a significant role in uterine cancer including alteration of proliferation, adhesion, migration, invasion, angiogenesis, and the inflammatory microenvironment. The most studied gynecological malignancy in regard to the potential role of eicosanoids in tumorigenesis is ovarian cancer in which all three pathways have shown to be associated or play a role in ovarian tumorigenesis directly on the tumor cell or through modulation of the tumor microenvironment. By identifying the gaps in knowledge, additional pathways and targets could be identified in order to obtain a better understanding of eicosanoid signaling in gynecological malignancies and identify potential new therapeutic approaches.
Collapse
Affiliation(s)
- Paige G. Smith
- Department of Obstetrics, Gynecology and Reproductive Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Dana Roque
- Department of Obstetrics, Gynecology and Reproductive Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Mc Millan Ching
- Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Amy Fulton
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States
- Baltimore Veterans Administration Medical Center, Baltimore, MD, United States
| | - Gautam Rao
- Department of Obstetrics, Gynecology and Reproductive Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Jocelyn C. Reader
- Department of Obstetrics, Gynecology and Reproductive Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| |
Collapse
|
3
|
Zhu H, Qu Y. Expression levels of ARHI and Beclin1 in thyroid cancer and their relationship with clinical pathology and prognosis. Oncol Lett 2019; 19:1241-1246. [PMID: 31966053 PMCID: PMC6956424 DOI: 10.3892/ol.2019.11223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/22/2019] [Indexed: 12/18/2022] Open
Abstract
Expression levels of autophagy-related genes ARHI and Beclin1 in thyroid cancer and their relationship with clinical pathology and prognosis were investigated. The expression levels of ARHI and Beclin1 proteins in 80 cases of thyroid cancer and adjacent tissues were detected by western blot analysis. According to the expression levels of ARHI and Beclin1, low- and high-expression groups were determined and the relationship of the expression levels with the pathological parameters and prognosis in thyroid cancer was compared between the two groups. The correlation between the ARHI and Beclin1 protein expression level was analyzed by Pearsons correlation analysis. The levels of ARHI and Beclin1 proteins in thyroid cancer tissues were significantly lower than those in adjacent tissues (P<0.05). There was a significant difference in the expression levels of ARHI and Beclin1 in terms of pathological stage and differentiation degree of cancer tissues (P<0.001); however, there was no significant difference in the expression levels of ARHI and Beclin1 for different types of cancer tissues (P>0 05). There was a positive correlation between the expression levels of Beclin1 and ARHI (r=0.5187, P<0.001). The 3-year survival rates of patients with low-expression level of ARHI and Beclin1 proteins were significantly lower than those of patients with high expression (P<0.05). In conclusion, the expression levels of Beclin1 and ARHI were low in thyroid cancer, and were significantly associated with the pathological stage, differentiation degree and prognosis in thyroid cancer. Beclin1 and ARHI can be used as predictors for the development and prognosis of thyroid cancer.
Collapse
Affiliation(s)
- Houwei Zhu
- Department of Thyroid Surgery, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Yanqing Qu
- Department of Thyroid Surgery, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
4
|
Majnooni MB, Fakhri S, Smeriglio A, Trombetta D, Croley CR, Bhattacharyya P, Sobarzo-Sánchez E, Farzaei MH, Bishayee A. Antiangiogenic Effects of Coumarins against Cancer: From Chemistry to Medicine. Molecules 2019; 24:molecules24234278. [PMID: 31771270 PMCID: PMC6930449 DOI: 10.3390/molecules24234278] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022] Open
Abstract
Angiogenesis, the process of formation and recruitment of new blood vessels from pre-existing vessels, plays an important role in the development of cancer. Therefore, the use of antiangiogenic agents is one of the most critical strategies for the treatment of cancer. In addition, the complexity of cancer pathogenicity raises the need for multi-targeting agents. Coumarins are multi-targeting natural agents belonging to the class of benzopyrones. Coumarins have several biological and pharmacological effects, including antimicrobial, antioxidant, anti-inflammation, anticoagulant, anxiolytic, analgesic, and anticancer properties. Several reports have shown that the anticancer effect of coumarins and their derivatives are mediated through targeting angiogenesis by modulating the functions of vascular endothelial growth factor as well as vascular endothelial growth factor receptor 2, which are involved in cancer pathogenesis. In the present review, we focus on the antiangiogenic effects of coumarins and related structure-activity relationships with particular emphasis on cancer.
Collapse
Affiliation(s)
- Mohammad Bagher Majnooni
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran;
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy; (A.S.); (D.T.)
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy; (A.S.); (D.T.)
| | | | - Piyali Bhattacharyya
- Escuela de Ciencias de la Salud, Universidad Ana G. Méndez, Recinto de Gurabo, Gurabo, PR 00778, USA;
| | - Eduardo Sobarzo-Sánchez
- Laboratory of Pharmaceutical Chemistry, Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; or
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;
- Correspondence: (M.H.F.); or (A.B.)
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
- Correspondence: (M.H.F.); or (A.B.)
| |
Collapse
|
5
|
Fakhri S, Abbaszadeh F, Jorjani M, Pourgholami MH. The effects of anticancer medicinal herbs on vascular endothelial growth factor based on pharmacological aspects: a review study. Nutr Cancer 2019; 73:1-15. [DOI: 10.1080/01635581.2019.1673451] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Jorjani
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
6
|
Cyclooxygenase-1 (COX-1) and COX-1 Inhibitors in Cancer: A Review of Oncology and Medicinal Chemistry Literature. Pharmaceuticals (Basel) 2018; 11:ph11040101. [PMID: 30314310 PMCID: PMC6316056 DOI: 10.3390/ph11040101] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 12/12/2022] Open
Abstract
Prostaglandins and thromboxane are lipid signaling molecules deriving from arachidonic acid by the action of the cyclooxygenase isoenzymes COX-1 and COX-2. The role of cyclooxygenases (particularly COX-2) and prostaglandins (particularly PGE₂) in cancer-related inflammation has been extensively investigated. In contrast, COX-1 has received less attention, although its expression increases in several human cancers and a pathogenetic role emerges from experimental models. COX-1 and COX-2 isoforms seem to operate in a coordinate manner in cancer pathophysiology, especially in the tumorigenesis process. However, in some cases, exemplified by the serous ovarian carcinoma, COX-1 plays a pivotal role, suggesting that other histopathological and molecular subtypes of cancer disease could share this feature. Importantly, the analysis of functional implications of COX-1-signaling, as well as of pharmacological action of COX-1-selective inhibitors, should not be restricted to the COX pathway and to the effects of prostaglandins already known for their ability of affecting the tumor phenotype. A knowledge-based choice of the most appropriate tumor cell models, and a major effort in investigating the COX-1 issue in the more general context of arachidonic acid metabolic network by using the systems biology approaches, should be strongly encouraged.
Collapse
|
7
|
Al-Hujaily EM, Tang Y, Yao DS, Carmona E, Garson K, Vanderhyden BC. Divergent Roles of PAX2 in the Etiology and Progression of Ovarian Cancer. Cancer Prev Res (Phila) 2015; 8:1163-73. [DOI: 10.1158/1940-6207.capr-15-0121-t] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 09/08/2015] [Indexed: 11/16/2022]
|
8
|
Ho VW, Hamilton MJ, Dang NHT, Hsu BE, Adomat HH, Guns ES, Weljie A, Samudio I, Bennewith KL, Krystal G. A low carbohydrate, high protein diet combined with celecoxib markedly reduces metastasis. Carcinogenesis 2014; 35:2291-9. [PMID: 25023988 DOI: 10.1093/carcin/bgu147] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We recently demonstrated that both murine and human carcinomas grow significantly slower in mice on low carbohydrate (CHO), high protein diets than on isocaloric Western diets and that a further reduction in tumor growth rates occur when the low CHO diets are combined with the cyclooxygenase-2 inhibitor, celecoxib. Following upon these studies, we asked herein what effect low CHO, high protein diets, with or without celecoxib, might have on tumor metastasis. In the highly metastatic 4T1 mouse mammary tumor model, a 15% CHO, high protein diet supplemented with celecoxib (1 g/kg chow) markedly reduced lung metastases. Moreover, in longer-term studies using male Transgenic Adenocarcinoma of the Mouse Prostate mice, which are predisposed to metastatic prostate cancer, the 15% CHO diet, with and without celecoxib (0.3 g/kg chow), gave the lowest incidence of metastases, but a more moderate 25% CHO diet containing celecoxib led to the best survival. Metabolic studies with 4T1 tumors suggested that the low CHO, high protein diets may be forcing tumors to become dependent on amino acid catabolism for survival/growth. Taken together, our results suggest that a combination of a low CHO, high protein diet with celecoxib substantially reduces metastasis.
Collapse
Affiliation(s)
| | - Melisa J Hamilton
- The Terry Fox Laboratory and The Integrative Oncology Department, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Ngoc-Ha Thi Dang
- The Department of Biological Sciences and the Metabolomics Centre, University of Calgary, Calgary, Alberta T2N 1N4, Canada and
| | | | - Hans H Adomat
- The Vancouver Prostate Centre at Vancouver General Hospital, Vancouver, British Columbia V6H 3Z6, Canada
| | - Emma S Guns
- The Vancouver Prostate Centre at Vancouver General Hospital, Vancouver, British Columbia V6H 3Z6, Canada
| | - Aalim Weljie
- The Department of Biological Sciences and the Metabolomics Centre, University of Calgary, Calgary, Alberta T2N 1N4, Canada and
| | | | - Kevin L Bennewith
- The Department of Biological Sciences and the Metabolomics Centre, University of Calgary, Calgary, Alberta T2N 1N4, Canada and
| | | |
Collapse
|
9
|
Rosas C, Sinning M, Ferreira A, Fuenzalida M, Lemus D. Celecoxib decreases growth and angiogenesis and promotes apoptosis in a tumor cell line resistant to chemotherapy. Biol Res 2014; 47:27. [PMID: 25027008 PMCID: PMC4101715 DOI: 10.1186/0717-6287-47-27] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 05/07/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND During the last few years it has been shown in several laboratories that Celecoxib (Cx), a non-steroidal anti-inflammatory agent (NSAID) normally used for pain and arthritis, mediates antitumor and antiangiogenic effects. However, the effects of this drug on a tumor cell line resistant to chemotherapeutical drugs used in cancer have not been described. RESULTS Cx reduces angiogenesis in the chick embryonic chorioallantoic membrane assay (CAM), inhibits the growth and microvascular density of the murine TA3-MTXR tumor, reduces microvascular density of tumor metastases, promotes apoptosis and reduces vascular endothelial growth factor (VEGF) production and cell proliferation in the tumor. CONCLUSION The antiangiogenic and antitumor Cx effects correlate with its activity on other tumor cell lines, suggesting that Prostaglandins (PGs) and VEGF production are involved. These results open the possibility of using Celecoxib combined with other experimental therapies, ideally aiming to get synergic effects.
Collapse
|
10
|
da Silveira EF, Chassot JM, Teixeira FC, Azambuja JH, Debom G, Beira FT, Del Pino FAB, Lourenço A, Horn AP, Cruz L, Spanevello RM, Braganhol E. Ketoprofen-loaded polymeric nanocapsules selectively inhibit cancer cell growth in vitro and in preclinical model of glioblastoma multiforme. Invest New Drugs 2013; 31:1424-35. [DOI: 10.1007/s10637-013-0016-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 08/23/2013] [Indexed: 12/21/2022]
|
11
|
Lee JP, Hahn HS, Hwang SJ, Choi JY, Park JS, Lee IH, Kim TJ. Selective cyclooxygenase inhibitors increase paclitaxel sensitivity in taxane-resistant ovarian cancer by suppressing P-glycoprotein expression. J Gynecol Oncol 2013; 24:273-9. [PMID: 23875078 PMCID: PMC3714466 DOI: 10.3802/jgo.2013.24.3.273] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/11/2013] [Accepted: 05/14/2013] [Indexed: 11/30/2022] Open
Abstract
Objective The purpose of this study was to investigate whether selective cyclooxygenase (COX) inhibitors promote paclitaxel-induced apoptosis in taxane-resistant ovarian cancer cells by suppressing MDR1/P-glycoprotein (P-gp) expression. Methods Taxane-resistant ovarian cancer cells were cultured with paclitaxel alone or combined with a selective COX inhibitors. The expression patterns of MDR1/P-gp and the ability of COX inhibitors to inhibit growth of taxane-resistant ovarian cancer cells were measured. The efficacy of prostaglandin E2 (PGE2) supplementation was measured to evaluate the mechanisms involved in suppressing MDR1 gene expression. Results P-gp was upregulated in taxane-resistant ovarian cancer cells compared to paired paclitaxel-sensitive ovarian cancer cells. An 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that selective COX inhibitors significantly enhanced the cytotoxic effects of paclitaxel in taxane-resistant ovarian cancer cells via a prostaglandin-independent mechanism. These increased apoptotic effects were further verified by measuring an increased percentage of cells in sub-G1 stage using flow cytometry. Selective COX inhibitors suppressed MDR1 and P-gp expression. Moreover, combined treatment with paclitaxel and selective COX inhibitors increased poly (ADP-ribose) polymerase (PARP) cleavage in taxane-resistant ovarian cancer cells. Conclusion Selective COX inhibitors significantly promote paclitaxel-induced cell death in taxane-resistant ovarian cancer cells in a prostaglandin-independent manner. COX inhibitors could be potent therapeutic tools to promote paclitaxel sensitization of taxane-resistant ovarian cancers by suppressing MDR1/P-gp, which is responsible for the efflux of chemotherapeutic agents.
Collapse
Affiliation(s)
- Jung-Pil Lee
- Department of Obstetrics and Gynecology, Ellemedi Women's Hospital, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|