1
|
Keraite I, Alvarez-Garcia V, Leslie NR. Nuclease Enrichment and qPCR Detection of Rare Nucleotide Variants. Methods Mol Biol 2023; 2621:41-56. [PMID: 37041439 DOI: 10.1007/978-1-0716-2950-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
The emergence of circulating DNA analysis in blood during the past decade has responded to the need for noninvasive alternatives to classical tissue biopsies. This has coincided with the development of techniques that allow the detection of low-frequency allele variants in clinical samples that typically carry very low amounts of fragmented DNA, such as plasma or FFPE samples. Enrichment of rare variants by nuclease-assisted mutant allele enrichment with overlapping probes (NaME-PrO) enables a more sensitive detection of mutations in tissue biopsy samples alongside standard qPCR detection assays. Such sensitivity is normally achieved by other more complex PCR methods, such as TaqMan qPCR and digital droplet PCR (ddPCR). Here we describe a workflow of mutation-specific nuclease-based enrichment combined with a SYBR Green real-time quantitative PCR detection method that provides comparable results to ddPCR. Using a PIK3CA mutation as an example, this combined workflow enables detection and accurate prediction of initial variant allele fraction in samples with a low mutant allele frequency (<1%) and could be applied flexibly to detect other mutations of interest.
Collapse
Affiliation(s)
- Ieva Keraite
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, UK
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona, Institute of Science and Technology (BIST), Barcelona, Spain
| | - Virginia Alvarez-Garcia
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Nicholas R Leslie
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, UK.
| |
Collapse
|
2
|
Aissa AF, Islam ABMMK, Ariss MM, Go CC, Rader AE, Conrardy RD, Gajda AM, Rubio-Perez C, Valyi-Nagy K, Pasquinelli M, Feldman LE, Green SJ, Lopez-Bigas N, Frolov MV, Benevolenskaya EV. Single-cell transcriptional changes associated with drug tolerance and response to combination therapies in cancer. Nat Commun 2021; 12:1628. [PMID: 33712615 PMCID: PMC7955121 DOI: 10.1038/s41467-021-21884-z] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/22/2021] [Indexed: 01/31/2023] Open
Abstract
Tyrosine kinase inhibitors were found to be clinically effective for treatment of patients with certain subsets of cancers carrying somatic mutations in receptor tyrosine kinases. However, the duration of clinical response is often limited, and patients ultimately develop drug resistance. Here, we use single-cell RNA sequencing to demonstrate the existence of multiple cancer cell subpopulations within cell lines, xenograft tumors and patient tumors. These subpopulations exhibit epigenetic changes and differential therapeutic sensitivity. Recurrently overrepresented ontologies in genes that are differentially expressed between drug tolerant cell populations and drug sensitive cells include epithelial-to-mesenchymal transition, epithelium development, vesicle mediated transport, drug metabolism and cholesterol homeostasis. We show analysis of identified markers using the LINCS database to predict and functionally validate small molecules that target selected drug tolerant cell populations. In combination with EGFR inhibitors, crizotinib inhibits the emergence of a defined subset of EGFR inhibitor-tolerant clones. In this study, we describe the spectrum of changes associated with drug tolerance and inhibition of specific tolerant cell subpopulations with combination agents.
Collapse
Affiliation(s)
- Alexandre F Aissa
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Abul B M M K Islam
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Majd M Ariss
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Cammille C Go
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Alexandra E Rader
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Ryan D Conrardy
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Alexa M Gajda
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Carlota Rubio-Perez
- Biomedical Genomics Lab, Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Klara Valyi-Nagy
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Mary Pasquinelli
- Department of Medicine, Section of Hematology/Oncology, University of Illinois at Chicago, Chicago, IL, USA
| | - Lawrence E Feldman
- Department of Medicine, Section of Hematology/Oncology, University of Illinois at Chicago, Chicago, IL, USA
| | - Stefan J Green
- Genome Research Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Nuria Lopez-Bigas
- Biomedical Genomics Lab, Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Maxim V Frolov
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | | |
Collapse
|
3
|
Ye L, Mesbah Ardakani N, Thomas C, Spilsbury K, Leslie C, Amanuel B, Millward M. Detection of Low-level EGFR c.2369 C > T (p.Thr790Met) Resistance Mutation in Pre-treatment Non-small Cell Lung Carcinomas Harboring Activating EGFR Mutations and Correlation with Clinical Outcomes. Pathol Oncol Res 2020; 26:2371-2379. [PMID: 32506395 DOI: 10.1007/s12253-020-00833-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/07/2020] [Accepted: 05/26/2020] [Indexed: 11/25/2022]
Abstract
Increasing evidence points to the presence of low-level de novo T790M mutations in patients with non-small cell lung carcinoma (NSCLC) harboring activating EGFR mutations. We utilized digital PCR (dPCR), a highly sensitive gene mutation detection method, to detect pre-treatment T790M mutations in NSCLC tumor samples and correlated the T790M status with clinical features and patient outcomes. DNA extracted from pre-treatment NSCLC tumor tissue with known activating EGFR mutations, diagnosed between October 2010 and May 2017 at PathWest laboratory, was used to perform targeted dPCR for quantitative detection of T790M mutations. T790M was detected in 42 of 109 pre-treatment samples (38.5%). Median variant allele frequency was 0.14% (range 0.02-28.5%). Overall response rate to first generation EGFR tyrosine kinase inhibitors (TKI) was 67% regardless of T790M status. The median progression free survival was 10.7 (IQR 5.6-19.9) versus 6.7 (IQR 3.5-20.8) months in T790M negative and positive patients respectively. T790M positivity correlated with increased rate of early disease progression. It also correlated with increased mortality (HR 3.1 95%CI 1.2-8.1, p = 0.022) in patients who did not respond to TKI treatment. We detected a significant rate of low-level pre-treatment T790M mutations in NSCLC using highly sensitive dPCR. Low-level pre-treatment T790M did not impact treatment response rate or overall survival, but was associated with increased rate of early progression on TKI therapy.
Collapse
Affiliation(s)
- Linda Ye
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
- Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Nima Mesbah Ardakani
- School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, Western Australia, Australia.
- Department of Anatomical Pathology, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.
- School of Veterinary and Life Science, Murdoch University, Perth, Western Australia, Australia.
| | - Carla Thomas
- School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Anatomical Pathology, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia
| | - Katrina Spilsbury
- Institute for Health Research, The University of Notre Dame Australia, Perth, Western Australia, Australia
| | - Connull Leslie
- School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Anatomical Pathology, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia
| | - Benhur Amanuel
- School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Anatomical Pathology, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia
- School of Medical Science, Edith Cowan University, Joondalup, WA, Australia
| | - Michael Millward
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
- Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
4
|
Gao X, Zhao Y, Bao Y, Yin W, Liu L, Liu R, Yu Z, Zhou X, Shuai J. Poor Prognosis With Coexistence Of EGFR T790M Mutation And Common EGFR-Activating Mutation In Non- Small Cell Lung Cancer. Cancer Manag Res 2019; 11:9621-9630. [PMID: 32009817 PMCID: PMC6859090 DOI: 10.2147/cmar.s216721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose Previous studies have shown that the presence of EGFR T790M mutation may reduce the treatment efficacy of tyrosine kinase inhibitors (TKIs) in EGFR-mutant lung cancer. However, little is known about the clinical features and outcomes of EGFR T790M mutation in pretreated patients with NSCLC. Patients and methods The clinical features of EGFR-activating and T790M mutations were assessed in a large cohort of patients with EGFR-TKI-naïve NSCLC (all/EGFR mutations, n=16,347/7,687). The correlation between the pretreatment T790M mutation status and clinical outcomes was evaluated using univariate and multivariate analyses. Results Pretreatment T790M mutation was reported in 1.39% of the patients and coexisted with an EGFR-activating or uncommon mutation. The dual EGFR T790M and common EGFR-activating mutations were more likely to be detected in lung adenocarcinoma, whereas single T790M mutation was more prevalent in non-adenocarcinomas. The presence of de novo T790M mutation correlated with reduced recurrence-free survival (RFS) in patients with NSCLC (odds ratio [OR] 3.37, 95% confidence interval [CI] 1.67-6.79, P = 0.001). After molecular stratification, T790M mutation was shown to exert adverse effects on the RFS of EGFR 19-del group (OR 2.89, 95% CI 1.10-7.91, P = 0.028) and EGFR L858R group (OR 3.43, 95% CI 1.33-8.88, P = 0.013). Furthermore, pretreatment T790M mutation promoted tumor metastasis to different sites. Conclusion T790M-positive tumors presented special clinical features, and the coexistence of T790M and common EGFR-activating mutations was associated with poor prognosis in patients with NSCLC.
Collapse
Affiliation(s)
- Xuejuan Gao
- Department of Physics, Xiamen University, Xiamen, People's Republic of China
| | - Yanfeng Zhao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital Affiliated to Tongji University, Shanghai, People's Republic of China
| | - Yi Bao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital Affiliated to Tongji University, Shanghai, People's Republic of China
| | - Wei Yin
- Key Laboratory of Oral Biomedical Engineering of Education, Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Liyu Liu
- College of Physics, Chongqing University, Chongqing, People's Republic of China
| | - Ruchuan Liu
- College of Physics, Chongqing University, Chongqing, People's Republic of China
| | - Zhengquan Yu
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Xiao Zhou
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital Affiliated to Tongji University, Shanghai, People's Republic of China
| | - Jianwei Shuai
- Department of Physics, Xiamen University, Xiamen, People's Republic of China.,State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, People's Republic of China
| |
Collapse
|
5
|
Predictive impact of low-frequency pretreatment T790M mutation in patients with EGFR-mutated non-small cell lung cancer treated with EGFR tyrosine kinase inhibitors. Lung Cancer 2019; 139:80-88. [PMID: 31751804 DOI: 10.1016/j.lungcan.2019.10.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Low-frequency epidermal growth factor receptor (EGFR) T790M mutation could be detected by ultrasensitive methods in EGFR tyrosine kinase inhibitor (TKI)-naïve non-small cell lung cancer (NSCLC). However, the impact of pretreatment T790M (preT790M) on the efficacy of EGFR-TKIs and on resistance remains unclear. MATERIALS AND METHODS Two independent cohorts consisting of advanced EGFR-mutated NSCLC patients treated with first-line EGFR-TKIs, a derivation cohort that started treatment between August 2013 and July 2016 (cohort A, n = 44) and a validation cohort between August 2016 and December 2017 (cohort B, n = 22), were examined in this study. Among these, 28 patients underwent re-biopsy at disease progression. DNAs from pretreatment tumor biopsy samples and re-biopsy samples were assessed to detect T790M by the Cobas EGFR Mutation Test v2 (Cobas) and for quantitating T790M by droplet digital polymerase chain reaction (ddPCR). RESULTS Detection rates of preT790M were 40.9% (18/44) in cohort A and 45.5% (10/22) in cohort B by ddPCR, and none by Cobas. A cutoff value of 0.3% for dividing into high- vs. low-preT790M allele frequency was determined by receiver operating characteristic curve analysis in cohort A. Progression-free survival (PFS) was significantly shorter in the high- preT790M group (n = 12) than in the low-preT790M (n = 6) and negative (n = 26) groups (combined low-preT790M) (median: 6.9 vs. 13.8 months, P = 0.00073). These observations were validated in cohort B [median: 6.2 (n = 5) vs. 15.3 months (n = 17), P = 0.0029]. In 28 paired biopsies, Cobas detected post-progression T790M in 60% (3/5) of the high-preT790M, in 57% (4/7) of the low-preT790M, and in 56% (9/16) of the negative-preT790M groups. CONCLUSION EGFR-mutated NSCLC with high preT790M had significantly shorter PFS on EGFR-TKIs. However, preT790M abundance may not necessarily confer post-TKI T790M resistance.
Collapse
|
6
|
Gelatti ACZ, Drilon A, Santini FC. Optimizing the sequencing of tyrosine kinase inhibitors (TKIs) in epidermal growth factor receptor (EGFR) mutation-positive non-small cell lung cancer (NSCLC). Lung Cancer 2019; 137:113-122. [PMID: 31568888 DOI: 10.1016/j.lungcan.2019.09.017] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/18/2019] [Accepted: 09/22/2019] [Indexed: 12/18/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, accounting for 80-85% of cases. Epidermal growth factor receptor (EGFR) mutations are observed in approximately 40% and 20% of patients with NSCLC in Asian and non-Asian populations, respectively. First-generation (gefitinib, erlotinib) and second-generation (afatinib, dacomitinib) EGFR-tyrosine kinase inhibitors (TKIs) have been standard-of-care (SoC) first-line treatment for patients with sensitizing EGFR mutation positive advanced NSCLC following Phase III trials versus platinum-based doublet chemotherapy. However, most patients treated with first-line first- or second-generation EGFR-TKIs develop resistance. Osimertinib, a third-generation, central nervous system active EGFR-TKI which potently and selectively inhibits both EGFR-TKI sensitizing (EGFRm) and the most common EGFR T790 M resistance mutations, has shown superior efficacy versus first-generation EGFR-TKIs (gefitinib / erlotinib). Osimertinib is now a treatment option for patients with advanced NSCLC harboring EGFRm in the first-line setting, and treatment of choice for patients with T790 M positive NSCLC following disease progression on first-line EGFR-TKIs. The second-generation EGFR-TKI dacomitinib has also recently been approved for the first-line treatment of EGFRm positive metastatic NSCLC. There remains a need to determine appropriate sequencing of EGFR-TKIs in this setting, including EGFR-TKIs as monotherapy or in combination with other TKIs / signaling pathway inhibitors. This review considers the evolving role of sequencing treatments to maximize benefits for patients with EGFRm positive advanced NSCLC.
Collapse
Affiliation(s)
- Ana C Z Gelatti
- Grupo Oncoclínicas, Porto Alegre, Brazil; Grupo Brasileiro de Oncologia Torácica (GBOT), Brazil.
| | - Alexander Drilon
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, USA
| | | |
Collapse
|
7
|
Dong Y, Zhou Z, Wang J, Ma L, Liu Z, Wang Y, Song J, Zhang S, Che N. Origin of the T790M mutation and its impact on the clinical outcomes of patients with lung adenocarcinoma receiving EGFR-TKIs. Pathol Res Pract 2019; 215:946-951. [DOI: 10.1016/j.prp.2019.01.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/19/2019] [Accepted: 01/29/2019] [Indexed: 12/19/2022]
|
8
|
Biomarkers in Non-Small Cell Lung Cancers: Indian Consensus Guidelines for Molecular Testing. Adv Ther 2019; 36:766-785. [PMID: 30864106 DOI: 10.1007/s12325-019-00903-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Indexed: 12/17/2022]
Abstract
Novel molecular targets and promising targeted therapies have reshaped diagnostics in patients with advanced non-small cell lung cancer (NSCLC). Despite this progress, the implementation of molecular screening to identify predictive biomarkers in Indian clinical and pathology settings has been challenging due to operational and logistical constraints. This consensus guideline brings together medical oncologists, molecular pathologists and pathologists from India to provide a quick and competent reference for biomarker testing in NSCLC. The guideline summarizes the importance of targetable mutations in NSCLC such as epidermal growth factor receptor (EGFR), rearrangements in anaplastic lymphoma kinase and receptor tyrosine kinase encoded by ROS-1 gene, overexpression of programmed cell death ligand-1 and resistant EGFR mutations. It reaffirms recommendations from international working groups, discusses vulnerable pre-analytical procedures and provides a balanced review on the pros and cons of different diagnostic tests (immunohistochemistry, fluorescence in situ hybridization, polymerase chain reaction-based testing and next-generation sequencing). The document also provides an algorithm to aid diagnostic decision-making and a checklist to assess the quality of testing laboratories that will help the medical oncologists make an informed choice. Overall, these recommendations are based on evidence and clinical experience and will aid policymakers, oncologists, health care practitioners and pathologists who strive to implement molecular strategies and make informed decisions for improved care in NSCLC in India.Funding: AstraZeneca Pharma India Limited.
Collapse
|
9
|
Lavdovskaia ED, Iyevleva AG, Sokolenko AP, Mitiushkina NV, Preobrazhenskaya EV, Tiurin VI, Ivantsov AO, Bizin IV, Stelmakh LV, Moiseyenko FV, Karaseva NA, Orlov SV, Moiseyenko VM, Korzhenevskaya MA, Zaitsev IA, Kozak AR, Chistyakov IV, Akopov AL, Volkov NM, Togo AV, Imyanitov EN. EGFR T790M Mutation in TKI-Naïve Clinical Samples: Frequency, Tissue Mosaicism, Predictive Value and Awareness on Artifacts. Oncol Res Treat 2018; 41:634-642. [DOI: 10.1159/000491441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/22/2018] [Indexed: 12/14/2022]
|
10
|
Heydt C, Michels S, Thress KS, Bergner S, Wolf J, Buettner R. Novel approaches against epidermal growth factor receptor tyrosine kinase inhibitor resistance. Oncotarget 2018; 9:15418-15434. [PMID: 29632655 PMCID: PMC5880615 DOI: 10.18632/oncotarget.24624] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/21/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The identification and characterization of molecular biomarkers has helped to revolutionize non-small-cell lung cancer (NSCLC) management, as it transitions from target-focused to patient-based treatment, centered on the evolving genomic profile of the individual. Determination of epidermal growth factor receptor (EGFR) mutation status represents a critical step in the diagnostic process. The recent emergence of acquired resistance to "third-generation" EGFR tyrosine kinase inhibitors (TKIs) via multiple mechanisms serves to illustrate the important influence of tumor heterogeneity on prognostic outcomes in patients with NSCLC. DESIGN This literature review examines the emergence of TKI resistance and the course of disease progression and, consequently, the clinical decision-making process in NSCLC. RESULTS Molecular markers of acquired resistance, of which T790M and HER2 or MET amplifications are the most common, help to guide ongoing treatment past the point of progression. Although tissue biopsy techniques remain the gold standard, the emergence of liquid biopsies and advances in analytical techniques may eventually allow "real-time" monitoring of tumor evolution and, in this way, help to optimize targeted treatment approaches. CONCLUSIONS The influence of inter- and intra-tumor heterogeneity on resistance mechanisms should be considered when treating patients using resistance-specific therapies. New tools are necessary to analyze changes in heterogeneity and clonal composition during drug treatment. The refinement and standardization of diagnostic procedures and increased accessibility to technology will ultimately help in personalizing the management of NSCLC.
Collapse
Affiliation(s)
- Carina Heydt
- Molecular Pathological Diagnostics, Institute of Pathology, University Hospital Cologne, Cologne, Germany
- Center of Integrated Oncology Köln-Bonn, University Hospital Cologne, Cologne, Germany
| | - Sebastian Michels
- Center of Integrated Oncology Köln-Bonn, University Hospital Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Köln-Bonn, University Hospital of Cologne, Cologne, Germany
| | | | - Sven Bergner
- Medical Affairs, AstraZeneca Oncology, Wedel, Germany
| | - Jürgen Wolf
- Center of Integrated Oncology Köln-Bonn, University Hospital Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Köln-Bonn, University Hospital of Cologne, Cologne, Germany
| | - Reinhard Buettner
- Molecular Pathological Diagnostics, Institute of Pathology, University Hospital Cologne, Cologne, Germany
- Center of Integrated Oncology Köln-Bonn, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
11
|
Abstract
PIK3CA mutations are seemingly the most common driver mutations in breast cancer with H1047R and E545K being the most common of these, accounting together for around 60% of all PIK3CA mutations and have promising therapeutic implications. Given the low sensitivity and the high cost of current genotyping methods we sought to develop fast, simple and inexpensive assays for PIK3CA H1047R and E545K mutation screening in clinical material. The methods we describe are based on a real-time PCR including a mutation specific primer combined with a non-productive oligonucleotide which inhibits wild-type amplification and a parallel internal control reaction. We demonstrate consistent detection of PIK3CA H1047R mutant DNA in genomic DNA extracted from frozen breast cancer biopsies, FFPE material or cancer cell lines with a detection sensitivity of approximately 5% mutant allele fraction and validate these results using both Sanger sequencing and deep next generation sequencing methods. The detection sensitivity for PIK3CA E545K mutation was approximately 10%. We propose these methods as simple, fast and inexpensive diagnostic tools to determine PIK3CA mutation status.
Collapse
|
12
|
Li X, Zhou C. Comparison of cross-platform technologies for EGFR T790M testing in patients with non-small cell lung cancer. Oncotarget 2017; 8:100801-100818. [PMID: 29246024 PMCID: PMC5725066 DOI: 10.18632/oncotarget.19007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/19/2017] [Indexed: 12/14/2022] Open
Abstract
Somatic mutations in the gene encoding epidermal growth factor receptor (EGFR) play an important role in determining targeted treatment modalities in non-small cell lung cancer (NSCLC). The EGFR T790M mutation emerges in approximately 50% of cases who acquire resistance to tyrosine kinase inhibitors. Detecting EGFR T790M mutation in tumor tissue is challenging due to heterogeneity of the tumor, low abundance of the mutation and difficulty for re-biopsy in patients with advanced disease. Alternatively, circulating tumor DNA (ctDNA) has been proposed as a non-invasive method for mutational analysis. The presence of EGFR mutations in ctDNA predicts response to the EGFR TKIs in the first-line setting. Molecular testing is now considered a standard care for NSCLC. The advent of standard commercially available kits and targeted mutational analysis has revolutionized the accuracy of mutation detection platforms for detection of EGFR mutations. Our review provides an overview of various commonly used platforms for detecting EGFR T790M mutation in tumor tissue and plasma.
Collapse
Affiliation(s)
- Xuefei Li
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Pulmonary Cancer institute, Tongji University School of Medicine, Shanghai, P. R. China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University, Tongji University Medical School Cancer Institute, Shanghai, P. R. China
| |
Collapse
|
13
|
Liang Z, Cheng Y, Chen Y, Hu Y, Liu WP, Lu Y, Wang J, Wang Y, Wu G, Ying JM, Zhang HL, Zhang XC, Wu YL. EGFR T790M ctDNA testing platforms and their role as companion diagnostics: Correlation with clinical outcomes to EGFR-TKIs. Cancer Lett 2017. [PMID: 28642172 DOI: 10.1016/j.canlet.2017.06.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Somatic mutation in the epidermal growth factor receptor (EGFR) predict clinical response to EGFR tyrosine kinase inhibitors in non-small cell lung cancer (NSCLC) and is a promising target for personalised medicine. EGFR mutations have prognostic value. Initially patients respond well to tyrosine kinase inhibitors but finally they would develop resistance and about 50% of this resistance can be attributed to the emergence of EGFR resistant mutation, T790M. This necessitates the need for genetic testing for clinical management of patients. Molecular testing has become the standard of care in patients with NSCLCs based on the recommendations of standard guidelines. Though there are several platforms for EGFR mutation detection, highly sensitive platforms for clinical applicability as companion diagnostics for ctDNA based testing are emerging. Due to the dynamic changes in the T790M mutation during tyrosine kinase inhibitor (TKI) treatment, real-time monitoring of these genetic alterations is mandate for planning treatment strategies. With the advent of third generation TKIs that potentially target T790M, improvement in clinical outcome is documented in patients with NSCLCs. Managing these outcomes with appropriate companion diagnostics using ctDNA in early detection of these genetic alterations will improve patient care.
Collapse
Affiliation(s)
- Zhiyong Liang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Cheng
- Department of Oncology, Jilin Provincial Cancer Hospital, Changchun, China
| | - Yuan Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanping Hu
- Department of Oncology, Hubei Cancer Hospital, Wuhan, China
| | - Wei-Ping Liu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - You Lu
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jie Wang
- Department of Medical Oncology, National Cancer Centre, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ye Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Ming Ying
- Department of Pathology, National Cancer Centre, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - He-Long Zhang
- Department of Oncology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xu-Chao Zhang
- Guangdong Lung Cancer Institute, Medical Research Center of Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Medical Research Center of Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
14
|
Liu Y, Sun L, Xiong ZC, Sun X, Zhang SL, Ma JT, Han CB. Meta-analysis of the impact of de novo and acquired EGFR T790M mutations on the prognosis of patients with non-small cell lung cancer receiving EGFR-TKIs. Onco Targets Ther 2017; 10:2267-2279. [PMID: 28479857 PMCID: PMC5411171 DOI: 10.2147/ott.s133082] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose The purpose of this meta-analysis was to explore the influences of pretreatment de novo and posttreatment-acquired epidermal growth factor receptor (EGFR) T790M mutations in patients with advanced non-small cell lung cancer (NSCLC) who had received tyrosine kinase inhibitors (TKIs). Methods We searched PubMed, Embase, and the China National Knowledge Infrastructure database for eligible literature. Data were extracted to assess the hazard ratios (HRs) for progression-free survival (PFS), overall survival (OS), and post-progression survival (PPS) and the relative ratios (RRs) for objective response rate (ORR). Results This meta-analysis included 22 studies comprising 1,462 patients with NSCLC who harbored activating EGFR mutations and were treated with EGFR-TKIs. Compared to pretreatment T790M mutation-negative NSCLC, pretreatment T790M mutation-positive NSCLC was associated with decreased PFS (HR 2.23, P<0.001) and OS (HR 1.55, P=0.003). A trend toward significance of worsening ORR (RR 0.86, P=0.051) was evident. The acquired T790M mutation was correlated with improved PFS (HR 0.75, P=0.006) and PPS (HR 0.57, P<0.001), compared to patients without the T790M mutation who progressed after EGFR-TKI treatment. There were no significant differences in OS or ORR between patients with acquired T790M mutation-positive and T790M mutation-negative NSCLC. However, in the tumor tissue rebiopsy subgroup, patients with acquired T790M mutation had improved OS (HR 0.60, P<0.001) compared to T790M mutation-negative patients. In the plasma ctDNA subgroup, acquired T790M mutation decreased the OS (HR 1.87, P<0.001). Conclusion Pretreatment T790M mutation was associated with worse PFS and OS in patients with advanced NSCLC treated with EGFR-TKIs, while acquired T790M mutation was associated with longer PFS and PPS than T790M mutation-negative NSCLC. The effects on OS were different between acquired T790M mutation detected from rebiopsy of tumor tissue and that detected from plasma ctDNA.
Collapse
Affiliation(s)
- Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Li Sun
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Zhi-Cheng Xiong
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xin Sun
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Shu-Ling Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jie-Tao Ma
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Cheng-Bo Han
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
15
|
Ma G, Zhang J, Yin L, Jiang H, Zhang W, Song Y, Liu M. The prognostic role of pretreatment epidermal growth factor receptor T790M mutation in advanced non-small cell lung cancer patients treated with EGFR tyrosine kinase inhibitors. Oncotarget 2017; 8:50941-50948. [PMID: 28881618 PMCID: PMC5584219 DOI: 10.18632/oncotarget.16222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/20/2017] [Indexed: 02/05/2023] Open
Abstract
PURPOSE The outcome of pretreatment epidermal growth factor receptor (EGFR) T790M mutation in EGFR mutant non-small cell lung cancer (NSCLC) patients treated with EGFR tyrosine kinase inhibitors (TKIs) is controversial, this study aimed to evaluate the prognostic role of pretreatment T790M in advanced NSCLC patients treated with EGFR TKIs. RESULTS A total of 7 eligible studies containing 179 cases and 281 controls were included in the meta-analysis. The pooled hazard ratios (HRs) for progression-free survival (PFS) and overall survival (OS) were 2.21 (95% CI 1.49-3.29, P<0.001) and 1.24 (95% CI 0.90-1.71, P=0.186), respectively. We also did subgroup analyses on OS and PFS according to patients from various districts. METHODS Identified literatures from various databases were reviewed. A meta-analysis was performed to evaluate the prognostic role of pretreatment EGFR T790M in advanced EGFR mutant patients treated with EGFR TKIs. CONCLUSIONS Pretreatment T790M may be a poor prognostic factor for PFS in advanced NSCLC patients treated with EGFR TKIs. However, no significant prognostic effect was found between pretreatment T790M mutation and OS. More studies are needed to demonstrate the prognostic role of pretreatment T790M mutation in advanced NSCLC patients.
Collapse
Affiliation(s)
- Guangzhi Ma
- Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.,Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Jing Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Liyuan Yin
- Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Hai Jiang
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Weiwei Zhang
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Yanlin Song
- Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Ming Liu
- Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|