1
|
Therapeutic Potential of 5'-Methylschweinfurthin G in Merkel Cell Polyomavirus-Positive Merkel Cell Carcinoma. Viruses 2022; 14:v14091848. [PMID: 36146655 PMCID: PMC9506461 DOI: 10.3390/v14091848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/13/2022] [Accepted: 08/19/2022] [Indexed: 02/08/2023] Open
Abstract
Merkel cell carcinoma (MCC) is a rare but aggressive form of skin cancer predominantly caused by the human Merkel cell polyomavirus (MCPyV). Treatment for MCC includes excision and radiotherapy of local disease, and chemotherapy or immunotherapy for metastatic disease. The schweinfurthin family of natural compounds previously displayed potent and selective growth inhibitory activity against the NCI-60 panel of human-derived cancer cell lines. Here, we investigated the impact of schweinfurthin on human MCC cell lines. Treatment with the schweinfurthin analog, 5'-methylschweinfurth G (MeSG also known as TTI-3114), impaired metabolic activity through induction of an apoptotic pathway. MeSG also selectively inhibited PI3K/AKT and MAPK/ERK pathways in the MCPyV-positive MCC cell line, MS-1. Interestingly, expression of the MCPyV small T (sT) oncogene selectively sensitizes mouse embryonic fibroblasts to MeSG. These results suggest that the schweinfurthin family of compounds display promising potential as a novel therapeutic option for virus-induced MCCs.
Collapse
|
2
|
Harms KL, Zhao L, Johnson B, Wang X, Carskadon S, Palanisamy N, Rhodes DR, Mannan R, Vo JN, Choi JE, Chan MP, Fullen DR, Patel RM, Siddiqui J, Ma VT, Hrycaj S, McLean SA, Hughes TM, Bichakjian CK, Tomlins SA, Harms PW. Virus-positive Merkel Cell Carcinoma Is an Independent Prognostic Group with Distinct Predictive Biomarkers. Clin Cancer Res 2021; 27:2494-2504. [PMID: 33547200 DOI: 10.1158/1078-0432.ccr-20-0864] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 12/31/2020] [Accepted: 02/02/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Merkel cell carcinoma (MCC) is an aggressive cutaneous neuroendocrine carcinoma that can be divided into two classes: virus-positive (VP) MCC, associated with oncogenic Merkel cell polyomavirus (MCPyV); and virus-negative (VN) MCC, associated with photodamage. EXPERIMENTAL DESIGN We classified 346 MCC tumors from 300 patients for MCPyV using a combination of IHC, ISH, and qPCR assays. In a subset of tumors, we profiled mutation status and expression of cancer-relevant genes. MCPyV and molecular profiling results were correlated with disease-specific outcomes. Potential prognostic biomarkers were further validated by IHC. RESULTS A total of 177 tumors were classified as VP-MCC, 151 tumors were VN-MCC, and 17 tumors were indeterminate. MCPyV positivity in primary tumors was associated with longer disease-specific and recurrence-free survival in univariate analysis, and in multivariate analysis incorporating age, sex, immune status, and stage at presentation. Prioritized oncogene or tumor suppressor mutations were frequent in VN-MCC but rare in VP-MCC. TP53 mutation developed with recurrence in one VP-MCC case. Importantly, for the first time we find that VP-MCC and VN-MCC display distinct sets of prognostic molecular biomarkers. For VP-MCC, shorter survival was associated with decreased expression of immune markers including granzyme and IDO1. For VN-MCC, shorter survival correlated with high expression of several genes including UBE2C. CONCLUSIONS MCPyV status is an independent prognostic factor for MCC. Features of the tumor genome, transcriptome, and microenvironment may modify prognosis in a manner specific to viral status. MCPyV status has clinicopathologic significance and allows for identification of additional prognostic subgroups.
Collapse
Affiliation(s)
- Kelly L Harms
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Lili Zhao
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | | | - Xiaoming Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan.,Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Shannon Carskadon
- Department of Urology, Vattikuti Urology Institute, Henry Ford Health System, Detroit, Michigan
| | - Nallasivam Palanisamy
- Department of Urology, Vattikuti Urology Institute, Henry Ford Health System, Detroit, Michigan
| | | | - Rahul Mannan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan.,Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Josh N Vo
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan.,Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Jae Eun Choi
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - May P Chan
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan.,Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Douglas R Fullen
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan.,Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Rajiv M Patel
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan.,Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Javed Siddiqui
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan.,Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Vincent T Ma
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.,Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | - Steven Hrycaj
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Scott A McLean
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| | - Tasha M Hughes
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Christopher K Bichakjian
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Scott A Tomlins
- Strata Oncology, Ann Arbor, Michigan.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan.,Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Paul W Harms
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan. .,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan.,Department of Pathology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
3
|
Abstract
Merkel cell polyomavirus (MCPyV) is the most recently discovered human oncogenic virus. MCPyV asymptomatically infects most of the human population. In the elderly and immunocompromised, however, it can cause a highly lethal form of human skin cancer called Merkel cell carcinoma (MCC). Distinct from the productive MCPyV infection that replicates the viral genome as episomes, MCC tumors contain replication-incompetent, integrated viral genomes. Mutant MCPyV tumor antigen genes expressed from the integrated viral genomes are essential for driving the oncogenic development of MCPyV-associated MCC. In this chapter, we summarize recent discoveries on MCPyV virology, mechanisms of MCPyV-mediated oncogenesis, and the current therapeutic strategies for MCPyV-associated MCCs.
Collapse
Affiliation(s)
- Wei Liu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
4
|
Chamcheu JC, Roy T, Uddin MB, Banang-Mbeumi S, Chamcheu RCN, Walker AL, Liu YY, Huang S. Role and Therapeutic Targeting of the PI3K/Akt/mTOR Signaling Pathway in Skin Cancer: A Review of Current Status and Future Trends on Natural and Synthetic Agents Therapy. Cells 2019; 8:cells8080803. [PMID: 31370278 PMCID: PMC6721560 DOI: 10.3390/cells8080803] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022] Open
Abstract
The mammalian or mechanistic target of rapamycin (mTOR) and associated phosphatidyl-inositiol 3-kinase (PI3K)/protein kinase B (Akt) pathways regulate cell growth, differentiation, migration, and survival, as well as angiogenesis and metabolism. Dysregulation of these pathways is frequently associated with genetic/epigenetic alterations and predicts poor treatment outcomes in a variety of human cancers including cutaneous malignancies like melanoma and non-melanoma skin cancers. Recently, the enhanced understanding of the molecular and genetic basis of skin dysfunction in patients with skin cancers has provided a strong basis for the development of novel therapeutic strategies for these obdurate groups of skin cancers. This review summarizes recent advances in the roles of PI3K/Akt/mTOR and their targets in the development and progression of a broad spectrum of cutaneous cancers and discusses the current progress in preclinical and clinical studies for the development of PI3K/Akt/mTOR targeted therapies with nutraceuticals and synthetic small molecule inhibitors.
Collapse
Affiliation(s)
| | - Tithi Roy
- College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0497, USA
| | | | - Sergette Banang-Mbeumi
- College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0497, USA
- Division for Research and Innovation, POHOFI Inc., P.O. Box 44067, Madison, WI 53744, USA
- School of Nursing and Allied Health Sciences, Louisiana Delta Community College, Monroe, LA 71203, USA
| | | | - Anthony L Walker
- College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0497, USA
| | - Yong-Yu Liu
- College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0497, USA
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| |
Collapse
|
5
|
Cohen L, Tsai KY. Molecular and immune targets for Merkel cell carcinoma therapy and prevention. Mol Carcinog 2019; 58:1602-1611. [PMID: 31116890 DOI: 10.1002/mc.23042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/15/2019] [Accepted: 04/28/2019] [Indexed: 12/15/2022]
Abstract
Merkel cell carcinoma (MCC) is a rare neuroendocrine carcinoma of the skin, for which the exact mechanisms of carcinogenesis remain unknown. Therapeutic options for this highly aggressive malignancy have historically been limited in both their initial response and response durability. Recent improvements in our understanding of MCC tumor biology have expanded therapeutic options for these patients, namely through the use of immunotherapies such as immune checkpoint inhibitors. Further elucidation of the tumor mutational landscape has identified molecular targets for therapies, which have demonstrated success in other cancer types. In this review, we discuss both current and investigational immune and molecular targets of therapy for MCC.
Collapse
Affiliation(s)
- Leah Cohen
- Department of Dermatology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida.,Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kenneth Y Tsai
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Donald A. Adam Melanoma and Skin Cancer Center of Excellence, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
6
|
Harms PW, Harms KL, Moore PS, DeCaprio JA, Nghiem P, Wong MKK, Brownell I. The biology and treatment of Merkel cell carcinoma: current understanding and research priorities. Nat Rev Clin Oncol 2019; 15:763-776. [PMID: 30287935 PMCID: PMC6319370 DOI: 10.1038/s41571-018-0103-2] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Merkel cell carcinoma (MCC) is a rare and aggressive skin cancer associated with advanced age and immunosuppression. Over the past decade, an association has been discovered between MCC and either integration of the Merkel cell polyomavirus, which likely drives tumorigenesis, or somatic mutations owing to ultraviolet-induced DNA damage. Both virus-positive and virus-negative MCCs are immunogenic, and inhibition of the programmed cell death protein 1 (PD-1)–programmed cell death 1 ligand 1 (PD-L1) immune checkpoint has proved to be highly effective in treating patients with metastatic MCC; however, not all patients have a durable response to immunotherapy. Despite these rapid advances in the understanding and management of patients with MCC, many basic, translational and clinical research questions remain unanswered. In March 2018, an International Workshop on Merkel Cell Carcinoma Research was held at the US National Cancer Institute, at which academic, government and industry experts met to identify the highest-priority research questions. Here, we review the biology and treatment of MCC and report the consensus-based recommendations agreed upon during the workshop. Merkel cell carcinoma (MCC) is a rare and aggressive form of nonmelanoma skin cancer. The availability of immune checkpoint inhibition has improved the outcomes of a subset of patients with MCC, although many unmet needs continue to exist. In this Consensus Statement, the authors summarize developments in our understanding of MCC while also providing consensus recommendations for future research.
Collapse
Affiliation(s)
- Paul W Harms
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kelly L Harms
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Patrick S Moore
- Cancer Virology Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - James A DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Paul Nghiem
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, WA, USA
| | - Michael K K Wong
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, USA
| | - Isaac Brownell
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) and National Cancer Institute (NCI), NIH, Bethesda, MD, USA.
| | | |
Collapse
|
7
|
Bloom Syndrome Protein Activates AKT and PRAS40 in Prostate Cancer Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3685817. [PMID: 31210839 PMCID: PMC6532288 DOI: 10.1155/2019/3685817] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/07/2019] [Accepted: 03/25/2019] [Indexed: 12/16/2022]
Abstract
Purpose Prostate cancer (PC) is a common malignant tumor and a leading cause of cancer-related death in men worldwide. In order to design new therapeutic interventions for PC, an understanding of the molecular events underlying PC tumorigenesis is required. Bloom syndrome protein (BLM) is a RecQ-like helicase, which helps maintain genetic stability. BLM dysfunction has been implicated in tumor development, most recently during PC tumorigenesis. However, the molecular basis for BLM-induced PC progression remains poorly characterized. In this study, we investigated whether BLM modulates the phosphorylation of an array of prooncogenic signaling pathways to promote PC progression. Methods We analyzed differentially expressed proteins (DEPs) using iTRAQ technology. Site-directed knockout of BLM in PC-3 prostate cancer cells was performed using CRISPR/Cas9-mediated homologous recombination gene editing to confirm the effects of BLM on DEPs. PathScan® Antibody Array Kits were used to analyze the phosphorylation of nodal proteins in PC tissue. Immunohistochemistry and automated western blot (WES) analyses were used to validate these findings. Results We found that silencing BLM in PC-3 cells significantly reduced their proliferative capacity. In addition, BLM downregulation significantly reduced levels of phosphorylated protein kinase B (AKT (Ser473)) and proline-rich AKT substrate of 40 kDa (PRAS40 (Thr246)), and this was accompanied by enhanced ROS (reactive oxygen species) levels. In addition, we found that AKT and PRAS40 inhibition reduced BLM, increased ROS levels, and induced PC cell apoptosis. Conclusions We demonstrated that BLM activates AKT and PRAS40 to promote PC cell proliferation and survival. We further propose that ROS act in concert with BLM to facilitate PC oncogenesis, potentially via further enhancing AKT signaling and downregulating PTEN expression. Importantly, inhibiting the BLM-AKT-PRAS40 axis induced PC cell apoptosis. Thus, we highlight new avenues for novel anti-PC treatments.
Collapse
|
8
|
Pharmacological Inhibition of Serine Palmitoyl Transferase and Sphingosine Kinase-1/-2 Inhibits Merkel Cell Carcinoma Cell Proliferation. J Invest Dermatol 2018; 139:807-817. [PMID: 30399362 DOI: 10.1016/j.jid.2018.10.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/21/2018] [Accepted: 10/23/2018] [Indexed: 01/01/2023]
Abstract
The majority of Merkel cell carcinoma, a highly aggressive neuroendocrine cancer of the skin, is associated with Merkel cell polyomavirus infection. Polyomavirus binding, internalization, and infection are mediated by glycosphingolipids. Besides receptor function, bioactive sphingolipids are increasingly recognized as potent regulators of several hallmarks of cancer. Merkel cell polyomavirus+ and Merkel cell polyomavirus- cells express serine palmitoyl transferase subunits and sphingosine kinase (SK) 1/2 mRNA. Induced expression of Merkel cell polyomavirus-large tumor antigen in human lung fibroblasts resulted in upregulation of SPTLC1-3 and SK 1/2 expression. Therefore, we exploited pharmacological inhibition of sphingolipid metabolism as an option to interfere with proliferation of Merkel cell polyomavirus+ Merkel cell carcinoma cell lines. We used myriocin (a serine palmitoyl transferase antagonist) and two SK inhibitors (SKI-II and ABC294640). In MKL-1 and WaGa cells myriocin decreased cellular ceramide, sphingomyelin, and sphingosine-1-phosphate content. SKI-II increased ceramide species but decreased sphingomyelin and sphingosine-1-phosphate concentrations. Aberrant sphingolipid homeostasis was associated with reduced cell viability, increased necrosis, procaspase-3 and PARP processing, caspase-3 activity, and decreased AKTS473 phosphorylation. Myriocin and SKI-II decreased tumor size and Ki-67 staining of xenografted MKL-1 and WaGa tumors on the chorioallantoic membrane. Our data suggest that pharmacological inhibition of sphingolipid synthesis could represent a potential therapeutic approach in Merkel cell carcinoma.
Collapse
|
9
|
Koh KX, Tan GH, Hui Low SH, Mohd Omar MF, Han MJ, Iacopetta B, Soo R, Beloueche-Babari M, Bhattacharya B, Soong R. Acquired resistance to PI3K/mTOR inhibition is associated with mitochondrial DNA mutation and glycolysis. Oncotarget 2017; 8:110133-110144. [PMID: 29299135 PMCID: PMC5746370 DOI: 10.18632/oncotarget.22655] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/27/2017] [Indexed: 01/31/2023] Open
Abstract
Acquired resistance (AQR) to drug treatment occurs frequently in cancer patients and remains an impediment to successful therapy. The aim of this study was to gain insight into how AQR arises following the application of PI3K/mTOR inhibitors. H1975 lung cancer cells with EGFR T790M mutations that confer resistance to EGFR inhibitors underwent prolonged treatment with the PI3K/mTOR inhibitor, BEZ235. Monoclonal cells with stable and increased resistance to BEZ235 were obtained after 8 months treatment. These AQR clones showed class-specific resistance to PI3K/mTOR inhibitors, reduced G1 cell cycle arrest and impedance of migration following PI3K/mTOR inhibition, reduced PTEN expression and increased Akt and S6RP phosphorylation. Transcriptome analysis revealed the AQR clones had increased expression of the metabolite transporters SLC16A9 and SLC16A7, suggestive of altered cell metabolism. Subsequent experiments revealed that AQR clones possess features consistent with elevated glycolysis, including increased levels of glucose, lactate, glutamine, glucose dependence, GLUT1 expression, and rates of post-glucose extracellular acidification, and decreased levels of reactive oxygen species and rates of oxygen consumption. Combination treatment of BEZ235 with the glycolysis inhibitor 3-bromopyruvate was synergistic in AQR clones, but only additive in parental cells. DNA sequencing revealed the presence of a mitochondrial DNA (mtDNA) MT-C01 variant in AQR but not parental cells. Depletion of mitochondrial DNA in parental cells induced resistance to BEZ235 and other PI3K/mTOR inhibitors, and was accompanied by increased glycolysis. The results of this study provide the first evidence that a metabolic switch associated with mtDNA mutation can be an underlying mechanism for AQR.
Collapse
Affiliation(s)
- King Xin Koh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Gim Hwa Tan
- Department of Haematology Oncology, National University Cancer Institute of Singapore, Singapore, Singapore
| | - Sarah Hong Hui Low
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Mohd Feroz Mohd Omar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Min Ji Han
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Barry Iacopetta
- School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - Ross Soo
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Haematology Oncology, National University Cancer Institute of Singapore, Singapore, Singapore
| | - Mounia Beloueche-Babari
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Bhaskar Bhattacharya
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Richie Soong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pathology, National University of Singapore, Singapore, Singapore
| |
Collapse
|