1
|
Ning J, Sala M, Reina J, Kalagiri R, Hunter T, McCullough BS. Histidine Phosphorylation: Protein Kinases and Phosphatases. Int J Mol Sci 2024; 25:7975. [PMID: 39063217 PMCID: PMC11277029 DOI: 10.3390/ijms25147975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Phosphohistidine (pHis) is a reversible protein post-translational modification (PTM) that is currently poorly understood. The P-N bond in pHis is heat and acid-sensitive, making it more challenging to study than the canonical phosphoamino acids pSer, pThr, and pTyr. As advancements in the development of tools to study pHis have been made, the roles of pHis in cells are slowly being revealed. To date, a handful of enzymes responsible for controlling this modification have been identified, including the histidine kinases NME1 and NME2, as well as the phosphohistidine phosphatases PHPT1, LHPP, and PGAM5. These tools have also identified the substrates of these enzymes, granting new insights into previously unknown regulatory mechanisms. Here, we discuss the cellular function of pHis and how it is regulated on known pHis-containing proteins, as well as cellular mechanisms that regulate the activity of the pHis kinases and phosphatases themselves. We further discuss the role of the pHis kinases and phosphatases as potential tumor promoters or suppressors. Finally, we give an overview of various tools and methods currently used to study pHis biology. Given their breadth of functions, unraveling the role of pHis in mammalian systems promises radical new insights into existing and unexplored areas of cell biology.
Collapse
Affiliation(s)
- Jia Ning
- Correspondence: (J.N.); (B.S.M.)
| | | | | | | | | | - Brandon S. McCullough
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; (M.S.); (J.R.); (R.K.); (T.H.)
| |
Collapse
|
2
|
Reina J, Vallmajo-Martin Q, Ning J, Michi AN, Yeung K, Wahl GM, Hunter T. LHPP expression in triple-negative breast cancer promotes tumor growth and metastasis by modulating the tumor microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590151. [PMID: 38712081 PMCID: PMC11071390 DOI: 10.1101/2024.04.19.590151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and metastatic form of breast cancer that lacks an effective targeted therapy. To identify new therapeutic targets, we investigated the phosphohistidine phosphatase, LHPP, which has been implicated in the development of several types of cancer. However, the full significance of LHPP in cancer progression remains unclear due to our limited understanding of its molecular mechanism. We found that levels of the LHPP phosphohistidine phosphatase were significantly increased in human breast cancer patients compared to normal adjacent tissues, with the highest levels in the TNBC subtype. When LHPP was knocked out in the MDA-MB-231 human TNBC cell line, cell proliferation, wound healing capacity, and invasion were significantly reduced. However, LHPP knockout in TNBC cells did not affect the phosphohistidine protein levels. Interestingly, LHPP knockout in MDA-MB-231 cells delayed tumor growth and reduced metastasis when orthotopically transplanted into mouse mammary glands. To investigate LHPP's role in breast cancer progression, we used next-generation sequencing and proximity-labeling proteomics, and found that LHPP regulates gene expression in chemokine-mediated signaling and actin cytoskeleton organization. Depletion of LHPP reduced the presence of tumor-infiltrating macrophages in mouse xenografts. Our results uncover a new tumor promoter role for LHPP phosphohistidine phosphatase in TNBC and suggest that targeting LHPP phosphatase could be a potential therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Jeffrey Reina
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | - Jia Ning
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Aubrey N Michi
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Kay Yeung
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Geoffrey M Wahl
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
3
|
Wang H, Gaston R, Ahmed KT, Dudley GB, Barrios AM. Derivatives of the Fungal Natural Product Illudalic Acid Inhibit the Activity of Protein Histidine Phosphatase PHPT1. ChemMedChem 2023; 18:e202300187. [PMID: 37267298 PMCID: PMC10443188 DOI: 10.1002/cmdc.202300187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023]
Abstract
PHPT1 is a protein histidine phosphatase that has been implicated in several disease pathways, but the chemical tools necessary to study the biological roles of this enzyme and investigate its utility as a therapeutic target have yet to be developed. To this end, the discovery of PHPT1 inhibitors is an area of significant interest. Here, we report an investigation of illudalic acid and illudalic acid analog-based inhibition of PHPT1 activity. Four of the seven analogs investigated had IC50 values below 5 μM, with the most potent compound (IA1-8H2) exhibiting an IC50 value of 3.4±0.7 μM. Interestingly, these compounds appear to be non-covalent, non-competitive inhibitors of PHPT1 activity, in contrast to other recently reported PHPT1 inhibitors. Mutating the three cysteine residues to alanine has no effect on inhibition, indicating that cysteine is not critical for interactions between inhibitor and enzyme.
Collapse
Affiliation(s)
- Hanfei Wang
- Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT 84112
| | - Robert Gaston
- Department of Chemistry, West Virginia University, Morgantown, WV 26506
| | - Kh Tanvir Ahmed
- Department of Chemistry, West Virginia University, Morgantown, WV 26506
| | - Gregory B. Dudley
- Department of Chemistry, West Virginia University, Morgantown, WV 26506
| | - Amy M. Barrios
- Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT 84112
| |
Collapse
|
4
|
Kim HJ, Jung H, Kim S, Seo JK, Kee JM. Identification of a Target Site for Covalent Inhibition of Protein Phosphohistidine Phosphatase 1. ACS Med Chem Lett 2022; 13:1911-1915. [DOI: 10.1021/acsmedchemlett.2c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Hyeong Jun Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Hoyoung Jung
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Soyeon Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Jeong Kon Seo
- UNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Jung-Min Kee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| |
Collapse
|
5
|
McCullough BS, Wang H, Barrios AM. Inhibitor Screen Identifies Covalent Inhibitors of the Protein Histidine Phosphatase PHPT1. ACS Med Chem Lett 2022; 13:1198-1201. [DOI: 10.1021/acsmedchemlett.2c00053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Brandon S. McCullough
- Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, Utah 84112, United States
| | - Hanfei Wang
- Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, Utah 84112, United States
| | - Amy M. Barrios
- Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, Utah 84112, United States
| |
Collapse
|
6
|
Wu F, Ma H, Wang X, Wei H, Zhang W, Zhang Y. The histidine phosphatase LHPP: an emerging player in cancer. Cell Cycle 2022; 21:1140-1152. [PMID: 35239447 PMCID: PMC9103355 DOI: 10.1080/15384101.2022.2044148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Cancers continue to have high incidence and mortality rates worldwide. Therefore, cancer control remains the main public health goal. Growing research evidence suggests that phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) plays an important role in inhibiting tumor cell progression. It has been reported in the literature that LHPP is expressed at low levels in tumor tissues and cells and that patients with low LHPP expression have a poorer prognosis. Functional studies have shown that LHPP can inhibit tumor cell proliferation, metastasis, and apoptosis by affecting different target genes. In addition, researchers have used iDPP nanoparticles to deliver LHPP plasmids to treat tumors, demonstrating the great potential of LHPP plasmids for cancer therapy. In our review, we highlight the biological functions and important downstream target genes of LHPP in tumors, providing a theoretical basis for the treatment of human cancers. Although not thoroughly studied in terms of tumor mechanisms, LHPP still represents a promising and effective anticancer drug target.
Collapse
Affiliation(s)
- Fahong Wu
- Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Hanwei Ma
- Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xiaoli Wang
- Department of Gynaecology and Obstetrics, The Third Hospital of Xiamen, Xiamen, China
| | - Hangzhi Wei
- Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Wei Zhang
- Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Youcheng Zhang
- Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, Gansu, China,CONTACT Youcheng Zhang Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, 730030Gansu, China
| |
Collapse
|
7
|
FBXO32 targets PHPT1 for ubiquitination to regulate the growth of EGFR mutant lung cancer. Cell Oncol (Dordr) 2022; 45:293-307. [PMID: 35411430 DOI: 10.1007/s13402-022-00669-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Phosphohistidine phosphatase 1 (PHPT1) is an oncogene that has been reported to participate in multiple tumorigenic processes. As yet, however, the role of PHPT1 in lung cancer development remains uncharacterized. METHODS RNA sequencing assay and 18 pairs of tumor and normal tissues from patients were analyzed to reveal the upregulation of PHPT1 in lung cancer, followed by confirming the biological function in vitro and in vivo. Next, Gene Set Enrichment Analysis, lung cancer samples, apoptosis assay, mass spectrometry experiments and western blotting were used to investigate the molecular mechanism underlying PHPT1 driven progression in epidermal growth factor receptor (EGFR)-mutant lung cancer. Finally, we performed cellular and animal experiments to explore the tumor suppressive function of F-box protein 32 (FBXO32). RESULTS We found that PHPT1 is overexpressed in lung cancer patients and correlates with a poor overall survival. In addition, we found that the expression of PHPT1 is elevated in EGFR-mutant lung cancer cells and primary patient samples. Inhibition of PHPT1 expression in EGFR mutant lung cancer cells significantly decreased their proliferation and clonogenicity, and suppressed their in vitro tumor growth. Mechanistic studies revealed that activation of the ERK/MAPK pathway is driven by PHPT1. PHPT1 is required for maintaining drug resistance to erlotinib in EGFR mutant lung cancer cells. We found that FBXO32 acts as an E3 ubiquitin ligase for PHPT1, and that knockdown of FBXO32 leads to PHPT1 accumulation, activation of the ERK/MAPK pathway and promotion of the proliferation, clonogenicity and growth of lung cancer cells. CONCLUSIONS Our findings indicate that PHPT1 may serve as a biomarker and therapeutic target for acquired erlotinib resistance in lung cancer patients carrying EGFR mutations.
Collapse
|
8
|
Mathis CL, Barrios AM. Histidine phosphorylation in metalloprotein binding sites. J Inorg Biochem 2021; 225:111606. [PMID: 34555600 DOI: 10.1016/j.jinorgbio.2021.111606] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/30/2021] [Accepted: 09/09/2021] [Indexed: 11/26/2022]
Abstract
Post-translational modifications (PTMs) are invaluable regulatory tools for the control of catalytic functionality, protein-protein interactions, and signaling pathways. Historically, the study of phosphorylation as a PTM has been focused on serine, threonine, and tyrosine residues. In contrast, the significance of mammalian histidine phosphorylation remains largely unexplored. This gap in knowledge regarding the molecular basis for histidine phosphorylation as a regulatory agent exists in part because of the relative instability of phosphorylated histidine as compared with phosphorylated serine, threonine and tyrosine. However, the unique metal binding abilities of histidine make it one of the most common metal coordinating ligands in nature, and it is interesting to consider how phosphorylation would change the metal coordinating ability of histidine, and consequently, the properties of the phosphorylated metalloprotein. In this review, we examine eleven metalloproteins that have been shown to undergo reversible histidine phosphorylation at or near their metal binding sites. These proteins are described with respect to their biological activity and structure, with a particular emphasis on how phosphohistidine may tune the primary coordination sphere and protein conformation. Furthermore, several common methods, challenges, and limitations of studying sensitive, high affinity metalloproteins are discussed.
Collapse
Affiliation(s)
- Cheryl L Mathis
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, United States
| | - Amy M Barrios
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, United States.
| |
Collapse
|
9
|
Dong Y, Han H, Li Y, Guo L. [Roles of Histidine Kinases and Histidine Phosphatases in Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2021; 24:646-652. [PMID: 34455734 PMCID: PMC8503980 DOI: 10.3779/j.issn.1009-3419.2021.102.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
蛋白磷酸化修饰是最常见、最重要的蛋白质翻译后修饰方式。磷酸化修饰在细胞的增殖、分化、发育和代谢等生物学过程中发挥了重要的调控功能,与肿瘤的发生和发展也密切相关。蛋白激酶和磷酸酶对蛋白磷酸化修饰具有普遍的开/关调控作用。真核生物的蛋白磷酸化主要发生在丝氨酸、苏氨酸和酪氨酸残基,他们在肿瘤发生和发展中的作用已经得到了广泛的研究。但关于组氨酸磷酸化的研究受限于质谱分析和富集技术的发展研究较少。近年来,随着相关技术的快速发展和新的组氨酸磷酸酶的发现,使得研究人员越来越多关注到组氨酸磷酸化在肿瘤中的作用。因此,本文旨在对组氨酸磷酸化调控相关的组氨酸激酶和组氨酸磷酸酶在肿瘤中的作用作一综述。
Collapse
Affiliation(s)
- Yafang Dong
- Key Laboratory of Kidney Disease, precision Medicine Center, The Shanxi Provincial People' s Hospital, Shanxi Medical University, Taiyuan 030000, China
| | - Huimin Han
- Key Laboratory of Kidney Disease, precision Medicine Center, The Shanxi Provincial People' s Hospital, Shanxi Medical University, Taiyuan 030000, China
| | - Yafeng Li
- Key Laboratory of Kidney Disease, precision Medicine Center, The Shanxi Provincial People' s Hospital, Shanxi Medical University, Taiyuan 030000, China
| | - Lili Guo
- Key Laboratory of Kidney Disease, precision Medicine Center, The Shanxi Provincial People' s Hospital, Shanxi Medical University, Taiyuan 030000, China
| |
Collapse
|
10
|
Choi Y, Shin SH, Jung H, Kwon O, Seo JK, Kee JM. Specific Fluorescent Probe for Protein Histidine Phosphatase Activity. ACS Sens 2019; 4:1055-1062. [PMID: 30912641 DOI: 10.1021/acssensors.9b00242] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein histidine phosphorylation plays a vital role in cell signaling and metabolic processes, and phosphohistidine (pHis) phosphatases such as protein histidine phosphatase 1 (PHPT1) and LHPP have been linked to cancer and diabetes, making them novel drug targets and biomarkers. Unlike the case for other classes of phosphatases, further studies of PHPT1 and other pHis phosphatases have been hampered by the lack of specific activity assays in complex biological mixtures. Previous methods relying on radiolabeling are hazardous and technically laborious, and small-molecule phosphatase probes are not selective toward pHis phosphatases. To address these issues, we herein report a fluorescent probe based on chelation-enhanced fluorescence (CHEF) to continuously measure the pHis phosphatase activity of PHPT1. Our probe exhibited excellent sensitivity and specificity toward PHPT1, enabling the first specific measurement of PHPT1 activity in cell lysates. Using this probe, we also obtained more physiologically relevant kinetic parameters of PHPT1, overcoming the limitations of previously used methods.
Collapse
|
11
|
Jung H, Shin SH, Kee J. Recent Updates on ProteinN‐Phosphoramidate Hydrolases. Chembiochem 2018; 20:623-633. [DOI: 10.1002/cbic.201800566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Hoyoung Jung
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| | - Son Hye Shin
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| | - Jung‐Min Kee
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| |
Collapse
|
12
|
McCullough BS, Barrios AM. Facile, Fluorogenic Assay for Protein Histidine Phosphatase Activity. Biochemistry 2018; 57:2584-2589. [DOI: 10.1021/acs.biochem.8b00278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Brandon S. McCullough
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Amy M. Barrios
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
13
|
Xu A, Li Y, Zhao W, Hou F, Li X, Sun L, Chen W, Yang A, Wu S, Zhang B, Yao J, Wang H, Huang J. PHP14 regulates hepatic stellate cells migration in liver fibrosis via mediating TGF-β1 signaling to PI3Kγ/AKT/Rac1 pathway. J Mol Med (Berl) 2018; 96:119-133. [PMID: 29098317 DOI: 10.1007/s00109-017-1605-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/16/2017] [Accepted: 10/25/2017] [Indexed: 01/22/2023]
Abstract
UNLABELLED Hepatic fibrosis is characterized by the activation of hepatic stellate cells (HSCs). Migration of the activated HSCs to the site of injury is one of the key characteristics during the wound healing process. We have previously demonstrated that 14 kDa phosphohistidine phosphatase (PHP14) is involved in migration and lamellipodia formation of HSCs. However, the role of PHP14 in liver fibrosis remains unknown. In this study, we first assessed PHP14 expression and distribution in liver fibrotic tissues using western blot, immunohistochemistry, and double immunofluorescence staining. Next, we investigated the role of PHP14 in liver fibrosis and, more specifically, the migration of HSCs by Transwell assay and 3D collagen matrices assay. Finally, we explored the possible molecular mechanisms of the effects of PHP14 on these processes. Our results show that the PHP14 expression is up-regulated in fibrotic liver and mainly in HSCs. Importantly, TGF-β1 can induce PHP14 expression in HSCs accompanied with the activation of HSCs. Consistent with the previous study, PHP14 promotes HSCs migration, especially, promotes 3D floating collagen matrices contraction but inhibits stressed-released matrices contraction. Mechanistically, the PI3Kγ/AKT/Rac1 pathway is involved in migration regulated by PHP14. Moreover, PHP14 specifically mediates the TGF-β1 signaling to PI3Kγ/AKT pathway and regulates HSC migration, and thus participates in liver fibrosis. Our study identified the role of PHP14 in liver fibrosis, particularly HSC migration, and suggested a novel mediator of transducting TGF-β1 signaling to PI3Kγ/AKT/Rac1 pathway. KEY MESSAGES PHP14 is up-regulated in fibrotic liver and activated hepatic stellate cells. The expression of PHP14 is induced by TGF-β1. The migration of hepatic stellate cells is regulated by PHP14. PHP14 is a mediator of TGF-β1 signaling to PI3Kγ/AKT/Rac1 pathway in hepatic stellate cells.
Collapse
Affiliation(s)
- Anjian Xu
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Yanmeng Li
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wenshan Zhao
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Fei Hou
- Department of Infection Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaojin Li
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lan Sun
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wei Chen
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Aiting Yang
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Shanna Wu
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bei Zhang
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jingyi Yao
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Huan Wang
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Jian Huang
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
14
|
Chen BJ, Lam TC, Liu LQ, To CH. Post-translational modifications and their applications in eye research (Review). Mol Med Rep 2017; 15:3923-3935. [PMID: 28487982 DOI: 10.3892/mmr.2017.6529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 02/22/2017] [Indexed: 02/05/2023] Open
Abstract
Gene expression is the process by which genetic information is used for the synthesis of a functional gene product, and ultimately regulates cell function. The increase of biological complexity from genome to proteome is vast, and the post-translational modification (PTM) of proteins contribute to this complexity. The study of protein expression and PTMs has attracted attention in the post‑genomic era. Due to the limited capability of conventional biochemical techniques in the past, large‑scale PTM studies were technically challenging. The introduction of effective protein separation methods, specific PTM purification strategies and advanced mass spectrometers has enabled the global profiling of PTMs and the identification of a targeted PTM within the proteome. The present review provides an overview of current proteomic technologies being applied in eye research, with a particular focus on studies of PTMs in ocular tissues and ocular diseases.
Collapse
Affiliation(s)
- Bing-Jie Chen
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Thomas Chuen Lam
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR, P.R. China
| | - Long-Qian Liu
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Chi-Ho To
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR, P.R. China
| |
Collapse
|
15
|
Ek P, Ek B, Zetterqvist Ö. Phosphohistidine phosphatase 1 (PHPT1) also dephosphorylates phospholysine of chemically phosphorylated histone H1 and polylysine. Ups J Med Sci 2015; 120:20-7. [PMID: 25574816 PMCID: PMC4389004 DOI: 10.3109/03009734.2014.996720] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Phosphohistidine phosphatase 1 (PHPT1), also named protein histidine phosphatase (PHP), is a eukaryotic enzyme dephosphorylating proteins and peptides that are phosphorylated on a histidine residue. A preliminary finding that histone H1, which lacks histidine, was phosphorylated by phosphoramidate and dephosphorylated by PHPT1 prompted the present investigation. METHODS Histone H1 and polylysine were phosphorylated at a low concentration (3.9 mM) of phosphoramidate. Their dephosphorylation by recombinant human PHPT1 was investigated by using a DEAE-Sepharose spin column technique earlier developed by us for studies on basic phosphoproteins and phosphopeptides. Determination of protein-bound, acid-labile phosphate was performed by a malachite green method. Mass spectrometry (MS) was used to investigate the occurrence of N-ε-phospholysine residues in a phosphorylated histone H1.2 preparation, and to measure the activity of PHPT1 against free N-ω-phosphoarginine. RESULTS Histone H1.2, which lacks histidine, was phosphorylated by phosphoramidate on several lysine residues, as shown by MS. PHPT1 was shown to dephosphorylate phosphohistone H1 at a rate similar to that previously described for the dephosphorylation of phosphohistidine-containing peptides. In addition, phosphopolylysine was an equally good substrate for PHPT1. However, no dephosphorylation of free phosphoarginine by PHPT1 could be detected. CONCLUSION The finding that PHPT1 can dephosphorylate phospholysine in chemically phosphorylated histone H1 and polylysine demonstrates a broader specificity for this enzyme than known so far.
Collapse
Affiliation(s)
- Pia Ek
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Bo Ek
- Department of Chemistry, Uppsala University, Uppsala, Sweden
| | - Örjan Zetterqvist
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
Attwood PV, Wieland T. Nucleoside diphosphate kinase as protein histidine kinase. Naunyn Schmiedebergs Arch Pharmacol 2014; 388:153-60. [PMID: 24961462 DOI: 10.1007/s00210-014-1003-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/02/2014] [Indexed: 01/08/2023]
Abstract
Like phosphorylation of serine, threonine, and tyrosine residues in many organisms, reversible histidine phosphorylation is a well-known regulatory signal in prokaryotes and lower eukaryotes. In vertebrates, phosphohistidine has been mainly described as a phosphorylated intermediate in enzymatic reactions, and it was believed that regulatory histidine phosphorylation is of minor importance. During the last decade, it became evident however, that nucleoside diphosphate kinase (NDPK), an ubiquitously expressed enzyme required for nucleotide homeostasis, can additionally act as a protein histidine kinase. Especially for the isoform NDPK B, at least three defined substrates, the β subunit of heterotrimeric G proteins (Gβ), the intermediate conductance potassium channel KCa3.1, and the Ca(2+)-conducting TRP channel family member, TRPV5, have been identified. In all three proteins, the phosphorylation of a specific histidine residue is of regulatory importance for protein function, and these phosphohistidines are cleaved by a counteracting 14 kDa phosphohistidine phosphatase (PHP). This article will therefore give an overview of our current knowledge on protein histidine phosphorylation in prokaryotes and lower eukaryotes and compare it with the regulatory phosphorylation and dephosphorylation of histidine residues in vertebrates by NDPK and PHP, respectively.
Collapse
Affiliation(s)
- Paul V Attwood
- School of Chemistry and Biochemistry, The University of Western Australia (M310), 35 Stirling Highway, Crawley, WA, 6009, Australia,
| | | |
Collapse
|