1
|
Wang K, Tao L, Zhu M, Yu X, Lu Y, Yuan B, Hu F. Melittin Inhibits Colorectal Cancer Growth and Metastasis by Ac-Tivating the Mitochondrial Apoptotic Pathway and Suppressing Epithelial-Mesenchymal Transition and Angiogenesis. Int J Mol Sci 2024; 25:11686. [PMID: 39519238 PMCID: PMC11546240 DOI: 10.3390/ijms252111686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Melittin has previously been found to have a positive effect on colorectal cancer (CRC) treatment, one of the most difficult-to-treat malignancies, but the mechanism by which this effect occurs remains unclear. We evaluated melittin's pro-apoptotic and anti-metastatic effects on CRC in vitro and in vivo. The results showed that melittin-induced mitochondrial ROS bursts decreased ΔΨm, inhibited Bcl-2 expression, and increased Bax expression in both cells and tumor tissues. This led to increased mitochondrial membrane permeability and the release of pro-apoptotic factors, particularly the high expression of Cytochrome C, initiating the apoptosis program. Additionally, through wound-healing and transwell assays, melittin inhibited the migration and invasion of CRC cells. In vivo, the anti-metastatic effect of melittin was also verified in a lung metastasis mouse model. Western blotting and immunohistochemistry analysis indicated that melittin suppressed the expression of MMPs and regulated the expression of crucial EMT markers and related transcription factors, thereby inhibiting EMT. Furthermore, the melittin disrupts neovascularization, ultimately inhibiting the metastasis of CRC. In conclusion, melittin exerts anti-CRC effects by promoting apoptosis and inhibiting metastasis, providing a theoretical basis for further research on melittin as a targeted therapeutic agent for CRC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fuliang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (K.W.); (L.T.); (M.Z.); (X.Y.); (Y.L.); (B.Y.)
| |
Collapse
|
2
|
Matthyssen T, Li W, Holden JA, Lenzo JC, Hadjigol S, O’Brien-Simpson NM. Dimerization and lysine substitution of melittin have differing effects on bacteria. Front Pharmacol 2024; 15:1443497. [PMID: 39434904 PMCID: PMC11492869 DOI: 10.3389/fphar.2024.1443497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/09/2024] [Indexed: 10/23/2024] Open
Abstract
Introduction Melittin is a potent antimicrobial peptide from bee venom that is effective against both Gram-positive and Gram-negative bacteria. However, it is extremely toxic to mammalian cells and, as yet, has no clinical use. Modifications to its amino acid sequence, cyclization, truncation, and dimerization have been attempted in order to reduce its toxicity whilst maintaining its antimicrobial activity. Methods In this study, we targeted the three lysine residues present in melittin and substituted them with lysine homologs containing shorter side chains (ornithine, Orn, diaminobutyric acid, Dab, and diaminopropanoic acid, Dap) and made both parallel and antiparallel melittin dimers to observe how lysine substitution and dimerization affects its activity and toxicity. The antibacterial activity of melittin and its analogs was tested against S. aureus (Gram-positive bacteria) and E. coli (Gram-negative bacteria), and cytotoxicity was tested against the mammalian cell lines HEK293 and H4IIE. Results Overall, dimerization and lysine substitution exhibited improved antimicrobial activity toward E. coli and limited improvement toward S. aureus. However, mammalian cell toxicity was only marginally reduced compared to native melittin. Interestingly, the parallel dimer was found to be marginally more active than the antiparallel dimer, indicating orientation maybe important for activity, although both dimers were less effective than the native and Lys-analog peptides toward S. aureus. Of the Lys substitutions, Dab and Dap improved melittin's activity toward E. coli. Discussion Dimerization and Lys substitution of melittin improved the antimicrobial activity toward Gram-negative bacteria but did not significantly improve its activity toward Gram-positive bacteria. Some analogs also displayed reduced toxicity toward HEK293 and H4IIE cells but overall remained toxic at bactericidal concentrations. Our data indicates that although highly antibacterial, melittin's toxicity is the major drawback in its potential use.
Collapse
Affiliation(s)
- Tamara Matthyssen
- ACTV Research Group, Melbourne Dental School, Division of Basic and Clinical Oral Sciences, Royal Dental Hospital and The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Melbourne, VIC, Australia
| | - Wenyi Li
- ACTV Research Group, Melbourne Dental School, Division of Basic and Clinical Oral Sciences, Royal Dental Hospital and The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - James A. Holden
- Melbourne Dental School, Centre for Oral Health Research, Royal Dental Hospital and The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Melbourne, VIC, Australia
| | - Jason C. Lenzo
- Western Australian Health Translation Network, Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| | - Sara Hadjigol
- ACTV Research Group, Melbourne Dental School, Division of Basic and Clinical Oral Sciences, Royal Dental Hospital and The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Melbourne, VIC, Australia
| | - Neil M. O’Brien-Simpson
- ACTV Research Group, Melbourne Dental School, Division of Basic and Clinical Oral Sciences, Royal Dental Hospital and The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Ye K, Wang PC, Chen YX, Huang QZ, Chi P. E3 ubiquitin ligase BTBD3 inhibits tumorigenesis of colorectal cancer by regulating the TYRO3/Wnt/β-catenin signaling axis. Cancer Cell Int 2024; 24:306. [PMID: 39227913 PMCID: PMC11373184 DOI: 10.1186/s12935-024-03478-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 08/12/2024] [Indexed: 09/05/2024] Open
Abstract
Clinical trials and studies have implicated that E3 ubiquitin ligase BTBD3 (BTB Domain Containing 3) is a cancer-associated gene. However, the role and underlying mechanism of BTBD3 in colorectal cancer (CRC) is not fully understood yet. Herein, our study demonstrated that the mRNA and protein levels of BTBD3 were decreased in CRC tissues and associated with TYPO3 and Wnt/β-catenin pathway. Our results showed that circRAE1 knockdown and TYRO3 overexpression activated Wnt/β-catenin signaling pathway and the EMT process-associated markers, indicating that circRAE1/miR-388-3p/TYRO3 axis exacerbated tumorigenesis of CRC by activating Wnt/β-catenin signaling pathway. In addition, overexpression of BTBD3 reduced CRC cell migration and invasion in vitro and inhibited tumor growth in vivo. Our data demonstrated that BTBD3 suppressed CRC progression through negative regulation of the circRAE1/miR-388-3p/TYRO3 axis and the Wnt/β-catenin pathway. Our data further confirmed that BTBD3 bound and ubiquitinated β-catenin and led to β-catenin degradation, therefore blocked the Wnt/β-catenin pathway and suppressed the CRC tumorigenesis. This study explored the mechanism of BTBD3 involved in CRC tumorigenesis and provided a new theoretical basis for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Kai Ye
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Department of Surgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, Fujian Province, 362000, China
| | - Peng-Cheng Wang
- Department of Surgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, Fujian Province, 362000, China
| | - Yan-Xin Chen
- Department of Surgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, Fujian Province, 362000, China
| | - Qiao-Zhen Huang
- Department of Surgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, Fujian Province, 362000, China
| | - Pan Chi
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| |
Collapse
|
4
|
Zhou C, Wang W, Mu Y, Meng M. Efficacy and safety of a novel TKI (anlotinib) for the treatment of advanced digestive system neoplasms: a systematic review and meta-analysis. Front Immunol 2024; 15:1393404. [PMID: 39206183 PMCID: PMC11349560 DOI: 10.3389/fimmu.2024.1393404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Objective To systematically evaluate the efficacy and safety of anlotinib targeted therapy for the treatment of patients with advanced digestive system neoplasms (DSNs). Methods Clinical trials were extracted from PubMed, the Cochrane Library, Web of Science, Embase, China National Knowledge Infrastructure (CNKI) and the Wanfang database up to October 2023. Outcome measures, including therapeutic efficacy, quality of life (QOL) and adverse events, were extracted and evaluated. Results Twenty trials, including 1,613 advanced DSNs patients, were included. The results indicated that, compared with conventional treatment alone, the combination of anlotinib targeted therapy with conventional treatment significantly improved the patients' 6-months overall survival (OS, OR=1.76, CI=1.53 to 2.02, P<0.00001), overall response (ORR, OR=1.76, CI=1.53 to 2.02, P<0.00001) and disease control rate (DCR, OR=1.51, 95% CI=1.25 to 1.84, P<0.0001). Moreover, the group that received the combined therapy had higher rates of hypertension (P<0.00001), proteinuria (P<0.00001), fatigue (P<0.00001), diarrhea (P<0.00001), hypertriglyceridemia (P=0.02), alanine aminotransfease (ALT)increased (P=0.004), aspartate transaminase (AST) increased (P=0.006), anorexia (P<0.00001), weight loss (P=0.002), abdominal pain (P=0.0006), hypothyroidism (P=0.02), prolonged QT interval (P=0.04). Analyses of other adverse events, such as gastrointestinal reaction, leukopenia, and neutropenia, did not reveal significant differences (P>0.05). Conclusion The combination of anlotinib targeted therapy and conventional treatment is more effective for DSNs treatment than conventional treatment alone. However, this combined treatment could lead to greater rates of hypertension, albuminuria and hand-foot syndrome. Therefore, the benefits and risks should be considered before treatment.
Collapse
Affiliation(s)
- Changhui Zhou
- Department of Central Laboratory, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Weihua Wang
- Department of Central Laboratory, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Ying Mu
- Department of Gastroenterology, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Min Meng
- Department of Central Laboratory, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| |
Collapse
|
5
|
Badivi S, Kazemi S, Eskandarisani M, Moghaddam NA, Mesbahian G, Karimifard S, Afzali E. Targeted delivery of bee venom to A549 lung cancer cells by PEGylate liposomal formulation: an apoptotic investigation. Sci Rep 2024; 14:17302. [PMID: 39068207 PMCID: PMC11283506 DOI: 10.1038/s41598-024-68156-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024] Open
Abstract
This study focused on developing an optimal formulation of liposomes loaded with bee venom (BV) and coated with PEG (BV-Lipo-PEG). The liposomes were characterized using dynamic light scattering, transmission electron microscopy, and Fourier transform infrared spectroscopy. Among the liposomal formulations, F3 exhibited the narrowest size distribution with a low PDI value of 193.72 ± 7.35, indicating minimal agglomeration-related issues and a more uniform size distribution. BV-Lipo-PEG demonstrated remarkable stability over 3 months when stored at 4 °C. Furthermore, the release of the drug from the liposomal formulations was found to be pH-dependent. Moreover, BV-Lipo-PEG exhibited favorable entrapment efficiencies, with values reaching 96.74 ± 1.49. The anticancer potential of the liposomal nanocarriers was evaluated through MTT assay, flow cytometry, cell cycle analysis, and real-time experiments. The functionalization of the liposomal system enhanced endocytosis. The IC50 value of BV-Lipo-PEG showed a notable decrease compared to both the free drug and BV-Lipo alone, signifying that BV-Lipo-PEG is more effective in inducing cell death in A549 cell lines. BV-Lipo-PEG exhibited a higher apoptotic rate in A549 cell lines compared to other samples. In A549 cell lines treated with BV-Lipo-PEG, the expression levels of MMP-2, MMP-9, and Cyclin E genes decreased, whereas the expression levels of Caspase3 and Caspase9 increased. These findings suggest that delivering BV via PEGylated liposomes holds significant promise for the treatment of lung cancer.
Collapse
Affiliation(s)
- Samireh Badivi
- Department of Physics, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sara Kazemi
- Bogomolets National Medical University, Kyiv, Ukraine
| | - Mohammadmahdi Eskandarisani
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- School of Mechanical Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran
| | | | - Ghazal Mesbahian
- School of Pharmacy, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Karimifard
- Stem Cells Research Center, Tissue Engineering and Regenerative Medicine Institute, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Elham Afzali
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
6
|
Kopij G, Kiezun M, Gudelska M, Dobrzyn K, Zarzecka B, Rytelewska E, Zaobidna E, Swiderska B, Malinowska A, Rak A, Kaminski T, Smolinska N. Visfatin impact on the proteome of porcine luteal cells during implantation. Sci Rep 2024; 14:14625. [PMID: 38918475 PMCID: PMC11199572 DOI: 10.1038/s41598-024-65577-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024] Open
Abstract
Visfatin (VIS) is a hormone belonging to the adipokines' group secreted mainly by the adipose tissue. VIS plays a crucial role in the control of energy homeostasis, inflammation, cell differentiation, and angiogenesis. VIS expression was confirmed in the hypothalamic-pituitary-gonadal (HPG) axis structures, as well as in the uterus, placenta, and conceptuses. We hypothesised that VIS may affect the abundance of proteins involved in the regulation of key processes occurring in the corpus luteum (CL) during the implantation process in pigs. In the present study, we performed the high-throughput proteomic analysis (liquid chromatography with tandem mass spectrometry, LC-MS/MS) to examine the in vitro influence of VIS (100 ng/mL) on differentially regulated proteins (DRPs) in the porcine luteal cells (LCs) on days 15-16 of pregnancy (implantation period). We have identified 511 DRPs, 276 of them were up-regulated, and 235 down-regulated in the presence of VIS. Revealed DRPs were assigned to 162 gene ontology terms. Western blot analysis of five chosen DRPs, ADAM metallopeptidase with thrombospondin type 1 motif 1 (ADAMTS1), lanosterol 14-α demethylase (CYP51A1), inhibin subunit beta A (INHBA), notch receptor 3 (NOTCH3), and prostaglandin E synthase 2 (mPGES2) confirmed the veracity and accuracy of LC-MS/MS method. We indicated that VIS modulates the expression of proteins connected with the regulation of lipogenesis and cholesterologenesis, and, in consequence, may be involved in the synthesis of steroid hormones, as well as prostaglandins' metabolism. Moreover, we revealed that VIS affects the abundance of protein associated with ovarian cell proliferation, differentiation, and apoptosis, as well as CL new vessel formation and tissue remodelling. Our results suggest important roles for VIS in the regulation of ovarian functions during the peri-implantation period.
Collapse
Affiliation(s)
- Grzegorz Kopij
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marta Kiezun
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marlena Gudelska
- School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Kamil Dobrzyn
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Barbara Zarzecka
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Edyta Rytelewska
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Ewa Zaobidna
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Bianka Swiderska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics PAS in Warsaw, Warsaw, Poland
| | - Agata Malinowska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics PAS in Warsaw, Warsaw, Poland
| | - Agnieszka Rak
- Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Kraków, Poland
| | - Tadeusz Kaminski
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Nina Smolinska
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
| |
Collapse
|
7
|
Zhang HQ, Sun C, Xu N, Liu W. The current landscape of the antimicrobial peptide melittin and its therapeutic potential. Front Immunol 2024; 15:1326033. [PMID: 38318188 PMCID: PMC10838977 DOI: 10.3389/fimmu.2024.1326033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Melittin, a main component of bee venom, is a cationic amphiphilic peptide with a linear α-helix structure. It has been reported that melittin can exert pharmacological effects, such as antitumor, antiviral and anti-inflammatory effects in vitro and in vivo. In particular, melittin may be beneficial for the treatment of diseases for which no specific clinical therapeutic agents exist. Melittin can effectively enhance the therapeutic properties of some first-line drugs. Elucidating the mechanism underlying melittin-mediated biological function can provide valuable insights for the application of melittin in disease intervention. However, in melittin, the positively charged amino acids enables it to directly punching holes in cell membranes. The hemolysis in red cells and the cytotoxicity triggered by melittin limit its applications. Melittin-based nanomodification, immuno-conjugation, structural regulation and gene technology strategies have been demonstrated to enhance the specificity, reduce the cytotoxicity and limit the off-target cytolysis of melittin, which suggests the potential of melittin to be used clinically. This article summarizes research progress on antiviral, antitumor and anti-inflammatory properties of melittin, and discusses the strategies of melittin-modification for its future potential clinical applications in preventing drug resistance, enhancing the selectivity to target cells and alleviating cytotoxic effects to normal cells.
Collapse
Affiliation(s)
- Hai-Qian Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, Jilin, China
| | - Chengbiao Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, Jilin, China
| | - Na Xu
- Academic Affairs Office, Jilin Medical University, Jilin, Jilin, China
| | - Wensen Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, Jilin, China
| |
Collapse
|
8
|
Qu B, Yuan J, Liu X, Zhang S, Ma X, Lu L. Anticancer activities of natural antimicrobial peptides from animals. Front Microbiol 2024; 14:1321386. [PMID: 38298540 PMCID: PMC10827920 DOI: 10.3389/fmicb.2023.1321386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024] Open
Abstract
Cancer is the most common cause of human death worldwide, posing a serious threat to human health and having a negative impact on the economy. In the past few decades, significant progress has been made in anticancer therapies, but traditional anticancer therapies, including radiation therapy, surgery, chemotherapy, molecular targeted therapy, immunotherapy and antibody-drug conjugates (ADCs), have serious side effects, low specificity, and the emergence of drug resistance. Therefore, there is an urgent need to develop new treatment methods to improve efficacy and reduce side effects. Antimicrobial peptides (AMPs) exist in the innate immune system of various organisms. As the most promising alternatives to traditional drugs for treating cancers, some AMPs also have been proven to possess anticancer activities, which are defined as anticancer peptides (ACPs). These peptides have the advantages of being able to specifically target cancer cells and have less toxicity to normal tissues. More and more studies have found that marine and terrestrial animals contain a large amount of ACPs. In this article, we introduced the animal derived AMPs with anti-cancer activity, and summarized the types of tumor cells inhibited by ACPs, the mechanisms by which they exert anti-tumor effects and clinical applications of ACPs.
Collapse
Affiliation(s)
- Baozhen Qu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, China
| | - Jiangshui Yuan
- Department of Clinical Laboratory, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Xueli Liu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, China
- Medical Ethics Committee Office, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, China
| | - Shicui Zhang
- College of Life and Geographic Sciences, Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, Kashi University, Kashi, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xuezhen Ma
- Department of Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, China
| | - Linlin Lu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, China
| |
Collapse
|
9
|
Haque S, Hussain A, Joshi H, Sharma U, Sharma B, Aggarwal D, Rani I, Ramniwas S, Gupta M, Tuli HS. Melittin: a possible regulator of cancer proliferation in preclinical cell culture and animal models. J Cancer Res Clin Oncol 2023; 149:17709-17726. [PMID: 37919474 DOI: 10.1007/s00432-023-05458-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Melittin is a water-soluble cationic peptide derived from bee venom that has been thoroughly studied for the cure of different cancers. However, the unwanted interactions of melittin produce hemolytic and cytotoxic effects that hinder their therapeutic applications. To overcome the shortcomings, numerous research groups have adopted different approaches, including conjugation with tumor-targeting proteins, gene therapy, and encapsulation in nanoparticles, to reduce the non-specific cytotoxic effects and potentiate their anti-cancerous activity. PURPOSE This article aims to provide mechanistic insights into the chemopreventive activity of melittin and its nanoversion in combination with standard anti-cancer drugs for the treatment of cancer. METHODS We looked over the pertinent research on melittin's chemopreventive properties in online databases such as PubMed and Scopus. CONCLUSION In the present article, the anti-cancerous effects of melittin on different cancers have been discussed very nicely, as have their possible mechanisms of action to act against different tumors. Besides, it interacts with different signal molecules that regulate the diverse pathways of cancerous cells, such as cell cycle arrest, apoptosis, metastasis, angiogenesis, and inflammation. We also discussed the recent progress in the synergistic combination of melittin with standard anti-cancer drugs and a nano-formulated version of melittin for targeted delivery to improve its anticancer potential.
Collapse
Affiliation(s)
- Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, 45142, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 11022801, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, 13306, Ajman, United Arab Emirates
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, P.O. Box 345050, Dubai, United Arab Emirates
| | - Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Ujjawal Sharma
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Bunty Sharma
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Diwakar Aggarwal
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Isha Rani
- Department of Biochemistry, Maharishi Markendashwar College of Medical Sciences and Research (MMCMSR), Sadopur, Ambala, 134007, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India.
| |
Collapse
|
10
|
Hemida AS, Taie DM, El-Wahed MMA, Shabaan MI, Tantawy MS, Ehsan NA. EpCAM, Ki67, and ESM1 Predict Hepatocellular Carcinoma Recurrence After Liver Transplantation. Appl Immunohistochem Mol Morphol 2023; 31:596-606. [PMID: 37668411 DOI: 10.1097/pai.0000000000001150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 08/01/2023] [Indexed: 09/06/2023]
Abstract
Liver transplantation (LT) is a good therapeutic decision, cures hepatocellular carcinoma (HCC) and promotes survival of cases with unrespectable HCC based on the Milan criteria. HCC still recur after LT. Identifying high risk tissue markers that predict recurrence becomes important for LT decision-making. Little is known regarding use of tissue expression of epithelial cell adhesion molecule (EpCAM) to predict HCC recurrence. This study investigates the role of EpCAM, Ki67, and endothelial-cell-specific molecule-1 (ESM1) as immunohistochemical markers to predict HCC recurrence after LT. It included 52 explanted HCC tissues from Egyptian patients who had undergone LT for HCC according to Milan criteria. Immunohistochemical staining was done on paraffin-embedded formalin-fixed tissue sections. HCC recurrence occurred in 13.5% cases. Positive EpCAM expression in HCC, was significantly associated with HCC recurrence, ( P =0.011), achieving 71.43% sensitivity, 84.44% specificity and 78.8% accuracy in predicting recurrence. High Ki67 percentage was significantly associated with HCC recurrence, ( P =0.005), achieving 57.14% sensitivity, 86.67% specificity and 82.69% accuracy in predicting HCC recurrence. ESM1 showed significant association with HCC recurrence ( P =0.041), with 71.43% sensitivity, 71.11% specificity and 71.15% accuracy in predicting HCC recurrence. EpCAM score and Ki67 percentage showed positive correlation. In conclusion, it is suggested that large tumor size (≥3 cm), advanced pathologic staging and Ki67 could be stratified as high risk predictors of HCC recurrence after LT. Although higher classes of Child-Turcotte-Pugh classification, high serum alpha-fetoprotein, microvascular invasion, positive EpCAM and ESM1 are stratified as lower risk predictors of HCC recurrence after LT.
Collapse
Affiliation(s)
| | - Doha Maher Taie
- Department of Pathology, National Liver Institute, Menoufia University, Shebin El Kom, Egypt
| | | | | | - Mona Saeed Tantawy
- Department of Pathology, National Liver Institute, Menoufia University, Shebin El Kom, Egypt
| | - Nermine Ahmed Ehsan
- Department of Pathology, National Liver Institute, Menoufia University, Shebin El Kom, Egypt
| |
Collapse
|
11
|
Ullah A, Aldakheel FM, Anjum SI, Raza G, Khan SA, Tlak Gajger I. Pharmacological properties and therapeutic potential of honey bee venom. Saudi Pharm J 2023; 31:96-109. [PMID: 36685303 PMCID: PMC9845117 DOI: 10.1016/j.jsps.2022.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
Honey bee venom (BV) is a valuable product, and has a wide range of biological effects, and its use is rapidly increasing in apitherapy. Therefore, the current study, we reviewed the existing knowledge about BV composition and its numerous pharmacological properties for future research and use. Honey bee venom or apitoxin is produced in the venom gland in the honey bee abdomen. Adult bees use it as a primary colony defense mechanism. It is composed of many biologically active substances including peptides, enzymes, amines, amino acids, phospholipids, minerals, carbohydrates as well as some volatile components. Melittin and phospholipase A2 are the most important components of BV, having anti-cancer, antimicrobial, anti-inflammatory, anti-arthritis, anti-nociceptive and other curative potentials. Therefore, in medicine, BV has been used for centuries against different diseases like arthritis, rheumatism, back pain, and various inflammatory infections. Nowadays, BV or its components separately, are used for the treatment of various diseases in different countries as a natural medicine with limited side effects. Consequently, scientists as well as several pharmaceutical companies are trying to get a new understanding about BV, its substances and its activity for more effective use of this natural remedy in modern medicine.
Collapse
Affiliation(s)
- Amjad Ullah
- Department of Zoology, Kohat University of Science and Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Fahad Mohammed Aldakheel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia,Prince Sattam bin Abdulaziz Research Chair for Epidemiology and Public Health, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Syed Ishtiaq Anjum
- Department of Zoology, Kohat University of Science and Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan,Corresponding author.
| | - Ghulam Raza
- Department of Biological Sciences, University of Baltistan, Skardu, Pakistan
| | - Saeed Ahmad Khan
- Department of Pharmacy, Institute of Chemical and Pharmaceutical Sciences, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Ivana Tlak Gajger
- Department for Biology and Pathology of Fish and Bees, Faculty of Veterinary Medicine University of Zagreb, Zagreb, Croatia
| |
Collapse
|
12
|
Chen Q, Zheng X, Li Y, Ma B, Nie X, Li M, Liu Y, Xu J, Yang Y. Wnt5a regulates autophagy in Bacille Calmette-Guérin (BCG)-Infected pulmonary epithelial cells. Microb Pathog 2022; 173:105826. [PMID: 36243383 DOI: 10.1016/j.micpath.2022.105826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/10/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Autophagy functions as a critical process that can suppress the proliferation of Mycobacterium tuberculosis (Mtb) within infected host cells. Wnt5a is a secreted protein that plays a range of physiological functions, activating several signaling pathways and thereby controlling cellular responses to particular stimuli. The importance of Wnt5a as a regulator of protection against Mtb infection, however, has yet to be fully characterized. Here, changes in murine pulmonary epithelial-like TC-1 cell morphology, autophagy, the Wnt/Ca2+ signaling pathway, and the mTOR autophagy pathway were analyzed following infection with the Mtb model pathogen Bacille Calmette-Guerin (BCG) in order to understand the regulatory role of Wnt5a in this context. These experiments revealed that Wnt5a was upregulated and autophagy was enhanced in TC-1 cells infected with BCG, and Wnt5a overexpression was found to drive BCG-induced autophagy in these cells upon infection, whereas the inhibition or knockdown of Wnt5a yielded the opposite effect. At the mechanistic level, Wnt5a was found to mediate non-canonical Wnt/Ca2+ signaling and thereby inhibit mTOR-dependent pathway activation, promoting autophagic induction within BCG-infected TC-1 cells. These data offer new insight regarding how Wnt5a influences Mtb-induced autophagy within pulmonary epithelial cells, providing a foundation for further research exploring the immunological control of this infection through the modulation of autophagy.
Collapse
Affiliation(s)
- Qi Chen
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia, 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia, 750021, China
| | - Xuedi Zheng
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia, 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia, 750021, China
| | - Yong Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia, 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia, 750021, China
| | - Boli Ma
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia, 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia, 750021, China
| | - Xueyi Nie
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia, 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia, 750021, China
| | - Mengyuan Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia, 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia, 750021, China; Key Laboratory of Hui Ethnic Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China
| | - Yueyang Liu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia, 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia, 750021, China
| | - Jinrui Xu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia, 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia, 750021, China.
| | - Yi Yang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia, 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia, 750021, China.
| |
Collapse
|
13
|
Varol A, Sezen S, Evcimen D, Zarepour A, Ulus G, Zarrabi A, Badr G, Daştan SD, Orbayoğlu AG, Selamoğlu Z, Varol M. Cellular targets and molecular activity mechanisms of bee venom in cancer: recent trends and developments. TOXIN REV 2022; 41:1382-1395. [DOI: 10.1080/15569543.2021.2024576] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 12/24/2022]
Affiliation(s)
- Ayşegül Varol
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Serap Sezen
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul, Turkey
| | - Dilhan Evcimen
- Department of Molecular Biology and Genetics, Faculty of Science, Kotekli Campus, Mugla Sitki Kocman University, Mugla, Turkey
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Gönül Ulus
- Department of Biology, Faculty of Science, Ege University, Izmir, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Gamal Badr
- Department of Zoology, Faculty of Science, Laboratory of Immunology, Assiut University, Assiut, Egypt
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| | - Asya Gülistan Orbayoğlu
- Department of Molecular Biology and Genetics, Faculty of Science, Kotekli Campus, Mugla Sitki Kocman University, Mugla, Turkey
| | - Zeliha Selamoğlu
- Department Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Nigde, Turkey
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Kotekli Campus, Mugla Sitki Kocman University, Mugla, Turkey
| |
Collapse
|
14
|
All Roads Lead to Cathepsins: The Role of Cathepsins in Non-Alcoholic Steatohepatitis-Induced Hepatocellular Carcinoma. Biomedicines 2022; 10:biomedicines10102351. [PMID: 36289617 PMCID: PMC9598942 DOI: 10.3390/biomedicines10102351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Cathepsins are lysosomal proteases that are essential to maintain cellular physiological homeostasis and are involved in multiple processes, such as immune and energy regulation. Predominantly, cathepsins reside in the lysosomal compartment; however, they can also be secreted by cells and enter the extracellular space. Extracellular cathepsins have been linked to several pathologies, including non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC). NASH is an increasingly important risk factor for the development of HCC, which is the third leading cause of cancer-related deaths and poses a great medical and economic burden. While information regarding the involvement of cathepsins in NASH-induced HCC (NASH-HCC) is limited, data to support the role of cathepsins in either NASH or HCC is accumulating. Since cathepsins play a role in both NASH and HCC, it is likely that the role of cathepsins is more significant in NASH-HCC compared to HCC derived from other etiologies. In the current review, we provide an overview on the available data regarding cathepsins in NASH and HCC, argue that cathepsins play a key role in the transition from NASH to HCC, and shed light on therapeutic options in this context.
Collapse
|
15
|
Moreira Castro BF, Nunes da Silva C, Barbosa Cordeiro LP, Pereira de Freitas Cenachi S, Vasconcelos-Santos DV, Machado RR, Dias Heneine LG, Silva LM, Silva-Cunha A, Fialho SL. Low-dose melittin is safe for intravitreal administration and ameliorates inflammation in an experimental model of uveitis. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100107. [PMID: 35647524 PMCID: PMC9130091 DOI: 10.1016/j.crphar.2022.100107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 11/26/2022] Open
Abstract
Uveitis is a group of sight-threatening ocular inflammatory disorders, whose mainstay of therapy is associated with severe adverse events, prompting the investigation of alternative treatments. The peptide melittin (MEL) is the major component of Apis mellifera bee venom and presents anti-inflammatory and antiangiogenic activities, with possible application in ophthalmology. This work aims to investigate the potential of intravitreal MEL in the treatment of ocular diseases involving inflammatory processes, especially uveitis. Safety of MEL was assessed in retinal cells, chick embryo chorioallantoic membranes, and rats. MEL at concentrations safe for intravitreal administration showed an antiangiogenic activity in the chorioallantoic membrane model comparable to bevacizumab, used as positive control. A protective anti-inflammatory effect in retinal cells stimulated with lipopolysaccharide (LPS) was also observed, without toxic effects. Finally, rats with bacille Calmette-Guerin- (BCG) induced uveitis treated with intravitreal MEL showed attenuated disease progression and improvement of clinical, morphological, and functional parameters, in addition to decreased levels of proinflammatory mediators in the posterior segment of the eye. These effects were comparable to the response observed with corticosteroid treatment. Therefore, MEL presents adequate safety profile for intraocular administration and has therapeutic potential as an anti-inflammatory and antiangiogenic agent for ocular diseases. Melittin at low concentration is safe for intravitreal administration. The antiangiogenic effect of melittin on the chorioallantoic membrane model is comparable to bevacizumab. Melittin protects retinal cells from inflammatory response induced by lipopolysaccharide. Melittin improves clinical, functional and morphological signs of inflammation in rats with BCG-induced uveitis.
Collapse
|
16
|
Sui T, Qiu B, Qu J, Wang Y, Ran K, Han W, Peng X. Gambogic amide inhibits angiogenesis by suppressing VEGF/VEGFR2 in endothelial cells in a TrkA-independent manner. PHARMACEUTICAL BIOLOGY 2021; 59:1566-1575. [PMID: 34767490 PMCID: PMC8592593 DOI: 10.1080/13880209.2021.1998140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/09/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT Gambogic amide (GA-amide) is a non-peptide molecule that has high affinity for tropomyosin receptor kinase A (TrkA) and possesses robust neurotrophic activity, but its effect on angiogenesis is unclear. OBJECTIVE The study investigates the antiangiogenic effect of GA-amide on endothelial cells (ECs). MATERIALS AND METHODS The viability of endothelial cells (ECs) treated with 0.1, 0.15, 0.2, 0.3, 0.4, and 0.5 μM GA-amide for 48 h was detected by MTS assay. Wound healing and angiogenesis assays were performed on cells treated with 0.2 μM GA-amide. Chicken eggs at day 7 post-fertilization were divided into the dimethyl sulfoxide (DMSO), bevacizumab (40 μg), and GA-amide (18.8 and 62.8 ng) groups to assess the antiangiogenic effect for 3 days. mRNA and protein expression in cells treated with 0.1, 0.2, 0.4, 0.8, and 1.2 μM GA-amide for 6 h was detected by qRT-PCR and Western blots, respectively. RESULTS GA-amide inhibited HUVEC (IC50 = 0.1269 μM) and NhEC (IC50 = 0.1740 μM) proliferation, induced cell apoptosis, and inhibited the migration and angiogenesis at a relatively safe dose (0.2 μM) in vitro. GA-amide reduced the number of capillaries from 56 ± 14.67 (DMSO) to 20.3 ± 5.12 (62.8 ng) in chick chorioallantoic membrane (CAM) assay. However, inactivation of TrkA couldn't reverse the antiangiogenic effect of GA-amide. Moreover, GA-amide suppressed the expression of VEGF and VEGFR2, and decreased activation of the AKT/mTOR and PLCγ/Erk1/2 pathways. CONCLUSIONS Considering the antiangiogenic effect of GA-amide, it might be developed as a useful agent for use in clinical combination therapies.
Collapse
Affiliation(s)
- Tongtong Sui
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Bojun Qiu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jiaorong Qu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yuxin Wang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Kunnian Ran
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Wei Han
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xiaozhong Peng
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| |
Collapse
|
17
|
Ruiz-Blázquez P, Pistorio V, Fernández-Fernández M, Moles A. The multifaceted role of cathepsins in liver disease. J Hepatol 2021; 75:1192-1202. [PMID: 34242696 DOI: 10.1016/j.jhep.2021.06.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022]
Abstract
Proteases are the most abundant enzyme gene family in vertebrates and they execute essential functions in all living organisms. Their main role is to hydrolase the peptide bond within proteins, a process also called proteolysis. Contrary to the conventional paradigm, proteases are not only random catalytic devices, but can perform highly selective and targeted cleavage of specific substrates, finely modulating multiple essential cellular processes. Lysosomal protease cathepsins comprise 3 families of proteases that preferentially act within acidic cellular compartments, but they can also be found in other cellular locations. They can operate alone or as part of signalling cascades and regulatory circuits, playing important roles in apoptosis, extracellular matrix remodelling, hepatic stellate cell activation, autophagy and metastasis, contributing to the initiation, development and progression of liver disease. In this review, we comprehensively summarise current knowledge on the role of lysosomal cathepsins in liver disease, with a particular emphasis on liver fibrosis, non-alcoholic fatty liver disease and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Paloma Ruiz-Blázquez
- Institute of Biomedical Research of Barcelona, Spanish National Research Council (IIBB-CSIC), Barcelona, Spain
| | - Valeria Pistorio
- Institute of Biomedical Research of Barcelona, Spanish National Research Council (IIBB-CSIC), Barcelona, Spain; University of Naples Federico II, Naples, Italy
| | - María Fernández-Fernández
- Institute of Biomedical Research of Barcelona, Spanish National Research Council (IIBB-CSIC), Barcelona, Spain
| | - Anna Moles
- Institute of Biomedical Research of Barcelona, Spanish National Research Council (IIBB-CSIC), Barcelona, Spain; IDIBAPS, Barcelona, Spain; CiberEHD, Spain.
| |
Collapse
|
18
|
Regulatory interplay between microRNAs and WNT pathway in glioma. Biomed Pharmacother 2021; 143:112187. [PMID: 34560532 DOI: 10.1016/j.biopha.2021.112187] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022] Open
Abstract
Glioma is one of the most common neoplasms of the central nervous system with a poor survival. Due to the obstacles in treating this disease, a part of recent studies mainly focuses on identifying the underlying molecular mechanisms that contribute to its malignancy. Altering microRNAs (miRNAs) expression pattern has been identified obviously in many cancers. Through regulating various targets and signaling pathways, miRNAs play a pivotal role in cancer progression. As one of the essential signaling pathways, WNT pathway is dysregulated in many cancers, and a growing body of evidence emphasis its dysregulation in glioma. Herein, we provide a comprehensive review of miRNAs involved in WNT pathway in glioma. Moreover, we show the interplay between miRNAs and WNT pathway in regulating different processes such as proliferation, invasion, migration, radio/chemotherapy resistance, and epithelial-mesenchymal-transition. Then, we introduce several drugs and treatments against glioma, which their effects are mediated through the interplay of WNT pathway and miRNAs.
Collapse
|
19
|
Mansour GH, El-Magd MA, Mahfouz DH, Abdelhamid IA, Mohamed MF, Ibrahim NS, Hady A Abdel Wahab A, Elzayat EM. Bee venom and its active component Melittin synergistically potentiate the anticancer effect of Sorafenib against HepG2 cells. Bioorg Chem 2021; 116:105329. [PMID: 34544028 DOI: 10.1016/j.bioorg.2021.105329] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023]
Abstract
There are current attempts to find a safe substitute or adjuvant for Sorafenib (Sorf), the standard treatment for advanced hepatocellular carcinoma (HCC), as it triggers very harsh side effects and drug-resistance. The therapeutic properties of Bee Venom (BV) and its active component, Melittin (Mel), make them suitable candidates as potential anti-cancer agents per-se or as adjuvants for cancer chemotherapy. Hence, this study aimed to evaluate the combining effect of BV and Mel with Sorf on HepG2 cells and to investigate their molecular mechanisms of action. Docking between Mel and different tumor-markers was performed. The cytotoxicity of BV, Mel and Sorf on HepG2 and THLE-2 cells was conducted. Combinations of BV/Sorf and Mel/Sorf were performed in non-constant ratios on HepG2. Expression of major cancer-related genes and oxidative stress status was evaluated and the cell cycle was analyzed. The computational analysis showed that Mel can bind to and inhibit XIAP, Bcl2, MDM2, CDK2 and MMP12. Single treatments of BV, Mel and Sorf on HepG2 showed lower IC50than on THLE-2. All combinations revealed a synergistic effect at a combination index (CI) < 1. Significant upregulation (p < 0.05) of p53, Bax, Cas3, Cas7 and PTEN and significant downregulation (p < 0.05) of Bcl-2, Cyclin-D1, Rac1, Nf-κB, HIF-1a, VEGF and MMP9 were observed. The oxidative stress markers including MDA, SOD, CAT and GPx showed insignificant changes, while the cell cycle was arrested at G2/M phase. In conclusion, BV and Mel have a synergistic anticancer effect with Sorf on HepG2 that may represent a new enhancing strategy for HCC treatment.
Collapse
Affiliation(s)
- Ghada H Mansour
- Biotechnology, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Mohammed A El-Magd
- Anatomy Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Dalia H Mahfouz
- Biotechnology, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ismail A Abdelhamid
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Magda F Mohamed
- Biochemistry Branch, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; Chemistry Department, College of Science and Arts, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Nada S Ibrahim
- Biochemistry Branch, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | | | - Emad M Elzayat
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
| |
Collapse
|
20
|
Guha S, Ferrie RP, Ghimire J, Ventura CR, Wu E, Sun L, Kim SY, Wiedman GR, Hristova K, Wimley WC. Applications and evolution of melittin, the quintessential membrane active peptide. Biochem Pharmacol 2021; 193:114769. [PMID: 34543656 DOI: 10.1016/j.bcp.2021.114769] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022]
Abstract
Melittin, the main venom component of the European Honeybee, is a cationic linear peptide-amide of 26 amino acid residues with the sequence: GIGAVLKVLTTGLPALISWIKRKRQQ-NH2. Melittin binds to lipid bilayer membranes, folds into amphipathic α-helical secondary structure and disrupts the permeability barrier. Since melittin was first described, a remarkable array of activities and potential applications in biology and medicine have been described. Melittin is also a favorite model system for biophysicists to study the structure, folding and function of peptides and proteins in membranes. Melittin has also been used as a template for the evolution of new activities in membranes. Here we overview the rich history of scientific research into the many activities of melittin and outline exciting future applications.
Collapse
Affiliation(s)
- Shantanu Guha
- University of Texas Health Science Center at Houston, Department of Microbiology and Molecular Genetics, Houston, TX, USA
| | - Ryan P Ferrie
- Tulane University School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, LA, USA
| | - Jenisha Ghimire
- Tulane University School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, LA, USA
| | - Cristina R Ventura
- Seton Hall University, Department of Chemistry and Biochemistry, South Orange, NJ, USA
| | - Eric Wu
- Tulane University School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, LA, USA
| | - Leisheng Sun
- Tulane University School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, LA, USA
| | - Sarah Y Kim
- Duke University, Department of Biomedical Engineering, Durham, NC, USA
| | - Gregory R Wiedman
- Seton Hall University, Department of Chemistry and Biochemistry, South Orange, NJ, USA
| | - Kalina Hristova
- Johns Hopkins University, Department of Materials Science and Engineering, Baltimore, MD, USA.
| | - Wimley C Wimley
- University of Texas Health Science Center at Houston, Department of Microbiology and Molecular Genetics, Houston, TX, USA.
| |
Collapse
|
21
|
Sultana A, Luo H, Ramakrishna S. Antimicrobial Peptides and Their Applications in Biomedical Sector. Antibiotics (Basel) 2021; 10:1094. [PMID: 34572676 PMCID: PMC8465024 DOI: 10.3390/antibiotics10091094] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 01/10/2023] Open
Abstract
In a report by WHO (2014), it was stated that antimicrobial resistance is an arising challenge that needs to be resolved. This resistance is a critical issue in terms of disease or infection treatment and is usually caused due to mutation, gene transfer, long-term usage or inadequate use of antimicrobials, survival of microbes after consumption of antimicrobials, and the presence of antimicrobials in agricultural feeds. One of the solutions to this problem is antimicrobial peptides (AMPs), which are ubiquitously present in the environment. These peptides are of concern due to their special mode of action against a wide spectrum of infections and health-related problems. The biomedical field has the highest need of AMPs as it possesses prominent desirable activity against HIV-1, skin cancer, breast cancer, in Behcet's disease treatment, as well as in reducing the release of inflammatory cells such as TNFα, IL-8, and IL-1β, enhancing the production of anti-inflammatory cytokines such as IL-10 and GM-CSF, and in wound healing properties. This review has highlighted all the major functions and applications of AMPs in the biomedical field and concludes the future potential of AMPs.
Collapse
Affiliation(s)
- Afreen Sultana
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore;
| | - Hongrong Luo
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China;
| | - Seeram Ramakrishna
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore;
| |
Collapse
|
22
|
Chen HY, Zhou ZY, Luo YL, Luo Q, Fan JT. Knockdown of YKL-40 inhibits angiogenesis through regulation of VEGF/VEGFR2 and ERK1/2 signaling in endometrial cancer. Cell Biol Int 2021; 45:2557-2566. [PMID: 34498339 DOI: 10.1002/cbin.11699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 11/12/2022]
Abstract
Studies have demonstrated that small interfering RNA (siRNA) targeting YKL-40 (siYKL-40) inhibits the proliferation, migration, invasion, and induces antiapoptotic abilities of endometrial cancer (EC) HEC-1A cells. However, its effect on angiogenesis is unclear. The present study aimed to investigate the role of YKL-40 in endometrial cancer and the related molecular mechanisms. YKL-40 was knocked down by transfection with siYKL-40 and the effects on angiogenesis, cell viability, and signaling pathways were investigated. The results showed that siYKL-40 inhibited VEGFA levels and tube formation in endothelial cells. Additionally, inhibition of YKL-40 decreased the expression levels of vascular endothelial growth factor (VEGF), phosphorylated vascular endothelial growth factor receptor 2 (pVEGFR2), and phosphorylated extracellular signal-regulated kinases 1 and 2 (pERK1/2). Furthermore, a nude mice xenograft model of EC showed that siYKL-40 inhibited tumor growth. Inhibition of YKL-40 led to suppression of angiogenesis and reduction of microvessel density through VEGF/VEGFR2 and ERK1/2 signaling in endometrial cancer cells. Taken together, this study demonstrated novel molecular mechanisms for role of YKL-40 in EC.
Collapse
Affiliation(s)
- Hong-Yan Chen
- Department of Obstetrics and Gynecology, Wuming Hospital of Guangxi Medical University, Nanning, Guangxi Province, P. R. China
| | - Zhao-Yu Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, P. R. China
| | - Yan-Lu Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, P. R. China
| | - Qin Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, P. R. China
| | - Jiang-Tao Fan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, P. R. China
| |
Collapse
|
23
|
Mir Hassani Z, Nabiuni M, Parivar K, Abdirad S, Karimzadeh L. Melittin inhibits the expression of key genes involved in tumor microenvironment formation by suppressing HIF-1α signaling in breast cancer cells. Med Oncol 2021; 38:77. [PMID: 34076777 DOI: 10.1007/s12032-021-01526-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/21/2021] [Indexed: 11/29/2022]
Abstract
HIF-1α has critical roles in the formation of tumor microenvironment by regulating genes involved in angiogenesis and anaerobic respiration. TME fuels tumors' growth and metastasis and presents therapy with several challenges. Therefore, we aimed to investigate if Melittin disrupts HIF-1α signaling pathway in breast adenocarcinoma cell line MDA-MB-231. Breast adenocarcinoma cell line MDA-MB-231 was cultured in the presence of different doses of Melittin, and MTT assay was carried out to measure Melittin's cytotoxic effects. Cells were exposed to 5% O2 to mimic hypoxic conditions and Melittin. Western blot was used to measure HIF-1α protein levels. Gene expression analysis was performed using real-time PCR to measure relative mRNA abundance of genes involved in tumor microenvironment formation. Our results revealed that Melittin effectively inhibits HIF-1α at transcriptional and translational/post-translational level. HIF-1α protein and mRNA level were significantly decreased in Melittin-treated groups. It is found that inhibition of HIF-1α by Melittin is through downregulation of NFκB gene expression. Furthermore, gene expression analysis showed a downregulation in VEGFA and LDHA expression due to inhibition of HIF-1α protein by Melittin. In addition, cell toxicity assay showed that Melittin inhibits the growth of MDA-MB-231 cell line through activation of extrinsic and intrinsic apoptotic pathways by upregulating TNFA and BAX expression. Melittin suppresses the expression of genes responsible for formation of TME physiological hallmarks by suppressing HIF-1α signaling pathway. Our results suggest that Melittin can modulate tumor microenvironment by inhibition of VEGFA and LDHA.
Collapse
Affiliation(s)
- Zabih Mir Hassani
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, 31979-37551, Tehran, Iran
| | - Mohammad Nabiuni
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, 31979-37551, Tehran, Iran.
| | - Kazem Parivar
- Department of Biology, Faculty of Life Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Somayeh Abdirad
- Department of Plant Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Latifeh Karimzadeh
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
24
|
Yu R, Wang M, Wang M, Han L. Melittin suppresses growth and induces apoptosis of non-small-cell lung cancer cells via down-regulation of TGF-β-mediated ERK signal pathway. ACTA ACUST UNITED AC 2020; 54:e9017. [PMID: 33331417 PMCID: PMC7747877 DOI: 10.1590/1414-431x20209017] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 09/15/2020] [Indexed: 02/06/2023]
Abstract
The purpose of this study was to investigate the anti-cancer effect of melittin on growth, migration, invasion, and apoptosis of non-small-cell lung cancer (NSCLC) cells. This study also explored the potential anti-cancer mechanism of melittin in NSCLC cells. The results demonstrated that melittin suppressed growth, migration, and invasion, and induced apoptosis of NSCLC cells in vitro. Melittin increased pro-apoptotic caspase-3 and Apaf-1 gene expression. Melittin inhibited tumor growth factor (TGF)-β expression and phosphorylated ERK/total ERK (pERK/tERK) in NSCLC cells. However, TGF-β overexpression (pTGF-β) abolished melittin-decreased TGF-β expression and pERK/tERK in NSCLC cells. Treatment with melittin suppressed tumor growth and prolonged mouse survival during the 120-day observation in vivo. Treatment with melittin increased TUNEL-positive cells and decreased expression levels of TGF-β and ERK in tumor tissue compared to the control group. In conclusion, the findings of this study indicated that melittin inhibited growth, migration, and invasion, and induced apoptosis of NSCLC cells through down-regulation of TGF-β-mediated ERK signaling pathway, suggesting melittin may be a promising anti-cancer agent for NSCLC therapy.
Collapse
Affiliation(s)
- Renzhi Yu
- Department of Respiratory Medicine, Mudanjiang Medical University Affiliated Hongqi Hospital, Mudanjiang, China
| | - Miao Wang
- Department of Respiratory Medicine, Mudanjiang Medical University Affiliated Hongqi Hospital, Mudanjiang, China
| | - Minghuan Wang
- Community Health Service Center, Mudanjiang Medical University Affiliated Hongqi Hospital, Mudanjiang, China
| | - Lei Han
- Department of Respiratory Medicine, Mudanjiang Medical University Affiliated Hongqi Hospital, Mudanjiang, China
| |
Collapse
|
25
|
Abdou AG, Holah NS, Elazab DS, El-Gendy WG, Badr MT, Al-Sharaky DR. Hepatocellular Carcinoma Score and Subclassification Into Aggressive Subtypes Using Immunohistochemical Expression of p53, β-Catenin, CD133, and Ki-67. Appl Immunohistochem Mol Morphol 2020; 29:20-33. [PMID: 32287076 DOI: 10.1097/pai.0000000000000840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary hepatic malignancy in adults. Several studies have classified HCC into molecular subtypes aiming at detecting aggressive subtypes. The aim of the present study was to investigate the role of p53, β-catenin, CD133, and Ki-67 in subclassification of HCC into different aggressive subtypes and the correlation between those markers and the clinicopathologic characteristics of HCC patients. This retrospective study was conducted on paraffin-embedded blocks of 114 HCC specimens. Tissue microarray was constructed and immunostaining for p53, β-catenin, CD133, and Ki-67 was performed and HCC score was formulated. P53 expression was associated with old age (P=0.028), large tumor size (P=0.019), poorly differentiated HCC (P=0.012), hepatitis B virus (HBV) positivity (P=0.032), and hepatitis C virus (HCV) negativity (P =0.046). β-catenin expression was associated with small sized tumors (P=0.005), HBV negativity (P=0.027), early-staged tumors (P=0.029), and prolonged recurrence-free survival (P=0.045). High percentage of CD133 expression was associated with old patients (P=0.035) and HBV positivity (P= 0.045). Ki-67 expression was associated with large tumor size (P= 0.049), vascular invasion (P= 0.05), old age (P=0.035), and previous treatment of HCV by direct acting antiviral agents (P=0.005). Cases with high HCC score showed significant association with old patients (P=0.002), previous treatment of HCV by direct acting antiviral agents (P<0.001), large tumor size (P<0.001), and poorly differentiated tumors (P= 0.009). The proposed HCC score can divide HCC patients into subtypes necessitating tailoring of treatment strategy according to this proposed score to target and optimally treat the aggressive subtypes. This score needs to be further validated on large number of patients with longer follow-up period.
Collapse
Affiliation(s)
| | | | - Dina S Elazab
- National Liver Institute, Menoufia University, Shebein Elkom, Egypt
| | - Walaa G El-Gendy
- National Liver Institute, Menoufia University, Shebein Elkom, Egypt
| | - Mohammed T Badr
- National Liver Institute, Menoufia University, Shebein Elkom, Egypt
| | | |
Collapse
|
26
|
Liu T, Sun F, Cui J, Zheng S, Li Z, Guo D, Tian X, Zhu Z, Zheng W, Wang Y, Wang W. Morroniside enhances angiogenesis and improves cardiac function following acute myocardial infarction in rats. Eur J Pharmacol 2020; 872:172954. [PMID: 31991140 DOI: 10.1016/j.ejphar.2020.172954] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 02/07/2023]
Abstract
Angiogenesis is critical for re-establishing blood supply to the ischemic myocardium after acute myocardial infarction (AMI). This study aimed to investigate the effects of morroniside on angiogenesis after AMI and explored associated proangiogenic mechanisms. A rat model of AMI was established by ligation of the left anterior descending coronary artery followed by administration of three doses of morroniside. Immunofluorescence staining was performed to identify newly generated endothelial cells and arterioles. The protein expression levels associated with angiogenesis were examined by western blots. Echocardiography was used to examine cardiac function. Our data revealed that morroniside promoted angiogenesis and improved cardiac function in rats with AMI. The proangiogenic effect of morroniside might be mediated by the VEGFA/VEGF receptor 2 signaling pathway.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing, 100053, PR China
| | - Fangling Sun
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing, 100053, PR China
| | - Jiamin Cui
- Department of Pharmacy, Zunyi Medical University, Guizhou, 563000, PR China
| | - Songyang Zheng
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing, 100053, PR China
| | - Zijie Li
- Department of Pharmacy, Zunyi Medical University, Guizhou, 563000, PR China
| | - Deyu Guo
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing, 100053, PR China
| | - Xin Tian
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing, 100053, PR China
| | - Zixin Zhu
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing, 100053, PR China
| | - Wenrong Zheng
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing, 100053, PR China
| | - Yufeng Wang
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing, 100053, PR China
| | - Wen Wang
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing, 100053, PR China; Beijing Institute for Brain Disorders, Beijing, 100069, PR China.
| |
Collapse
|
27
|
Li CY, Wang Q, Wang XM, Li GX, Shen S, Wei XL. Gambogic acid exhibits anti-metastatic activity on malignant melanoma mainly through inhibition of PI3K/Akt and ERK signaling pathways. Eur J Pharmacol 2019; 864:172719. [PMID: 31586634 DOI: 10.1016/j.ejphar.2019.172719] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 12/14/2022]
Abstract
Gambogic acid (GA) is a potential anti-cancer compound that is extracted from the resin of Garciania hanburyi. The present study was designed to evaluate the anti-metastatic effect of GA on melanoma cell lines in vitro and to explore the underlying mechanism. The anti-proliferative activity of GA on melanoma cells was assessed by CCK-8 assay. The Wound-healing, transwell, adhesion, and tube formation assays were performed to examine the inhibition of GA on the cell's migration, invasion, adhesion, and angiogenesis capacities, respectively. Enzymatic activity of MMP-2 and MMP-9 were detected by gelatin zymography assay. Protein expressions regulated by GA treatment were tested by Western blot assay. The present results showed that GA significantly inhibited the proliferation of highly metastatic melanoma A375, B16-F10 cells and human umbilical vein endothelial cells (HUVECs) in time- and doses-dependent manners. Furthermore, GA significantly inhibited the migratory, invasive and adhesive properties of A375 and B16-F10 cells, and tube-forming potential of HUVECs at sub-IC50 concentrations, where no significant cytotoxicity was observed. Mechanistically, GA treatment suppressed the EMT and angiogenesis processes and reduced the enzymatic activity of MMP-2 and MMP-9. Moreover, abnormal PI3K/Akt and ERK signaling pathways in A375 and B16-F10 cells and HUVECs were notably suppressed by GA treatment. Collectively, our results suggest that GA exerts anti-metastasis activity in melanoma cells by suppressing the EMT and angiogenesis through the PI3K/Akt and ERK signaling pathways, and might be used as a phytomedicine against metastatic melanoma.
Collapse
Affiliation(s)
- Chun-Yu Li
- Department of Integrated Chinese Traditional and Western Medicine, International Medical School, Tianjin Medical University, No. 22 Qixiangtai, Heping District, Tianjin, 300070, China.
| | - Qi Wang
- Department of Oncology, Tongji University Affiliated Shanghai Pulmonary Hospital, No. 507 Zhengmin, Yangpu District, Shanghai, 200433, China
| | - Xiao-Min Wang
- Department of Integrated Chinese Traditional and Western Medicine, International Medical School, Tianjin Medical University, No. 22 Qixiangtai, Heping District, Tianjin, 300070, China
| | - Guo-Xia Li
- Department of Integrated Chinese Traditional and Western Medicine, International Medical School, Tianjin Medical University, No. 22 Qixiangtai, Heping District, Tianjin, 300070, China
| | - Shen Shen
- Department of Integrated Chinese Traditional and Western Medicine, International Medical School, Tianjin Medical University, No. 22 Qixiangtai, Heping District, Tianjin, 300070, China
| | - Xiao-Lu Wei
- Department of Integrated Chinese Traditional and Western Medicine, International Medical School, Tianjin Medical University, No. 22 Qixiangtai, Heping District, Tianjin, 300070, China
| |
Collapse
|
28
|
Sakunrangsit N, Ketchart W. Plumbagin inhibits cancer stem-like cells, angiogenesis and suppresses cell proliferation and invasion by targeting Wnt/β-catenin pathway in endocrine resistant breast cancer. Pharmacol Res 2019; 150:104517. [PMID: 31693936 DOI: 10.1016/j.phrs.2019.104517] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 10/02/2019] [Accepted: 10/29/2019] [Indexed: 12/13/2022]
Abstract
Fifty percent of advanced stage ER-positive breast cancer patients develop endocrine resistance. Aberrant activation of Wnt/β-catenin is associated with stem-like phenotypes and epithelial-mesenchymal transition (EMT) process which confers resistance to endocrine therapy. Cancer stem-like cells (CSLCs) can be a vital source of proangiogenic factors including fibroblast growth factor 2 (FGF2) which drives angiogenesis and leads to tumor growth and metastasis. Therefore, targeting Wnt and FGF2 may provide effective treatment for endocrine resistant breast cancer. Our previous in vitro study reported that plumbagin (PLB) was a potent anticancer agent and was able to inhibit EMT in endocrine-resistant cells. This study aimed to further investigate the inhibitory effects of PLB on cancer stem-like phenotypes, tumorigenicity and angiogenesis. The results demonstrated Wnt/β-catenin signaling was activated and was able to form mammospheres with increased cancer stem cell markers (ALDH1, NANOG, and OCT4) in endocrine-resistant cells. PLB significantly inhibited colony-forming, mammosphere formation and decreased cancer stem cell markers. The inhibitory effects of PLB on cell proliferation and invasion were mediated by Wnt signaling pathway. PLB also significantly reduced Wnt responsive genes and β-catenin. Moreover, PLB treatment at doses of 2 and 4 mg/kg/day inhibited tumor growth, angiogenesis and metastasis without any adverse effects on body weight and blood coagulation in orthotopic xenograft nude mice. In conclusion, PLB exerted anti-cancer activity and eliminated stem-like properties by attenuating Wnt/β-catenin signaling and FGF2 expression. These findings suggest that PLB could be a promising agent to treat endocrine resistant breast cancer.
Collapse
Affiliation(s)
- Nithidol Sakunrangsit
- Overcoming Cancer Drug Resistance Research Unit, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wannarasmi Ketchart
- Overcoming Cancer Drug Resistance Research Unit, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
29
|
An overview of the bioactive compounds, therapeutic properties and toxic effects of apitoxin. Food Chem Toxicol 2019; 134:110864. [PMID: 31574265 DOI: 10.1016/j.fct.2019.110864] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022]
|
30
|
Tompa M, Nagy A, Komoly S, Kalman B. Wnt pathway markers in molecular subgroups of glioblastoma. Brain Res 2019; 1718:114-125. [DOI: 10.1016/j.brainres.2019.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/20/2022]
|
31
|
Xia F, Gao F, Yao H, Zhang G, Gao B, Lu Y, Wang X, Qian Y. Identification of angiogenesis-inhibiting peptides from Chan Su. Protein Expr Purif 2019; 163:105445. [PMID: 31252070 DOI: 10.1016/j.pep.2019.105445] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 01/10/2023]
Abstract
Chan Su is a traditional medicine prepared from toxic secretions from the auricular and skin glands of Chinese toads. Previous studies show that active components in Chan Su can inhibit the proliferation of tumor cells. To study the effect of Chan Su peptides on angiogenesis, fresh Chan Su was collected and its component peptides were isolated by an extraction and precipitation method. A high-performance liquid chromatography (HPLC) fingerprint of the Chan Su component peptides revealed that there were more than 18 peptide component peaks. We demonstrate that Chan Su peptides inhibit angiogenesis in vitro by inhibiting human umbilical vein endothelial cell (HUVEC) proliferation and tube formation in a dose-dependent manner. Western blots indicated that Chan Su peptides inhibited the protein expression of VEGF165 and Ras, leading us to conclude that Chan Su peptide components exert anti-angiogenic effects by suppressing the VEGF165-VEGFR2-Ras signalling pathway. Finally, we identified the partial amino acid sequences of seven Chan Su peptides using the shotgun proteomics method.
Collapse
Affiliation(s)
- Fengyan Xia
- Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China; The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Fei Gao
- Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China; The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| | - Huili Yao
- Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Guobing Zhang
- Department of Pharmacy, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, 310014, China
| | - Bo Gao
- Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Ying Lu
- Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Xiangjun Wang
- Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China; The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Yongchang Qian
- Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China; The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
32
|
Melittin Inhibits Hypoxia-Induced Vasculogenic Mimicry Formation and Epithelial-Mesenchymal Transition through Suppression of HIF-1α/Akt Pathway in Liver Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9602935. [PMID: 31057657 PMCID: PMC6463627 DOI: 10.1155/2019/9602935] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/05/2019] [Indexed: 12/19/2022]
Abstract
In this study, we investigated whether melittin could suppress hypoxia-induced vasculogenic mimicry (VM) formation in liver cancer and explored the underlying mechanisms. Melittin significantly inhibited the proliferation of liver cancer cells with or without CoCl2 presence. Melittin also significantly inhibited CoCl2-induced migration, invasion, and VM formation of liver cancer cells. CoCl2 treatment suppressed the expression of E-cadherin and elevated the expression of N-cadherin and Vimentin. Melittin reversed the changes in the protein and mRNA levels of these epithelial-mesenchymal transition (EMT) markers. CoCl2-induced accumulation of HIF-1α increased the level of phosphorylated Akt and upregulated the expression of VEGF and MMP-2/9. Melittin decreased the HIF-1α level and thereby suppressed the levels of p-Akt, VEGF, and MMP-2/9. In addition, the inhibitor of PI3K/Akt also suppressed CoCl2-induced EMT and liver cancer cells migration, and the activator of Akt, SC-79, partly blocked the effect of melittin on CoCl2-induced EMT and liver cancer cells migration. In the xenograft tumor model in nude mice, melittin treatment significantly suppressed the tumor growth, VM formation, and HIF-1α expression in the tumor. In conclusion, this study indicates melittin may inhibit hypoxia-induced VM formation and EMT in liver cancer through inhibiting HIF-1α/Akt pathway.
Collapse
|
33
|
Long noncoding RNA OIP5-AS1 targets Wnt-7b to affect glioma progression via modulation of miR-410. Biosci Rep 2019; 39:BSR20180395. [PMID: 30498093 PMCID: PMC6328889 DOI: 10.1042/bsr20180395] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 11/13/2018] [Accepted: 11/17/2018] [Indexed: 12/23/2022] Open
Abstract
The present study was undertaken to investigate the underlying mechanisms of long noncoding RNA OIP5-AS1 via regulating miR-410 to modulate Wnt-7b in the progression of glioma. To address this problem, we measured the expression of OIP5-AS1 and miR-410 in glioma tissues by qRT-PCR. Glioma U87 cells were transfected with OIP5-AS1 siRNA or miR-410 inhibitors. The targeting relationships among miR-410, OIP5-AS1 and Wnt-7b were verified by luciferase reporter assays. Western blotting was employed to determine the expression of Wnt-7b/β-catenin pathway-related proteins, while MTT, flow cytometry, Transwell assays and wound-healing assays were used to measure the biological characteristics of glioma cells. The results showed that OIP5-AS1 expression was higher and miR-410 was lower in glioma tissues. Luciferase reporter assays confirmed a targeting relationship between OIP5-AS1 and miR-410, as well as between miR-410 and Wnt-7b. Silencing OIP5-AS1 reduced cell proliferation, invasion and migration of glioma U87 cells and led to depressed expression levels of miR-410, Wnt-7b, p-β-catenin, GSK-3β-pS9, c-Myc and cyclin D1. Furthermore, down-regulation of OIP5-AS1 induced G0/G1 phase cell cycle arrest and apoptosis of glioma cells. Inhibitors of miR-410 abolished the biological effects of OIP5-AS1 siRNA in glioma cells. In vivo, OIP5-AS1 knockdown also inhibited tumor growth. Taken together, this research suggested that silencing OIP5-AS1 may specifically block the Wnt-7b/β-catenin pathway via targeted up-regulating miR-410, thereby inhibiting growth, invasion and migration while promoting apoptosis in glioma cells.
Collapse
|
34
|
Tipgomut C, Wongprommoon A, Takeo E, Ittiudomrak T, Puthong S, Chanchao C. Melittin Induced G1 Cell Cycle Arrest and Apoptosis in Chago-K1 Human Bronchogenic Carcinoma Cells and Inhibited the Differentiation of THP-1 Cells into Tumour- Associated Macrophages. Asian Pac J Cancer Prev 2018; 19:3427-3434. [PMID: 30583665 PMCID: PMC6428562 DOI: 10.31557/apjcp.2018.19.12.3427] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 11/12/2018] [Indexed: 12/21/2022] Open
Abstract
Background: Bronchogenic carcinoma (lung cancer) is one of the leading causes of death. Although many compounds isolated from natural products have been used to treat it, drug resistance is a serious problem, and alternative anti-cancer drugs are required. Here, melittin from Apis mellifera venom was used, and its effects on bronchogenic carcinoma cell proliferation and tumour-associated macrophage differentiation were evaluated. Methods: The half maximal inhibitory concentration (IC50) of melittin was measured by MTT. Cell death was observed by annexin V and propidium iodide (PI) co-staining followed by flow cytometry. Cell cycle arrest was revealed by PI staining and flow cytometry. To investigate the tumour microenvironment, differentiation of circulating monocytes (THP-1) into tumour-associated macrophages (TAMs) was assayed by sandwich-ELISA and interleukin (IL)-10 levels were determined. Cell proliferation and migration was observed by flat plate colony formation. Secretion of vascular endothelial growth factor (VEGF) was detected by ELISA. The change in expression levels of CatS, Bcl-2, and MADD was measured by quantitative RT-PCR. Results: Melittin was significantly more cytotoxic (p < 0.01) to human bronchogenic carcinoma cells (ChaGo-K1) than to the control human lung fibroblasts (Wi-38) cells. At 2.5 μM, melittin caused ChaGo-K1 cells to undergo apoptosis and cell cycle arrest at the G1 phase. The IL-10 levels showed that melittin significantly inhibited the differentiation of THP-1 cells into TAMs (p < 0.05) and reduced the number of colonies formed in the treated ChaGo-K1 cells compared to the untreated cells. However, melittin did not affect angiogenesis in ChaGo-K1 cells. Unlike MADD, Bcl-2 was up-regulated significantly (p < 0.05) in melittin-treated ChaGo-K1 cells. Conclusion: Melittin can be used as an alternative agent for lung cancer treatment because of its cytotoxicity against ChaGo-K1 cells and the inhibition of differentiation of THP-1 cells into TAMs.
Collapse
Affiliation(s)
- Chartsiam Tipgomut
- Department of Biology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, Thailand.
| | | | | | | | | | | |
Collapse
|
35
|
Non-catalytic region of tyrosine kinase adaptor protein 2 (NCK2) pathways as factor promoting aggressiveness in ovarian cancer. Int J Biol Markers 2018; 33:124-131. [PMID: 29218693 DOI: 10.5301/ijbm.5000264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND In this study we investigated the function of the non-catalytic region of tyrosine kinase adaptor protein 2 (NCK2) and its correlation with ITGB1 and ITGB4 integrins in driving ovarian cancer (OvCa) aggressiveness. We also evaluated whether NCK2 may influence prognosis in OvCa patients. METHODS Nanofluidic technology was used to analyze expression of NCK2 in 332 OvCa patients. To evaluate mRNA expression of NCK2, integrins and VEGFA in OvCa cell lines, qRT-PCR was performed. Stable NCK2 overexpression was obtained in OVCAR3. qRT-PCR and Western blot were performed to evaluate expression changes of VEGFA, vimentin, ITGB1, ITGB4, MMP2 and MMP9 under normoxia and hypoxia conditions. Coimmunoprecipitation (Co-IP) was performed in the A2780 cell line to study the interaction between NCK2 and proteins of interest. To investigate whether NCK2 can influence anchorage-independent growth, a soft agar assay was completed. Transwell invasion assay was performed on stable-transfected OVCAR-3 cell lines. RESULTS Nanofluidic data showed NCK2 can play an important role as a factor promoting tumor aggressiveness and survival in OvCa. This role was also linked to the behaviors of ITGB1 and ITGB4. Moreover, in cells overexpressing NCK2, the expression of vimentin, MMP2, MMP9, VEGFA and ITGB1, but not of ITGB4 was induced by hypoxia. Co-IP showed that NCK2 can directly bind ITGB1, but not VEGFA. NCK2 may be involved in mediating cell-extracellular matrix interactions in OvCa cells by influencing tumor aggressiveness. CONCLUSIONS This study provides evidence of a possible role of NCK2 as biomarker of OvCa progression.
Collapse
|
36
|
Chen CT, Hsieh MJ, Hsieh YH, Hsin MC, Chuang YT, Yang SF, Yang JS, Lin CW. Sulforaphane suppresses oral cancer cell migration by regulating cathepsin S expression. Oncotarget 2018; 9:17564-17575. [PMID: 29707130 PMCID: PMC5915138 DOI: 10.18632/oncotarget.24786] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/28/2018] [Indexed: 12/30/2022] Open
Abstract
Sulforaphane has been demonstrated to exert numerous biological effects, such as neuroprotective, anti-inflammatory, and anticancer effects. However, the detailed effects of sulforaphane on human oral cancer cell migration and the underlying mechanisms remain unclear. In this study, we observed that sulforaphane attenuated SCC-9 and SCC-14 cell motility and invasiveness by reducing cathepsin S expression. Moreover, sulforaphane increased microtubule-associated protein 1 light chain 3 (LC3) conversion, and the knockdown of LC3 by siRNA increased cell migration ability. Regarding the mechanism, sulforaphane inhibited the cell motility of oral cancer cells through the extracellular signal-regulated kinase (ERK) pathway, which in turn reversed cell motility. In conclusion, sulforaphane suppress cathepsin S expression by inducing autophage through ERK signaling pathway. Thus, cathepsin S and LC3 may be new targets for oral cancer treatment.
Collapse
Affiliation(s)
- Chang-Tai Chen
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Ju Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Min-Chieh Hsin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Ting Chuang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jia-Sin Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
37
|
Sui H, Wang K, Xie R, Li X, Li K, Bai Y, Wang X, Bai B, Chen D, Li J, Shen B. NDV-D90 suppresses growth of gastric cancer and cancer-related vascularization. Oncotarget 2018; 8:34516-34524. [PMID: 28388537 PMCID: PMC5470987 DOI: 10.18632/oncotarget.16563] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/15/2017] [Indexed: 01/14/2023] Open
Abstract
Recent reports suggest promises on using oncolytic Newcastle disease viruses (NDV) to treat different cancers, while the effects of a NDV-D90 strain on gastric cancer remain unknown. Here we showed that NDV-D90 induced gastric cancer cell apoptosis in a dose-dependent manner in 3 gastric cancer cell lines BGC-823, SGC-7901 and MKN-28. Pronounced reduction in cell invasion was detected in NDV-D90-treated BGC-823 and SGC-7901 cells, but not in MKN-28 cells. The increases in cell apoptosis and reduction in cell growth in NDV-D90-treated gastric cancer cells seemingly resulted from augmentation of p38 signaling and suppression of ERK1/2 and Akt signaling. In vivo, orthotopic injection of NDV-D90 impaired tumor growth and induced intratumoral necrosis. Tumor cells that had been pre-treated with NDV-D90 showed defect in development of implanted tumor. Moreover, NDV-D90 appeared to reduce gastric tumor vascularization, possibly through suppression of vascular endothelial growth factor A and Matrix Metallopeptidase 2. Together, our data suggest that NDV-D90 may have potential anti-cancer effects on gastric cancer.
Collapse
Affiliation(s)
- Hong Sui
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Kaibing Wang
- Department of Intervention, The Second Hospital Affiliated Harbin Medical University, Harbin 150086, China
| | - Rui Xie
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Xi Li
- Division of Swine Disease, National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Medicine, Harbin 150069, China
| | - Kunpeng Li
- Division of Swine Disease, National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Medicine, Harbin 150069, China
| | - Yuxian Bai
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Xishan Wang
- Department of Abdominal Surgery, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Bin Bai
- Department of Intervention, The Second Hospital Affiliated Harbin Medical University, Harbin 150086, China
| | - Dan Chen
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Jiazhuang Li
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Baozhong Shen
- Department of Radiology, The Fourth Hospital of Harbin Medical University, Harbin 150001, China
| |
Collapse
|
38
|
Increased phosphorylation of eIF2α in chronic myeloid leukemia cells stimulates secretion of matrix modifying enzymes. Oncotarget 2018; 7:79706-79721. [PMID: 27802179 PMCID: PMC5346746 DOI: 10.18632/oncotarget.12941] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 10/17/2016] [Indexed: 12/14/2022] Open
Abstract
Recent studies underscore the role of the microenvironment in therapy resistance of chronic myeloid leukemia (CML) cells and leukemia progression. We previously showed that sustained mild activation of endoplasmic reticulum (ER) stress in CML cells supports their survival and resistance to chemotherapy. We now demonstrate, using dominant negative non-phosphorylable mutant of eukaryotic initiation factor 2 α subunit (eIF2α), that phosphorylation of eIF2α (eIF2α-P), which is a hallmark of ER stress in CML cells, substantially enhances their invasive potential and modifies their ability to secrete extracellular components, including the matrix-modifying enzymes cathepsins and matrix metalloproteinases. These changes are dependent on the induction of activating transcription factor-4 (ATF4) and facilitate extracellular matrix degradation by CML cells. Conditioned media from CML cells with constitutive activation of the eIF2α-P/ATF4 pathway induces invasiveness of bone marrow stromal fibroblasts, suggesting that eIF2α-P may be important for extracellular matrix remodeling and thus leukemia cells-stroma interactions. Our data show that activation of stress response in CML cells may contribute to the disruption of bone marrow niche components by cancer cells and in this way support CML progression.
Collapse
|
39
|
Niu J, Wang Y, Wang J, Bin L, Hu X. Delivery of sFIT-1 engineered MSCs in combination with a continuous low-dose doxorubicin treatment prevents growth of liver cancer. Aging (Albany NY) 2017; 8:3520-3534. [PMID: 28039440 PMCID: PMC5270684 DOI: 10.18632/aging.101146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/12/2016] [Indexed: 12/21/2022]
Abstract
One important process in liver cancer growth and progression is angiogenesis. Vascular endothelial growth factor (VEGF) has the significant role in liver cancer angiogenesis. sFlt1 (soluble Fms-like tyrosine kinase-1) is the promising inhibitor of VEGF and can be used as the new method of inhibiting angiogenesis. MSCs (Mesenchymal stem cells) can infiltrate into tumor tissue and function as the efficient transgene delivery mediator. Here, we engineered murine MSCs to express sFlt1 and examined the anti-tumor effect of MSC- sFlt1 in combination with continues low-dose doxorubicin treatment. We found that this combination therapy significantly inhibited liver cancer cells proliferation. Above all, HepG2 xenografts treated with this combination therapy went into remission. It is of note that this inhibition effect was not p53 binding and by increasing caspase8. This study suggests that this combination treatment has novel therapeutic potential for liver cancer because of significantly inhibiting cancer cells growth and anti-angiogenesis in vitro and in vivo.
Collapse
Affiliation(s)
- Jian Niu
- General Surgery of the Hospital Affiliated Hospital of Xuzhou Medical University, Digestive Disease Research Laboratory of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Yue Wang
- General Surgery of the Hospital Affiliated Hospital of Xuzhou Medical University, Digestive Disease Research Laboratory of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Ji Wang
- General Surgery of the Hospital Affiliated Hospital of Xuzhou Medical University, Digestive Disease Research Laboratory of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Liu Bin
- General Surgery of the Hospital Affiliated Hospital of Xuzhou Medical University, Digestive Disease Research Laboratory of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Xin Hu
- The University of Texas Graduate School of Biomedical Sciences at Houston, MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
40
|
Zhu R, Wang Z, Liang P, He X, Zhuang X, Huang R, Wang M, Wang Q, Qian Y, Wang S. Efficient VEGF targeting delivery of DOX using Bevacizumab conjugated SiO 2@LDH for anti-neuroblastoma therapy. Acta Biomater 2017; 63:163-180. [PMID: 28923539 DOI: 10.1016/j.actbio.2017.09.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/10/2017] [Accepted: 09/11/2017] [Indexed: 12/25/2022]
Abstract
Vascular endothelial growth factor (VEGF) plays an important role in angiogenesis and is highly expressed in carcinoma, which make it an important target for tumor targeting therapy. Neuroblastoma is the main cause for cancer-related death in children. Like most solid tumors, it is also accompanied with the overexpression of VEGF. Doxorubicin Hydrochloride (DOX), a typical chemotherapeutic agent, exhibits efficient anticancer activities for various cancers. However, DOX, without targeting ability, usually causes severe damage to normal tissues. To overcome the shortages, we designed a novel nano-composite, which is Bevacizumab (Bev) modified SiO2@LDH nanoparticles (SiO2@LDH-Bev), loading with DOX to achieve targeting ability and curative efficiency. SiO2@LDH-DOX and SiO2@LDH-Bev-DOX nanoparticles were synthesized and the physicochemical properties were characterized by TEM detection, Zeta potential analysis, FTIR, Raman and XPS analysis. Then in vitro and in vivo anti-neuroblastoma efficiency, targeting ability and mechanisms of anti-carcinoma and anti-angiogenesis of SiO2@LDH-Bev-DOX were explored. Our results indicated that we obtained the core-shell structure SiO2@LDH-Bev with an average diameter of 253±10nm and the amount of conjugated Bev was 4.59±0.38μg/mg SiO2@LDH-Bev. SiO2@LDH-Bev-DOX could improve the cellular uptake and the targeting effect of DOX to brain and tumor, enhance the anti-neuroblastoma and anti-angiogenesis efficiency both in vitro and in vivo, and alleviate side effects of DOX sharply, especially hepatic injury. In addition, we also demonstrated that angiogenesis inhibitory effect was mediated by DOX and VEGF triggered signal pathways, including PI3K/Akt, Raf/MEK/ERK, and adhesion related pathways. In summary, SiO2@LDH-Bev could be a potential VEGF targeting nanocarrier applied in VEGF positive cancer therapy. STATEMENT OF SIGNIFICANCE This paper explored that a novel core-shell structure nanomaterial SiO2@LDH and modified SiO2@LDH with Bevacizumab (Bev) to form a new tumor vasculature targeting nanocarrier SiO2@LDH-Bev as vector of DOX, which was not reported before. The results indicated that SiO2@LDH-Bev could improve the VEGF targeting ability, anti-neuroblastoma and anti-angiogenesis efficiency of DOX. At the same time, SiO2@LDH-Bev-DOX could erase the cardiac toxicity and hepatic injury coming from DOX. Tube formation showed SiO2@LDH-Bev-DOX had the strongest effect on inhibiting angiogenesis among all the four formulations. SiO2@LDH-Bev-DOX could downregulate expression of p-VEGFR and inhibit activation of the Raf/MEK/ERK, p38MAPK, PI3K/Akt and FAK signaling pathways to achieve the goal of anti-angiogenesis. This work provides a novel system for the safe and efficient use of Bev and DOX on Neuroblastoma and explores the mechanism of the function of nano carrier in cancer therapy both in vitro and in vivo.
Collapse
|
41
|
Persian Gulf Stonefish (Pseudosynanceia melanostigma) Venom Fractions Selectively Induce Apoptosis on Cancerous Hepatocytes from Hepatocellular Carcinoma Through ROS-Mediated Mitochondrial Pathway. HEPATITIS MONTHLY 2017. [DOI: 10.5812/hepatmon.11842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
42
|
Song W, Zhao X, Xu J, Zhang H. Quercetin inhibits angiogenesis-mediated human retinoblastoma growth by targeting vascular endothelial growth factor receptor. Oncol Lett 2017; 14:3343-3348. [PMID: 28927086 PMCID: PMC5588034 DOI: 10.3892/ol.2017.6623] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 02/14/2017] [Indexed: 11/06/2022] Open
Abstract
Retinoblastoma (RB) is the most common malignant intraocular cancer in teenagers, occurrence of which depends on the mutation of multiple genes. Among all the signaling pathways involved in the oncogenesis of RB, the process of angiogenesis has been demonstrated to be associated with the local invasive growth and metastasis of this cancer type. Quercetin (Que) is a typical flavonoid and has been reported to inhibit angiogenesis in various types of tumors. In the present study, the effect of Que on RB cells and angiogenesis of RB was evaluated. The human RB Y79 cell line was subjected to treatment with Que of various concentrations. Viability, invasion and migration ability and apoptosis of Y79 cells were subsequently measured to assess the effect of Que on RB cells. In addition, the expression of vascular endothelial growth factor receptor (VEGFR) was also quantified. It was revealed that Que inhibited RB cell growth and invasion in vitro in a dose-dependent manner, with 100 µM Que exhibiting the strongest inhibitory effect. In addition, Que downregulated the expression of VEGFR, which was an indicator of the blockade of angiogenesis in RB by targeting VEGF. The effect of Que on angiogenesis was also observed to be dose-dependent. The results of the present study indicated that Que may be a potential anti-RB therapy due to its anti-angiogenesis effect.
Collapse
Affiliation(s)
- Wei Song
- Department of Ophthalmology, The Second Hospital of Shandong University, Jinan, Shandong 250000, P.R. China
| | - Xiaofei Zhao
- Department of Ophthalmology, The Second Hospital of Shandong University, Jinan, Shandong 250000, P.R. China
| | - Jiarui Xu
- Department of Emergency, Shandong Provincial Hospital, Jinan, Shandong 250000, P.R. China
| | - Han Zhang
- Department of Ophthalmology, The Second Hospital of Shandong University, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
43
|
Wu Y, Han MF, Liu C, Liu TY, Feng YF, Zou Y, Li B, Liao HL. Design, synthesis, and antiproliferative activities of stapled melittin peptides. RSC Adv 2017. [DOI: 10.1039/c6ra26427a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Melittin is a 26-residue, amphipathic, cell-penetrating, α-helical anti-hepatoma peptide isolated from bee venom.
Collapse
Affiliation(s)
- Ye Wu
- School of Pharmacy
- Chengdu Medical College
- Chengdu 610083
- China
| | - Meng-fei Han
- Department of Traditional Chinese Medicine
- Changhai Hospital
- Second Military Medical University
- Shanghai 200433
- China
| | - Chao Liu
- Department of Organic Chemistry
- School of Pharmacy
- Second Military Medical University
- Shanghai 200433
- China
| | - Tai-yu Liu
- Department of Organic Chemistry
- School of Pharmacy
- Second Military Medical University
- Shanghai 200433
- China
| | - Yu-fei Feng
- Department of Organic Chemistry
- School of Pharmacy
- Second Military Medical University
- Shanghai 200433
- China
| | - Yan Zou
- Department of Organic Chemistry
- School of Pharmacy
- Second Military Medical University
- Shanghai 200433
- China
| | - Bai Li
- Department of Traditional Chinese Medicine
- Changhai Hospital
- Second Military Medical University
- Shanghai 200433
- China
| | - Hong-li Liao
- School of Pharmacy
- Chengdu Medical College
- Chengdu 610083
- China
| |
Collapse
|
44
|
Liu CC, Hao DJ, Zhang Q, An J, Zhao JJ, Chen B, Zhang LL, Yang H. Application of bee venom and its main constituent melittin for cancer treatment. Cancer Chemother Pharmacol 2016; 78:1113-1130. [DOI: 10.1007/s00280-016-3160-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/20/2016] [Indexed: 01/29/2023]
|
45
|
Tonk M, Vilcinskas A, Rahnamaeian M. Insect antimicrobial peptides: potential tools for the prevention of skin cancer. Appl Microbiol Biotechnol 2016; 100:7397-405. [PMID: 27418360 PMCID: PMC4980408 DOI: 10.1007/s00253-016-7718-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 12/18/2022]
Abstract
Antimicrobial peptides/proteins (AMPs) are biologically active molecules with diverse structural properties that are produced by mammals, plants, insects, ticks, and microorganisms. They have a range of antibacterial, antifungal, antiviral, and even anticancer activities, and their biological properties could therefore be exploited for therapeutic and prophylactic applications. Cancer and cancer drug resistance are significant current health challenges, so the development of innovative cancer drugs with minimal toxicity toward normal cells and novel modes of action that can evade resistance may provide a new direction for anticancer therapy. The skin is the first line of defense against heat, sunlight, injury, and infection, and skin cancer is thus the most common type of cancer. The skin that has been exposed to sunlight is particularly susceptible, but lesions can occur anywhere on the body. Skin cancer awareness and self-efficacy are necessary to improve sun protection behavior, but more effective preventative approaches are also required. AMPs may offer a new prophylactic approach against skin cancer. In this mini review, we draw attention to the potential use of insect AMPs for the prevention and treatment of skin cancer.
Collapse
Affiliation(s)
- Miray Tonk
- LOEWE Center for Insect Biotechnology and Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse, 35394, Giessen, Germany
| | - Andreas Vilcinskas
- LOEWE Center for Insect Biotechnology and Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse, 35394, Giessen, Germany.,Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Mohammad Rahnamaeian
- LOEWE Center for Insect Biotechnology and Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse, 35394, Giessen, Germany.
| |
Collapse
|