1
|
Wang Y, Yang Y, Xie L, An X, Zhang L. MiR-24-3p enhances the Treg/Th17 balance to improve cerebral ischemic injury by suppressing acetyl-CoA carboxylase 1 expression. J Neuroimmunol 2024; 390:578344. [PMID: 38640826 DOI: 10.1016/j.jneuroim.2024.578344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND Targeting ACC1 (acetyl coenzyme A carboxylase 1) to restore the balance between T-helper 17 (Th17) cells and regulatory T cells (Tregs) through metabolic reprogramming has emerged as a promising strategy for reducing neuroinflammation following stroke. We examined the roles of potential miRNAs in regulating ACC1 expression in Tregs and treating ischemic stroke. METHODS The expression of miR-24-3p in CD4+T cells of mice was confirmed. Then the protective effects of Ago-24-3p in a mouse model of prolonged occlusion of the distal middle cerebral artery (dMCAO) were examined. We analyzed the infiltration of Tregs and CD3+T cells into the brain and evaluated the improvement of neurological deficits induced by Ago-24-3p using the Modified Garcia Score and foot fault testing. RESULTS Our investigation revealed that miR-24-3p specifically targets ACC1. Elevated levels of miR-24-3p have been demonstrated to increase the population of Tregs and enhance their proliferation and suppressive capabilities. Conversely, targeted reduction of ACC1 in CD4+T cells has been shown to counteract the improved functionality of Tregs induced by miR-24-3p. In a murine model of dMCAO, administration of Ago-24-3p resulted in a substantial reduction in the size of the infarct within the ischemic brain area. This effect was accompanied by an upregulation of Tregs and a downregulation of CD3+T cells in the ischemic brain region. In ACC1 conditional knockout mice, the ability of Ago-24-3p to enhance infiltrating Treg cells and diminish CD3+T cells in the ischemic brain area has been negated. Furthermore, its capacity to reduce infarct volume has been reversed. Furthermore, we demonstrated that Ago-24-3p sustained improvement in post-stroke neurological deficits for up to 4 weeks after the MCAO procedure. CONCLUSIONS MiR-24-3p shows promise in the potential to reduce ACC1 expression, enhance the immunosuppressive activity of Tregs, and alleviate injuries caused by ischemic stroke. These discoveries imply that miR-24-3p could be a valuable therapeutic option for treating ischemic stroke.
Collapse
Affiliation(s)
- Yong Wang
- Department of Anesthesiology, The PLA Strategic Support Force Characteristic Medical Center, No.9 Anxiang Beili, Chaoyang District, Beijing 100101, China
| | - Yan Yang
- Department of Anesthesiology, Zibo Central Hospital, No.54 Gongqingtuanxi Road, Zhangdian District, Zibo 255020, China
| | - Lijun Xie
- Department of Anesthesiology, Zibo Central Hospital, No.54 Gongqingtuanxi Road, Zhangdian District, Zibo 255020, China
| | - Xiaona An
- Department of Anesthesiology, Zibo Central Hospital, No.54 Gongqingtuanxi Road, Zhangdian District, Zibo 255020, China
| | - Lu Zhang
- Department of Anesthesiology, Zibo Central Hospital, No.54 Gongqingtuanxi Road, Zhangdian District, Zibo 255020, China.
| |
Collapse
|
2
|
Otmani K, Rouas R, Lagneaux L, Krayem M, Duvillier H, Berehab M, Lewalle P. Acute myeloid leukemia-derived exosomes deliver miR-24-3p to hinder the T-cell immune response through DENN/MADD targeting in the NF-κB signaling pathways. Cell Commun Signal 2023; 21:253. [PMID: 37735672 PMCID: PMC10515055 DOI: 10.1186/s12964-023-01259-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/07/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND microRNAs (miRNAs) are known as potent gene expression regulators, and several studies have revealed the prognostic value of miRNAs in acute myeloid leukemia (AML) patient survival. Recently, strong evidence has indicated that miRNAs can be transported by exosomes (EXOs) from cancer cells to recipient immune microenvironment (IME) cells. RESULTS We found that AML blast-released EXOs enhance CD3 T-cell apoptosis in both CD4 and CD8 T cells. We hypothesized that miRNAs present in EXOs are key players in mediating the changes observed in AML T-cell survival. We found that miR-24-3p, a commonly overexpressed miRNA in AML, was present in released EXOs, suggesting that EXO-miR-24-3p was linked to the increased miR-24-3p levels detected in isolated AML T cells. These results were corroborated by ex vivo-generated miR-24-3p-enriched EXOs, which showed that miR-24-3p-EXOs increased apoptosis and miR-24-3p levels in T cells. We also demonstrated that overexpression of miR-24-3p increased T-cell apoptosis and affected T-cell proliferation by directly targeting DENN/MADD expression and indirectly altering the NF-κB, p-JAK/STAT, and p-ERK signaling pathways but promoting regulatory T-cell (Treg) development. CONCLUSIONS These results highlight a mechanism through which AML blasts indirectly impede T-cell function via transferred exosomal miR-24-3p. In conclusion, by characterizing the signaling network regulated by individual miRNAs in the leukemic IME, we aimed to discover new nonleukemic immune targets to rescue the potent antitumor function of T cells against AML blasts. Video Abstract.
Collapse
Affiliation(s)
- Khalid Otmani
- Experimental Hematology Laboratory, Hematology Department, Hôpital Universitaire de Bruxelles, (H.U.B.) Institut Jules Bordet, Université Libre de Bruxelles, 90 Meylemeersch Street, 1070, Brussels, Belgium.
| | - Redouane Rouas
- Experimental Hematology Laboratory, Hematology Department, Hôpital Universitaire de Bruxelles, (H.U.B.) Institut Jules Bordet, Université Libre de Bruxelles, 90 Meylemeersch Street, 1070, Brussels, Belgium
| | - Laurence Lagneaux
- Laboratoire de Thérapie Cellulaire Clinique (LTCC), Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Mohammad Krayem
- Laboratory of Clinical and Experimental Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Hugues Duvillier
- Flow Cytometry Facility, Hôpital Universitaire de Bruxelles (H.U.B.) Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Mimoune Berehab
- Experimental Hematology Laboratory, Hematology Department, Hôpital Universitaire de Bruxelles, (H.U.B.) Institut Jules Bordet, Université Libre de Bruxelles, 90 Meylemeersch Street, 1070, Brussels, Belgium
| | - Philippe Lewalle
- Experimental Hematology Laboratory, Hematology Department, Hôpital Universitaire de Bruxelles, (H.U.B.) Institut Jules Bordet, Université Libre de Bruxelles, 90 Meylemeersch Street, 1070, Brussels, Belgium.
| |
Collapse
|
3
|
Morales-Martínez M, Vega MI. Role of MicroRNA-7 (MiR-7) in Cancer Physiopathology. Int J Mol Sci 2022; 23:9091. [PMID: 36012357 PMCID: PMC9408913 DOI: 10.3390/ijms23169091] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
miRNAs are non-coding RNA sequences of approximately 22 nucleotides that interact with genes by inhibiting their translation through binding to their 3' or 5' UTR regions. Following their discovery, the role they play in the development of various pathologies, particularly cancer, has been studied. In this context, miR-7 is described as an important factor in the development of cancer because of its role as a tumor suppressor, regulating a large number of genes involved in the development and progression of cancer. Recent data support the function of miR-7 as a prognostic biomarker in cancer, and miR-7 has been proposed as a strategy in cancer therapy. In this work, the role of miR-7 in various types of cancer is reviewed, illustrating its regulation, direct targets, and effects, as well as its possible relationship to the clinical outcome of cancer patients.
Collapse
Affiliation(s)
- Mario Morales-Martínez
- Molecular Signal Pathway in Cancer Laboratory, UIMEO, Oncology Hospital, Siglo XXI National Medical Center, IMSS, Mexico City 06720, Mexico
| | - Mario I. Vega
- Molecular Signal Pathway in Cancer Laboratory, UIMEO, Oncology Hospital, Siglo XXI National Medical Center, IMSS, Mexico City 06720, Mexico
- Department of Medicine, Hematology-Oncology Division, Greater Los Angeles VA Healthcare Center, UCLA Medical Center, Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Advances in the enzymatic biofuel cell powered sensing systems for tumor diagnosis and regulation. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Yazarlou F, Kadkhoda S, Ghafouri-Fard S. Emerging role of let-7 family in the pathogenesis of hematological malignancies. Biomed Pharmacother 2021; 144:112334. [PMID: 34656064 DOI: 10.1016/j.biopha.2021.112334] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/04/2021] [Accepted: 10/10/2021] [Indexed: 12/30/2022] Open
Abstract
Let-7 includes a family of miRNA which are implicated in the developmental processes as well as carcinogenesis. This miRNA family has been shown to influence pathogenesis of a variety of hematological malignancies through changing expression of a number of oncogenic pathways, particularly those related with MYC. Expression of these miRNAs has been found to be different between distinct hematological malignancies or even between cytogenetically-defined subgroups of a certain malignancy. In the current review, we summarize the data regarding biogenesis, genomic locations, targets and regulatory network of this miRNA family in the context of hematological malignancies.
Collapse
Affiliation(s)
- Fatemeh Yazarlou
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Kadkhoda
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Wang L, Wu X, Su BSQ, Song R, Zhang JR, Zhu JJ. Enzymatic Biofuel Cell: Opportunities and Intrinsic Challenges in Futuristic Applications. ADVANCED ENERGY AND SUSTAINABILITY RESEARCH 2021. [DOI: 10.1002/aesr.202100031] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Linlin Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Xiaoge Wu
- Environment Science and Engineering College Yangzhou University Yangzhou 225009 China
| | - B. S. Qi‐wen Su
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Rongbin Song
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Jian-Rong Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| |
Collapse
|
7
|
Papiewska-Pająk I, Przygodzka P, Krzyżanowski D, Soboska K, Szulc-Kiełbik I, Stasikowska-Kanicka O, Boncela J, Wągrowska-Danilewicz M, Kowalska MA. Snail Overexpression Alters the microRNA Content of Extracellular Vesicles Released from HT29 Colorectal Cancer Cells and Activates Pro-Inflammatory State In Vivo. Cancers (Basel) 2021; 13:cancers13020172. [PMID: 33419021 PMCID: PMC7830966 DOI: 10.3390/cancers13020172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 01/14/2023] Open
Abstract
Simple Summary Knowledge of the factors that help migration of carcinoma cells is important for prevention of metastasis. Cancer cells release small particles, extracellular vesicles (EVs) that contain such factors. The aim of this study was to assess if the content of EVs changes through different stages of colorectal cancer (CRC) and evaluate how this process affects cancer progression in vivo in mouse CRC model. We found that EVs released from cells that have migratory properties contain different factors then EVs released from original tumor cells. We also show here that EVs can be incorporated into other cells that facilitate metastasis and change their properties depending on the EVs content. The content of cell-released EVs may also serve as a biomarker that denotes the stage of CRC and may be a target to prevent cancer progression. Abstract During metastasis, cancer cells undergo phenotype changes in the epithelial-mesenchymal transition (EMT) process. Extracellular vesicles (EVs) released by cancer cells are the mediators of intercellular communication and play a role in metastatic process. Knowledge of factors that influence the modifications of the pre-metastatic niche for the migrating carcinoma cells is important for prevention of metastasis. We focus here on how cancer progression is affected by EVs released from either epithelial-like HT29-cells or from cells that are in early EMT stage triggered by Snail transcription factor (HT29-Snail). We found that EVs released from HT29-Snail, as compared to HT29-pcDNA cells, have a different microRNA profile. We observed the presence of interstitial pneumonias in the lungs of mice injected with HT29-Snail cells and the percent of mice with lung inflammation was higher after injection of HT29-Snail-EVs. Incorporation of EVs released from HT29-pcDNA, but not released from HT29-Snail, leads to the increased secretion of IL-8 from macrophages. We conclude that Snail modifications of CRC cells towards more invasive phenotype also alter the microRNA cargo of released EVs. The content of cell-released EVs may serve as a biomarker that denotes the stage of CRC and EVs-specific microRNAs may be a target to prevent cancer progression.
Collapse
Affiliation(s)
- Izabela Papiewska-Pająk
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (P.P.); (D.K.); (K.S.); (I.S.-K.); (J.B.)
- Correspondence: (I.P.-P.); (M.A.K.)
| | - Patrycja Przygodzka
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (P.P.); (D.K.); (K.S.); (I.S.-K.); (J.B.)
| | - Damian Krzyżanowski
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (P.P.); (D.K.); (K.S.); (I.S.-K.); (J.B.)
| | - Kamila Soboska
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (P.P.); (D.K.); (K.S.); (I.S.-K.); (J.B.)
- Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Izabela Szulc-Kiełbik
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (P.P.); (D.K.); (K.S.); (I.S.-K.); (J.B.)
| | - Olga Stasikowska-Kanicka
- Department of Diagnostic Techniques in Pathomorphology, Medical University of Lodz, 90-419 Lodz, Poland; (O.S.-K.); (M.W.-D.)
| | - Joanna Boncela
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (P.P.); (D.K.); (K.S.); (I.S.-K.); (J.B.)
| | - Małgorzata Wągrowska-Danilewicz
- Department of Diagnostic Techniques in Pathomorphology, Medical University of Lodz, 90-419 Lodz, Poland; (O.S.-K.); (M.W.-D.)
| | - M. Anna Kowalska
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (P.P.); (D.K.); (K.S.); (I.S.-K.); (J.B.)
- Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Correspondence: (I.P.-P.); (M.A.K.)
| |
Collapse
|
8
|
Zhang W, Liu Y, Zhang J, Zheng N. Long Non-Coding RNA Taurine Upregulated Gene 1 Targets miR-185 to Regulate Cell Proliferation and Glycolysis in Acute Myeloid Leukemia Cells in vitro. Onco Targets Ther 2020; 13:7887-7896. [PMID: 32982274 PMCID: PMC7493018 DOI: 10.2147/ott.s238189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 07/15/2020] [Indexed: 12/17/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is a group of malignant hematopoietic system diseases. Taurine-upregulated gene 1 (TUG1) is a long non-coding RNA that has been associated with human cancers, including AML. However, the role and molecular mechanisms of TUG1 in AML remains to be defined. Methods Expression of TUG1 and miR-185 was detected using RT-qPCR. Cell viability and apoptotic rate were measured by MTT assay and flow cytometry, respectively. Glycolysis was determined by commercial glucose and lactate assay kits and Western blot. The target binding between TUG1 and miR-185 was predicted on Starbase online database and confirmed by luciferase reporter assay and RNA immunoprecipitation. Results TUG1 was upregulated and miR-185 was downregulated in the peripheral blood mononuclear cells of AML specimens and cells (HL-60, KG-1, MOLM-14, and MOLM-13). Both TUG1 knockdown and miR-185 overexpression via transfection could suppress cell viability, glucose consumption, lactate production, and hexokinase 2 expression, but promote apoptotic rate in HL-60 and KG-1 cells. Notably, TUG1 functioned as a sponge of miR-185 by target binding. Moreover, downregulation of miR-185 could partially overturn the effect of TUG1 knockdown on cell proliferation and glycolysis in HL-60 and KG-1 cells. Conclusion Expression of TUG1 was upregulated in AML patients and cells, and its knockdown repressed cell proliferation and glycolysis in AML cells in vitro by targeting miR-185.
Collapse
Affiliation(s)
- Weide Zhang
- Department of Hematology, The People's Hospital of Shouguang, Shouguang, Shandong, People's Republic of China
| | - Yuhua Liu
- Department of Digestive Oncology, The Gansu Provincial Cancer Hospital, Lanzhou, Gansu, People's Republic of China
| | - Jing Zhang
- Department of Psychiatry, Shouguang Mental and Health Care Center, Shouguang, Shandong, People's Republic of China
| | - Ni Zheng
- Department of Clinical Laboratory, Shengli Oilfield Central Hospital, Dongying, Shandong, People's Republic of China
| |
Collapse
|
9
|
Jurj A, Pasca S, Teodorescu P, Tomuleasa C, Berindan-Neagoe I. Basic knowledge on BCR-ABL1-positive extracellular vesicles. Biomark Med 2020; 14:451-458. [PMID: 32270699 DOI: 10.2217/bmm-2019-0510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chronic myelogenous leukemia (CML) is a hematological malignancy characterized by the excessive proliferation of myeloid progenitors. In the case of CML, these extracellular vesicles (EVs) were shown to communicate with hematopoietic stem cells, mesenchymal stem cells, myeloid derived suppressor cells and endothelial cells determining a beneficial microenvironment for the CML clone. Moreover, as these EVs are marked through BCR-ABL1, they were shown to be useful in clinical research in determining the grade of molecular remission with further studies being needed to determine if they are better or worse at predicting CML relapse. More than this, we consider BCR-ABL1-positive EVs to represent only a stepping-stone for other malignancies that also present fusion genes that are loaded in EVs.
Collapse
Affiliation(s)
- Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine & Translational Medicine, Iuliu Hatieganu University of Medicine & Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania
| | - Sergiu Pasca
- Department of Hematology, Iuliu Hatieganu University of Medicine & Pharmacy, 21 December Boulevard, 400124, Cluj-Napoca, Romania
| | - Patric Teodorescu
- Department of Hematology, Iuliu Hatieganu University of Medicine & Pharmacy, 21 December Boulevard, 400124, Cluj-Napoca, Romania.,Department of Hematology, Ion Chiricuta Clinical Cancer Center, Republicii Street 34-36, 400015, Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Research Center for Functional Genomics, Biomedicine & Translational Medicine, Iuliu Hatieganu University of Medicine & Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania.,Department of Hematology, Iuliu Hatieganu University of Medicine & Pharmacy, 21 December Boulevard, 400124, Cluj-Napoca, Romania.,Department of Hematology, Ion Chiricuta Clinical Cancer Center, Republicii Street 34-36, 400015, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Department of Hematology, Iuliu Hatieganu University of Medicine & Pharmacy, 21 December Boulevard, 400124, Cluj-Napoca, Romania
| |
Collapse
|
10
|
Kumar S, Sharawat SK, Ali A, Gaur V, Malik PS, Pandey M, Kumar S, Mohan A, Guleria R. Differential expression of circulating serum miR-1249-3p, miR-3195, and miR-3692-3p in non-small cell lung cancer. Hum Cell 2020; 33:839-849. [PMID: 32215864 DOI: 10.1007/s13577-020-00351-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/16/2020] [Indexed: 12/16/2022]
Abstract
Global deregulation in miRNA expression is a hallmark of cancer cell. An estimated 2300 mature miRNAs are encoded by human genome; role of many of which in carcinogenesis and as cancer biomarkers remains unexplored. In this study, we investigated the utility of miR-3692-3p, miR-3195, and miR-1249-3p as biomarkers in non-small cell lung cancer (NSCLC). For this prospective study, 115 subjects, including 75 NSCLC patients and 40 controls, were recruited. The expression of miR-3692-3p, miR-3195, and miR-1249-3p was checked using qRT-PCR. The miRNA expression was correlated with survival outcome and therapeutic response. There were no significant differences in the mean age of NSCLC patients and controls (56.2 and 55.3 years, respectively; p = 0.3242). Majority of NSCLC patients (67%) were smokers. We observed a significant upregulation of miR-3692-3p expression (p < 0.0001), while the expression of miR-3195 (p = 0.0017) and miR-1249-3p was significantly downregulated (p < 0.0001) in the serum of NSCLC patients as compared to controls. The expression of miR-1249-3p was significantly upregulated in lung adenocarcinoma versus lung squamous cell carcinoma (p = 0.0178). Interestingly, patients who responded to chemotherapy had higher expression of miR-1249-3p than non-responders (p = 0.0107). Moreover, patients with higher expression of miR-3195 had significantly longer overall survival (p = 0.0298). In multivariate analysis, miR-3195 emerged as independent prognostic factor for overall survival. We conclude that the miR-3195 may have prognostic significance, while miR-1249-3p may predict therapeutic response in NSCLC. Further studies are warranted to elucidate the role of these miRNAs in lung carcinogenesis and their utility as candidate cancer biomarkers.
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Surender K Sharawat
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Ashraf Ali
- Department of Pulmonary Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Vikas Gaur
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Prabhat Singh Malik
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Monu Pandey
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sunil Kumar
- Department of Surgical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Anant Mohan
- Department of Pulmonary Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Randeep Guleria
- Department of Pulmonary Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
11
|
Khnouf R, Han CM, Munro SA. Isolation of enriched small RNA from cell-lysate using on-chip isotachophoresis. Electrophoresis 2019; 40:3140-3147. [PMID: 31675123 DOI: 10.1002/elps.201900215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/07/2019] [Accepted: 10/23/2019] [Indexed: 11/08/2022]
Abstract
In spite of the growing interest in the roles and applications of small RNAs (sRNAs), sRNA isolation methods are inconsistent, tedious, and dependent on the starting number of cells. In this work, we employ ITP to isolate sRNAs from the cell-lysate of K562 (chronic myelogenous leukemia) cells in a polydimethylsiloxane (PDMS) mesofluidic device. Our method specifically purifies sRNA of <60 nucleotides from lysate of a wide range of cell number spanning from 100 to 1 000 000 cells. We measured the amount of sRNA using the Agilent Bioanalyzer and further verified the extraction efficiency by reverse transcription quantitative PCR. Our method was shown to be more efficient in sRNA extraction than commercial sRNA isolation kits, especially when using smaller numbers of starting cells. Our assay presents a simple and rapid sRNA extraction method with 20 min assay time and no intermediate transfer steps.
Collapse
Affiliation(s)
- Ruba Khnouf
- Department of Mechanical Engineering, Stanford University, Stanford, CA, United States.,Department of Biomedical Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Crystal M Han
- Joint Initiative for Metrology in Biology, National Institute of Standards and Technology, Stanford, CA, United States.,Department of Mechanical Engineering, San Jose State University, San Jose, CA, United States
| | - Sarah A Munro
- Joint Initiative for Metrology in Biology, National Institute of Standards and Technology, Stanford, CA, United States.,Minnesota Supercomputing Institute, University of Minnesota, MN, United States
| |
Collapse
|
12
|
Xagorari A, Gerousi M, Sioga A, Bougiouklis D, Argiriou A, Anagnostopoulos A, Sotiropoulos D. Identification of miRNAs from stem cell derived microparticles in umbilical cord blood. Exp Hematol 2019; 80:21-26. [PMID: 31734258 DOI: 10.1016/j.exphem.2019.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/25/2019] [Accepted: 11/05/2019] [Indexed: 01/05/2023]
Abstract
Umbilical cord blood CD34+ (UCB-CD34+) stem cells are clinically used in hematopoietic cell transplantation. However, there are limitations in the use of umbilical cord blood transplants because of the small number of cells and delayed engraftment. To gain a better understanding of functional components of UCB, we have detected and characterized CD34+ microparticles (CD34+MPs) from cord blood units. We collected cord blood units and assessed the numbers of CD34+MPs before and after red blood cell and plasma depletion by SEPAX processing using flow cytometry analysis. In parallel we identified MPs by electron microscopy. CD34+MPs and cells were isolated by MACs sorting. MicroRNAs (miR-106, miR-221, miR-517, miR-519, and miR-221) exhibited a characteristic microRNA profile that was further validated in isolated CD34+MPs. We found that in cord blood, there are CD34+MPs that carry microRNAs.
Collapse
Affiliation(s)
- Angeliki Xagorari
- Public Cord Blood Bank, Department of Hematology, "G. Papanicolaou" Hospital, Thessaloniki, Greece
| | - Marina Gerousi
- Institute of Applied Biosciences-Centre for Research and Technology Hellas, Thermi, Greece
| | - Antonia Sioga
- Department of Histology-Embryology and Anthropology, Medical School, Aristotle University of Thessaloniki, Greece
| | - Dimitris Bougiouklis
- Public Cord Blood Bank, Department of Hematology, "G. Papanicolaou" Hospital, Thessaloniki, Greece
| | - Anagnostis Argiriou
- Institute of Applied Biosciences-Centre for Research and Technology Hellas, Thermi, Greece
| | - Achilles Anagnostopoulos
- Public Cord Blood Bank, Department of Hematology, "G. Papanicolaou" Hospital, Thessaloniki, Greece
| | - Damianos Sotiropoulos
- Public Cord Blood Bank, Department of Hematology, "G. Papanicolaou" Hospital, Thessaloniki, Greece.
| |
Collapse
|
13
|
Ehsanpour A, Saki N, Bagheri M, Maleki Behzad M, Abroun S. The Expression of Microvesicles in Leukemia: Prognostic Approaches. CELL JOURNAL 2019; 21:115-123. [PMID: 30825284 PMCID: PMC6397602 DOI: 10.22074/cellj.2019.5847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/18/2018] [Indexed: 01/23/2023]
Abstract
Microvesicles (MVs) are the smallest subclass of the extracellular vesicles (EVs) spontaneously secreted by the external
budding from the cell membranes in physiologic and pathologic conditions. The MVs derived from leukemic cells (LCs) can
be detected by the expression of specific cluster of differentiation (CD) markers indicating their cellular origin while they can
transfer different agents such as microRNAs, cytokines, and chemokines. The secretion of these agents from MVs can affect
the vital processes of LCs such as cell cycle, proliferation, differentiation, and apoptosis. According to the effects of MVs
components on the vital processes of LCs, it has been postulated that a change in the expression of MVs might be involved
in the progression and prognosis of leukemia. However, further studies are needed to confirm the association between the
presence of MVs and their components with the prognosis of leukemia. It seems that the identification of the prognostic values
and the application of them for the detection of MVs in leukemia can provide new therapeutic targets for monitoring the status
of patients with leukemia.
Collapse
Affiliation(s)
- Ali Ehsanpour
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Marziye Bagheri
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masumeh Maleki Behzad
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Abroun
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran. Electronic Address:
| |
Collapse
|
14
|
Wang L, Shao H, Lu X, Wang W, Zhang JR, Song RB, Zhu JJ. A glucose/O 2 fuel cell-based self-powered biosensor for probing a drug delivery model with self-diagnosis and self-evaluation. Chem Sci 2018; 9:8482-8491. [PMID: 30568772 PMCID: PMC6256853 DOI: 10.1039/c8sc04019b] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/15/2018] [Indexed: 12/28/2022] Open
Abstract
Extending the application of self-powered biosensors (SPB) into the drug delivery field is highly desirable. Herein, a robust glucose/O2 fuel cell-based biosensor is successfully integrated with a targeted drug delivery system to create a self-sustained and highly compact drug delivery model with self-diagnosis and self-evaluation (DDM-SDSE). The glucose/O2 fuel cell-based biosensor firstly performs its diagnostic function by detecting the biomarkers of cancer. The drug delivery system attached on the anode of the glucose/O2 fuel cell can be released during the diagnostic operation to guarantee the occurrence of a therapy process. Accompanied by the therapy process, the glucose/O2 fuel cell-based biosensor can also act as an evaluation component to dynamically monitor the therapy efficacy by analyzing drug-induced apoptotic cells. In addition, the use of an abiotic catalyst largely improves the stability of the glucose/O2 fuel cell without sacrificing the output performance, further ensuring long-time dynamic evaluation as well as highly sensitive diagnosis and evaluation in this DDM-SDSE. Therefore, the present study not only expands the application of SPBs but also offers a promising in vitro "diagnosis-therapy-evaluation" platform to acquire valuable information for clinical cancer therapy.
Collapse
Affiliation(s)
- Linlin Wang
- State Key Laboratory of Analytical Chemistry for Life Science , Collaborative Innovation Center of Chemistry for Life Sciences , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China . ; ;
| | - Haohua Shao
- State Key Laboratory of Analytical Chemistry for Life Science , Collaborative Innovation Center of Chemistry for Life Sciences , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China . ; ;
| | - Xuanzhao Lu
- State Key Laboratory of Analytical Chemistry for Life Science , Collaborative Innovation Center of Chemistry for Life Sciences , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China . ; ;
| | - Wenjing Wang
- State Key Laboratory of Analytical Chemistry for Life Science , Collaborative Innovation Center of Chemistry for Life Sciences , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China . ; ;
| | - Jian-Rong Zhang
- State Key Laboratory of Analytical Chemistry for Life Science , Collaborative Innovation Center of Chemistry for Life Sciences , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China . ; ;
- School of Chemistry and Life Science , Nanjing University , Jinling College , Nanjing 210093 , China
| | - Rong-Bin Song
- State Key Laboratory of Analytical Chemistry for Life Science , Collaborative Innovation Center of Chemistry for Life Sciences , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China . ; ;
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science , Collaborative Innovation Center of Chemistry for Life Sciences , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China . ; ;
| |
Collapse
|
15
|
Yuan F, Liu L, Lei Y, Hu Y. MiRNA-142-3p increases radiosensitivity in human umbilical cord blood mononuclear cells by inhibiting the expression of CD133. Sci Rep 2018; 8:5674. [PMID: 29618746 PMCID: PMC5884857 DOI: 10.1038/s41598-018-23968-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/22/2018] [Indexed: 01/02/2023] Open
Abstract
This study is to explore the molecular regulation mechanism of CD133 which is associated with malignancy and poor prognosis of blood system diseases. CD133+HUCB-MNC (human umbilical cord blood mononuclear cells) and CD133-HUCB-MNC were isolated and amplificated from umbilical cord blood, and then were exposed to different doses of radiation and subjected to a clonogenic assay. CCK-8 kit was used to detect cell viability, Annexin V-FITC/PI cell apoptosis detection kit was used for the detection of apoptotic cells and the BrdU assay was performed by flow cytometry. The expression of protein was analyzed by western blots. The profile of miRNA expression in response to radiation was examined and validated by RT-PCR. miR-142-3p inhibited the expression of CD133 in umbilical cord blood mononuclear cells to increase radiosensitivity. CD133+HUCB-MNC cells were more radioresistant compared with CD133-HUCB-MNC cells. CD133+HUCB-MNC cells showed higher p-AKT and p-ERK levels after radiation. And miR-142-3p acted on 3'UTR of CD133 mRNA to inhibit CD133 expression. Moreover, miRNA-142-3p mimic increased radiosensitivity in CD133+HUCB-MNC cells. Our results elucidated a novel regulation pathway in hematopoietic stem cells and suggested a potential therapeutic approach for blood system diseases therapy.
Collapse
Affiliation(s)
- Fang Yuan
- 1Department of Oncology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Lu Liu
- Department of Clinical Nutrition, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yonghong Lei
- Department of Plastic Surgery, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yi Hu
- 1Department of Oncology, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
16
|
Milani G, Lana T, Bresolin S, Aveic S, Pastò A, Frasson C, Te Kronnie G. Expression Profiling of Circulating Microvesicles Reveals Intercellular Transmission of Oncogenic Pathways. Mol Cancer Res 2017; 15:683-695. [PMID: 28202504 DOI: 10.1158/1541-7786.mcr-16-0307] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 09/26/2016] [Accepted: 02/01/2017] [Indexed: 02/07/2023]
Abstract
Circulating microvesicles have been described as important players in cell-to-cell communication carrying biological information under normal or pathologic condition. Microvesicles released by cancer cells may incorporate diverse biomolecules (e.g., active lipids, proteins, and RNA), which can be delivered and internalized by recipient cells, potentially altering the gene expression of recipient cells and eventually impacting disease progression. Leukemia in vitro model systems were used to investigate microvesicles as vehicles of protein-coding messages. Several leukemic cells (K562, LAMA-87, TOM-1, REH, and SHI-1), each carrying a specific chromosomal translocation, were analyzed. In the leukemic cells, these chromosomal translocations are transcribed into oncogenic fusion transcripts and the transfer of these transcripts was monitored from leukemic cells to microvesicles for each of the cell lines. Microarray gene expression profiling was performed to compare transcriptomes of K562-derived microvesicles and parental K562 cells. The data show that oncogenic BCR-ABL1 transcripts and mRNAs related to basic functions of leukemic cells were included in microvesicles. Further analysis of microvesicles cargo revealed a remarkable enrichment of transcripts related to cell membrane activity, cell surface receptors, and extracellular communication when compared with parental K562 cells. Finally, coculturing of healthy mesenchymal stem cells (MSC) with K562-derived microvesicles displayed the transfer of the oncogenic message, and confirmed the increase of target cell proliferation as a function of microvesicle dosage.Implications: This study provides novel insight into tumor-derived microvesicles as carriers of oncogenic protein-coding messages that can potentially jeopardize cell-directed therapy, and spread to other compartments of the body. Mol Cancer Res; 15(6); 683-95. ©2017 AACR.
Collapse
Affiliation(s)
- Gloria Milani
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Tobia Lana
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Silvia Bresolin
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Sanja Aveic
- Istituto di Ricerca Pediatrica Città della Speranza (IRP), Padova, Italy
| | - Anna Pastò
- Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Chiara Frasson
- Department of Women's and Children's Health, University of Padova, Padova, Italy.,Istituto di Ricerca Pediatrica Città della Speranza (IRP), Padova, Italy
| | - Geertruy Te Kronnie
- Department of Women's and Children's Health, University of Padova, Padova, Italy.
| |
Collapse
|