1
|
Zhu Y, Gong Y, Wang Y, Jiang Z, Yao Y, Miao X, Wang S, Zhang Y, Cao J. Flurbiprofen axetil is involved in basal-like breast cancer metastasis via suppressing the MEK/ERK signaling pathway. Cell Biol Int 2025; 49:68-78. [PMID: 39364685 DOI: 10.1002/cbin.12251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 07/12/2024] [Accepted: 09/16/2024] [Indexed: 10/05/2024]
Abstract
Flurbiprofen axetil is commonly utilized in clinical practice as one of the nonsteroidal anti-inflammatory drugs (NSAIDs) and is included in multimodal analgesia regimens postbreast cancer surgery. Numerous NSAIDs have been studied for their potential to both promote and inhibit cancer. Given the variability in their effects on tumors, further investigation into the specific role of flurbiprofen axetil is warranted. Therefore, the primary objective of this study was to assess the impact of flurbiprofen axetil on basal-like breast cancer (BLBC) metastasis and elucidate the underlying molecular mechanisms involved. The BLBC metastasis mouse model was established by caudal vein injection of tumor cells. The lung metastasis of breast cancer in mice and the effect of flurbiprofen axetil were assessed by in vivo bioluminescence imaging, hematoxylin and eosin staining and immunohistochemistry. In vitro, the results of flurbiprofen axetil on the proliferation, migration, and invasion of MDA-MB-231 human breast cancer cells and BT-549 human breast cancer cells were assessed by colony formation assay and transwell assay. The effects of flurbiprofen axetil on several tumor metastasis-related signaling pathway proteins were examined by western blot, and the reversal extent of the flurbiprofen axetil effect by Ro 67-7476 (ERK phosphorylation agonist) was detected by transwell assay. The results showed that flurbiprofen axetil significantly inhibited BLBC lung metastasis in mice. Flurbiprofen axetil similarly inhibited breast cancer cell migration and invasion in vitro but did not affect their proliferation. Mechanistic investigations have revealed that flurbiprofen axetil exerts a noteworthy inhibitory influence on the MEK/ERK pathway while exhibiting no significant alteration in the expression of other pathway proteins intricately associated with epithelial-mesenchymal transition. In conclusion, the inhibitory effect of flurbiprofen axetil on BLBC metastasis is characterized by its selectivity in targeting the MEK/ERK signaling pathway rather than exerting a broad impact on the global signaling pathway.
Collapse
Affiliation(s)
- Yalin Zhu
- Department of Anesthesiology, Naval Medical Center, Naval Medical University, Shanghai, China
- Changhai Hospital, Faculty of Anesthesiology, Naval Medical University, Shanghai, China
- Department of Anesthesiology, Naval Hospital of Eastern Theater, Zhoushan, China
| | - Yi Gong
- Department of Respiratory Diseases and Critical Medicine, Quzhou Hospital Affiliated to Wenzhou Medical University, Quzhou, Zhejiang, China
- Department of Respiratory Diseases and Critical Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yifei Wang
- Department of Anesthesiology, Naval Medical Center, Naval Medical University, Shanghai, China
| | - Zhengyu Jiang
- Department of Anesthesiology, Naval Medical Center, Naval Medical University, Shanghai, China
- Changhai Hospital, Faculty of Anesthesiology, Naval Medical University, Shanghai, China
| | - Ying Yao
- Department of Anesthesiology, Naval Medical Center, Naval Medical University, Shanghai, China
| | - Xiaoyong Miao
- Department of Anesthesiology, Naval Medical Center, Naval Medical University, Shanghai, China
| | - Shuoer Wang
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Zhang
- Changhai Hospital, Faculty of Anesthesiology, Naval Medical University, Shanghai, China
| | - Jianping Cao
- Department of Anesthesiology, Naval Medical Center, Naval Medical University, Shanghai, China
| |
Collapse
|
2
|
Cicek B, Hacimuftuoglu A, Kuzucu M, Cetin A, Yeni Y, Genc S, Yildirim S, Bolat I, Kantarci M, Gul M, Hayme S, Matthaios D, Vageli DP, Doukas SG, Tsatsakis A, Taghizadehghalehjoughi A. Sorafenib Alleviates Inflammatory Signaling of Tumor Microenvironment in Precancerous Lung Injuries. Pharmaceuticals (Basel) 2023; 16:221. [PMID: 37259369 PMCID: PMC9963576 DOI: 10.3390/ph16020221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 09/16/2024] Open
Abstract
According to population-based studies, lung cancer is the prominent reason for cancer-related mortality worldwide in males and is also rising in females at an alarming rate. Sorafenib (SOR), which is approved for the treatment of hepatocellular carcinoma and renal cell carcinoma, is a multitargeted protein kinase inhibitor. Additionally, SOR is the subject of interest for preclinical and clinical trials in lung cancer. This study was designed to assess in vivo the possible effects of sorafenib (SOR) in diethylnitrosamine (DEN)-induced lung carcinogenesis and examine its probable mechanisms of action. A total of 30 adult male rats were divided into three groups (1) control, (2) DEN, and (3) DEN + SOR. The chemical induction of lung carcinogenesis was performed by injection of DEN intraperitoneally at 150 mg/kg once a week for two weeks. The DEN-administered rats were co-treated with SOR of 10 mg/kg by oral gavage for 42 alternate days. Serum and lung tissue samples were analyzed to determine SRY-box transcription factor 2 (SOX-2) levels. The tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) levels were measured in lung tissue supernatants. Lung sections were analyzed for cyclooxygenase-2 (COX-2) and c-Jun N-terminal kinase (JNK) histopathologically. In addition, cyclooxygenase-2 (COX-2) and c-Jun N-terminal kinase (JNK) were analyzed by immunohistochemistry and immunofluorescence methods, respectively. SOR reduced the level of SOX-2 that maintenance of cancer stemness and tumorigenicity, and TNF-α and IL-1β levels. Histopathological analysis demonstrated widespread inflammatory cell infiltration, disorganized alveolar structure, hyperemia in the vessels, and thickened alveolar walls in DEN-induced rats. The damage was markedly reduced upon SOR treatment. Further, immunohistochemical and immunofluorescence analysis also revealed increased expression of COX-2 and JNK expression in DEN-intoxicated rats. However, SOR treatment alleviated the expression of these inflammatory markers in DEN-induced lung carcinogenesis. These findings suggested that SOR inhibits DEN-induced lung precancerous lesions through decreased inflammation with concomitant in reduced SOX-2 levels, which enables the maintenance of cancer stem cell properties.
Collapse
Affiliation(s)
- Betul Cicek
- Faculty of Medicine, Department of Physiology, Erzincan Binali Yildirim University, Erzincan 24100, Turkey
| | - Ahmet Hacimuftuoglu
- Faculty of Medicine, Department of Medical Pharmacology, Ataturk University, Erzurum 25240, Turkey
| | - Mehmet Kuzucu
- Faculty of Arts and Sciences, Department of Biology, Erzincan Binali Yildirim University, Erzincan 24100, Turkey
| | - Ahmet Cetin
- Department of Biology, Graduate School of Natural and Applied Sciences, Erzincan Binali Yildirim University, 24100 Erzincan, Turkey
| | - Yesim Yeni
- Faculty of Medicine, Department of Medical Pharmacology, Malatya Turgut Ozal University, Malatya 44210, Turkey
| | - Sidika Genc
- Faculty of Medicine, Department of Medical Pharmacology, Bilecik Seyh Edebali University, Bilecik 11230, Turkey
| | - Serkan Yildirim
- Faculty of Veterinary, Department of Pathology, Ataturk University, Erzurum 25240, Turkey
| | - Ismail Bolat
- Faculty of Veterinary, Department of Pathology, Ataturk University, Erzurum 25240, Turkey
| | - Mecit Kantarci
- Faculty of Medicine, Department of Radiology, Erzincan Binali Yildirim University, Erzincan 24100, Turkey
- Faculty of Medicine, Department of Radiology, Ataturk University, Erzurum 25240, Turkey
| | - Mustafa Gul
- Faculty of Medicine, Department of Physiology, Ataturk University, Erzurum 25240, Turkey
| | - Serhat Hayme
- Faculty of Medicine, Department of Biostatistics, Erzincan Binali Yildirim University, Erzincan 24100, Turkey
| | | | - Dimitra P. Vageli
- Yale Larynx Laboratory, Department of Surgery (Otololaryngology), Yale School of Medicine, Yale University, New Havan, CT 06510, USA
| | - Sotirios G. Doukas
- Department of Internal Medicine, Division of Gastroenterology, Rutgers/Saint Peter’s University Hospital, New Brunswick, NJ 08901, USA
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Ali Taghizadehghalehjoughi
- Faculty of Medicine, Department of Medical Pharmacology, Bilecik Seyh Edebali University, Bilecik 11230, Turkey
| |
Collapse
|
3
|
Solid-Phase Parallel Synthesis of Dual Histone Deacetylase-Cyclooxygenase Inhibitors. Molecules 2023; 28:molecules28031061. [PMID: 36770730 PMCID: PMC9920637 DOI: 10.3390/molecules28031061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/10/2023] [Accepted: 01/15/2023] [Indexed: 01/21/2023] Open
Abstract
Multi-target drugs (MTDs) are emerging alternatives to combination therapies. Since both histone deacetylases (HDACs) and cyclooxygenase-2 (COX-2) are known to be overexpressed in several cancer types, we herein report the design, synthesis, and biological evaluation of a library of dual HDAC-COX inhibitors. The designed compounds were synthesized via an efficient parallel synthesis approach using preloaded solid-phase resins. Biological in vitro assays demonstrated that several of the synthesized compounds possess pronounced inhibitory activities against HDAC and COX isoforms. The membrane permeability and inhibition of cellular HDAC activity of selected compounds were confirmed by whole-cell HDAC inhibition assays and immunoblot experiments. The most promising dual inhibitors, C3 and C4, evoked antiproliferative effects in the low micromolar concentration range and caused a significant increase in apoptotic cells. In contrast to previous reports, the simultaneous inhibition of HDAC and COX activity by dual HDAC-COX inhibitors or combination treatments with vorinostat and celecoxib did not result in additive or synergistic anticancer activities.
Collapse
|
4
|
Gómez-Valenzuela F, Escobar E, Pérez-Tomás R, Montecinos VP. The Inflammatory Profile of the Tumor Microenvironment, Orchestrated by Cyclooxygenase-2, Promotes Epithelial-Mesenchymal Transition. Front Oncol 2021; 11:686792. [PMID: 34178680 PMCID: PMC8222670 DOI: 10.3389/fonc.2021.686792] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
The tumor microenvironment (TME) corresponds to a complex and dynamic interconnection between the extracellular matrix and malignant cells and their surrounding stroma composed of immune and mesenchymal cells. The TME has constant cellular communication through cytokines that sustain an inflammatory profile, which favors tumor progression, angiogenesis, cell invasion, and metastasis. Although the epithelial-mesenchymal transition (EMT) represents a relevant metastasis-initiating event that promotes an invasive phenotype in malignant epithelial cells, its relationship with the inflammatory profile of the TME is poorly understood. Previous evidence strongly suggests that cyclooxygenase-2 (COX-2) overexpression, a pro-inflammatory enzyme related to chronic unresolved inflammation, is associated with common EMT-signaling pathways. This review article summarizes how COX-2 overexpression, within the context of the TME, orchestrates the EMT process and promotes initial metastatic-related events.
Collapse
Affiliation(s)
- Fernán Gómez-Valenzuela
- Department of Hematology-Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enrico Escobar
- Department of Oral Pathology and Medicine, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Ricardo Pérez-Tomás
- Department of Pathology and Experimental Therapy - Bellvitge, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Viviana P Montecinos
- Department of Hematology-Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
5
|
Alaaeddine RA, Elzahhar PA, AlZaim I, Abou-Kheir W, Belal ASF, El-Yazbi AF. The Emerging Role of COX-2, 15-LOX and PPARγ in Metabolic Diseases and Cancer: An Introduction to Novel Multi-target Directed Ligands (MTDLs). Curr Med Chem 2021; 28:2260-2300. [PMID: 32867639 DOI: 10.2174/0929867327999200820173853] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 11/22/2022]
Abstract
Emerging evidence supports an intertwining framework for the involvement of different inflammatory pathways in a common pathological background for a number of disorders. Of importance are pathways involving arachidonic acid metabolism by cyclooxygenase-2 (COX-2) and 15-lipoxygenase (15-LOX). Both enzyme activities and their products are implicated in a range of pathophysiological processes encompassing metabolic impairment leading to adipose inflammation and the subsequent vascular and neurological disorders, in addition to various pro- and antitumorigenic effects. A further layer of complexity is encountered by the disparate, and often reciprocal, modulatory effect COX-2 and 15-LOX activities and metabolites exert on each other or on other cellular targets, the most prominent of which is peroxisome proliferator-activated receptor gamma (PPARγ). Thus, effective therapeutic intervention with such multifaceted disorders requires the simultaneous modulation of more than one target. Here, we describe the role of COX-2, 15-LOX, and PPARγ in cancer and complications of metabolic disorders, highlight the value of designing multi-target directed ligands (MTDLs) modifying their activity, and summarizing the available literature regarding the rationale and feasibility of design and synthesis of these ligands together with their known biological effects. We speculate on the potential impact of MTDLs in these disorders as well as emphasize the need for structured future effort to translate these early results facilitating the adoption of these, and similar, molecules in clinical research.
Collapse
Affiliation(s)
- Rana A Alaaeddine
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Perihan A Elzahhar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Ahmed S F Belal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| |
Collapse
|
6
|
Khan P, Siddiqui JA, Lakshmanan I, Ganti AK, Salgia R, Jain M, Batra SK, Nasser MW. RNA-based therapies: A cog in the wheel of lung cancer defense. Mol Cancer 2021; 20:54. [PMID: 33740988 PMCID: PMC7977189 DOI: 10.1186/s12943-021-01338-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Lung cancer (LC) is a heterogeneous disease consisting mainly of two subtypes, non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), and remains the leading cause of death worldwide. Despite recent advances in therapies, the overall 5-year survival rate of LC remains less than 20%. The efficacy of current therapeutic approaches is compromised by inherent or acquired drug-resistance and severe off-target effects. Therefore, the identification and development of innovative and effective therapeutic approaches are critically desired for LC. The development of RNA-mediated gene inhibition technologies was a turning point in the field of RNA biology. The critical regulatory role of different RNAs in multiple cancer pathways makes them a rich source of targets and innovative tools for developing anticancer therapies. The identification of antisense sequences, short interfering RNAs (siRNAs), microRNAs (miRNAs or miRs), anti-miRs, and mRNA-based platforms holds great promise in preclinical and early clinical evaluation against LC. In the last decade, RNA-based therapies have substantially expanded and tested in clinical trials for multiple malignancies, including LC. This article describes the current understanding of various aspects of RNA-based therapeutics, including modern platforms, modifications, and combinations with chemo-/immunotherapies that have translational potential for LC therapies.
Collapse
Affiliation(s)
- Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Apar Kishor Ganti
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA
- Division of Oncology-Hematology, Department of Internal Medicine, VA-Nebraska Western Iowa Health Care System, Omaha, NE, 68105, USA
- Division of Oncology-Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, 91010, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA.
| |
Collapse
|
7
|
Lin H, Shangguan Z, Zhu M, Bao L, Zhang Q, Pan S. lncRNA FLVCR1‐AS1 silencing inhibits lung cancer cell proliferation, migration, and invasion by inhibiting the activity of the Wnt/β‐catenin signaling pathway. J Cell Biochem 2019; 120:10625-10632. [PMID: 30697812 DOI: 10.1002/jcb.28352] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/29/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Heping Lin
- Department of Respiratory Diseases The Third Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Zongxiao Shangguan
- Department of Respiratory Diseases The Third Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Mengchu Zhu
- Department of Respiratory Diseases The Third Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Lianmin Bao
- Department of Respiratory Diseases The Third Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Qing Zhang
- Department of Clinical Laboratory The Third Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Shenghua Pan
- Department of Pathology The Third Affiliated Hospital of Wenzhou Medical University Wenzhou China
| |
Collapse
|
8
|
Shi Q, Jiang Z, Yang J, Cheng Y, Pang Y, Zheng N, Chen J, Chen W, Jia L. A Flavonoid Glycoside Compound from Murraya paniculata (L.) Interrupts Metastatic Characteristics of A549 Cells by Regulating STAT3/NF-κB/COX-2 and EGFR Signaling Pathways. AAPS JOURNAL 2017; 19:1779-1790. [PMID: 28842850 DOI: 10.1208/s12248-017-0134-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 08/14/2017] [Indexed: 12/16/2022]
Abstract
Metastasis remains the leading cause of death from lung carcinoma. It is urgent to find safe and efficient pre-metastasis preventive agents for cancer survivors. We isolated a flavonoid glycoside, hexamethoxy flavanone-o-[rhamnopyranosyl-(1 → 4)-rhamnopyranoside (HMFRR), from the traditional Chinese medicine (TCM) Murraya paniculata (L.) that can effectively inhibit the adhesion, migration, and invasion of lung adenocarcinoma A549 cells in vitro. Molecular and cellular studies demonstrated that HMFRR significantly downregulated the expressions of cell adhesion-related and invasion-related molecules such as integrin β1, EGFR, COX-2, MMP-2, and MMP-9 proteins. Additionally, HMFRR effectively downregulated the expressions of epithelial-mesenchymal transition (EMT) markers (N-cadherin and vimentin) and upregulated that of E-cadherin. Moreover, these inhibitions were mediated by interrupting STAT3/NF-κB/COX-2 and EGFR/PI3K/AKT signaling pathways. Furthermore, HMFRR counteracted the expressions of cell adhesion molecules (ICAM-1, VCAM-1, and E-selectin) stimulated by interleukin-1β in human pulmonary microvascular endothelial cells (HPMECs). As a result, HMFRR interrupted the adhesion of A549 cells to HPMECs. Collectively, these results indicate that HMFRR may become a good candidate for cancer metastatic chemopreventive agents by interrupting the STAT3/NF-κB/COX-2 and EGFR signaling pathways.
Collapse
Affiliation(s)
- Qing Shi
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, China
| | - Zhou Jiang
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, China.,Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350002, China
| | - Jingyi Yang
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, China
| | - Yunlong Cheng
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, China
| | - Yaqiong Pang
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, China
| | - Ning Zheng
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, China
| | - Jiahang Chen
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, China
| | - Wenge Chen
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, China
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, China. .,Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350002, China. .,Cancer Metastasis Alert and Prevention Center, Fuzhou University, Sunlight Building, 6FL; Science Park, Xueyuan Road, University Town, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
9
|
Designing multi-targeted agents: An emerging anticancer drug discovery paradigm. Eur J Med Chem 2017; 136:195-211. [PMID: 28494256 DOI: 10.1016/j.ejmech.2017.05.016] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/30/2017] [Accepted: 05/04/2017] [Indexed: 12/11/2022]
Abstract
The dominant paradigm in drug discovery is to design ligands with maximum selectivity to act on individual drug targets. With the target-based approach, many new chemical entities have been discovered, developed, and further approved as drugs. However, there are a large number of complex diseases such as cancer that cannot be effectively treated or cured only with one medicine to modulate the biological function of a single target. As simultaneous intervention of two (or multiple) cancer progression relevant targets has shown improved therapeutic efficacy, the innovation of multi-targeted drugs has become a promising and prevailing research topic and numerous multi-targeted anticancer agents are currently at various developmental stages. However, most multi-pharmacophore scaffolds are usually discovered by serendipity or screening, while rational design by combining existing pharmacophore scaffolds remains an enormous challenge. In this review, four types of multi-pharmacophore modes are discussed, and the examples from literature will be used to introduce attractive lead compounds with the capability of simultaneously interfering with different enzyme or signaling pathway of cancer progression, which will reveal the trends and insights to help the design of the next generation multi-targeted anticancer agents.
Collapse
|