1
|
Han HG, Lee HJ, Sim DY, Im E, Park JE, Park WY, Kim SY, Khil JH, Shim BS, Kim SH. Suppression of phosphoinositide 3-kinase/phosphoinositide-dependent kinase-1/serum and glucocorticoid-induced protein kinase pathway. Phytother Res 2021; 35:4547-4554. [PMID: 34132431 DOI: 10.1002/ptr.7157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/05/2021] [Accepted: 04/30/2021] [Indexed: 12/25/2022]
Abstract
In the current study, the pivotal roles of serum and glucocorticoid-induced protein kinase (SGK1) and NF-kB related signalings known as prognostic biomarkers in cervical cancers were explored in the antitumor effect of a ginseng saponin metabolite compound K (CK) in HeLa and SiHa cervical cancer cells. CK exerted significant cytotoxicity, induced sub-G1 accumulation, and attenuated the expression of proPoly (ADP-ribose) polymerase (pro-PARP) and Pro-cysteine aspartyl-specific protease (pro-caspase3) in HeLa cells more than in SiHa cells. CK inhibited phosphorylation of SGK1 and its upstream genes, phosphoinositide 3-kinases (PI3K), and phosphoinositide-dependent kinase-1 (PDK1) in HeLa cells. In addition, CK suppressed the phosphorylation of SGK1, NF-κB, and inhibitor of kappa B (IκB) and also NF-κB target genes such as X-linked inhibitor of apoptosis protein and B-cell lymphoma 2 (Bcl-2) in HeLa cells. Notably, Immunoprecipitation revealed that SGK1 binds to PI3K or PDK1 and also CK disturbed the binding between SGK1 and PI3K or PDK1 in HeLa cells. Furthermore, PI3K inhibitor LY294002 decreased expression of PI3K, p-PDK1, p-SGK1, and pro-caspase3 and SGK1 inhibitor GSK650394 also reduced expression of NF-κB and pro-caspase3 just like CK in HeLa cells. Overall, these findings suggest that CK induces apoptosis via suppression of PI3K/PDK1/SGK1 and NF-κB signaling axis.
Collapse
Affiliation(s)
- Hyuk Gyu Han
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hyo-Jung Lee
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Deok Yong Sim
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Eunji Im
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Ji Eon Park
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Woon Yi Park
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Seok Young Kim
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jae-Ho Khil
- Institute of Sports Science, Kyung Hee University, Yongin, South Korea
| | - Bum Sang Shim
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
2
|
Yogosawa S, Nakayama J, Nishi M, Ryo A, Yoshida K. Carbonic anhydrase 13 suppresses bone metastasis in breast cancer. Cancer Treat Res Commun 2021; 27:100332. [PMID: 33588197 DOI: 10.1016/j.ctarc.2021.100332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 02/08/2023]
Abstract
Metastatic progression is the leading cause of mortality in breast cancer. However, molecular mechanisms that govern this process remain unclear. In this study, we found that carbonic anhydrase 13 (CA13) plays a potential role in suppressing bone metastasis. iRFP713-labeled iCSCL-10A (iRFP-iCSCL-10A) breast cancer cells, which exhibit the hallmarks of cancer stem cells, exerted the ability of bone metastasis in hind legs after 5-week injections, whereas no metastasis was observed in control iRFP713-labeled MCF-10A (iRFP-MCF10A) cells. Transcriptome analysis indicated that the expression of several genes, including metabolism-related CA13, was reduced in bone metastatic iRFP-iCSCL-10A cells. In vitro and in vivo analyses demonstrated that overexpression of CA13 in iRFP-iCSCL-10A cells suppressed migration, invasion, and bone metastasis, together with the reduction of VEGF-A and M-CSF expression. Furthermore, we found that breast cancer patients with a low CA13 expression had significantly shorter overall survival and disease-free survival rates compared to those with higher CA13 expression. These findings suggest that CA13 may act as a novel prognostic biomarker and would be a therapeutic candidate for the prevention of bone metastasis in breast cancer.
Collapse
Affiliation(s)
- Satomi Yogosawa
- Department of Biochemistry, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Jun Nakayama
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Mayuko Nishi
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| |
Collapse
|
3
|
Ueki S, Fujishima F, Kumagai T, Ishida H, Okamoto H, Takaya K, Sato C, Taniyma Y, Kamei T, Sasano H. GR, Sgk1, and NDRG1 in esophageal squamous cell carcinoma: their correlation with therapeutic outcome of neoadjuvant chemotherapy. BMC Cancer 2020; 20:161. [PMID: 32106831 PMCID: PMC7045479 DOI: 10.1186/s12885-020-6652-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/17/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a highly malignant neoplasm. The glucocorticoid (GC)-glucocorticoid receptor (GR) pathway plays pivotal roles in cellular response to various stresses of tumor cells, including chemotherapy. However, the status of the GC-GR pathway in ESCC, including its correlation with chemotherapeutic responses, is largely unknown. METHODS GR, serum-and glucocorticoid-regulated kinase 1 (Sgk1), and N-myc down regulation gene 1 (NDRG1) were immunolocalized in 98 patients with ESCC who had undergone esophagectomy following neoadjuvant chemotherapy (NAC) with 2 courses of 5-fluorouracil + cisplatin. We also examined biopsy specimens before NAC in 42 cases and compared the results between those before and after NAC. RESULTS Overall survival (OS) of the patients treated with surgery following NAC was significantly shorter in the group with high GR than that with low GR status (P = 0.0473). Both OS and disease-free survival (DFS) were significantly shorter in both Sgk1- and NDRG1-high groups than in the low groups (OS: Sgk1, P = 0.0055; NDRG1, P = 0.0021; DFS: Sgk1, P = 0.0240; NDRG1, P = 0.0086). Biopsy specimens before NAC showed significantly shorter DFS in the high Sgk1 group (P = 0.0095), while both OS and DFS were shorter in the high NDRG1 group (OS, P = 0.0233; DFS, P = 0.0006) than in the respective low groups. In the high NDRG1 group of biopsy specimens before NAC, the tumor reduction rate by NAC was significantly attenuated (P = 0.021). CONCLUSIONS High GR, Sgk1, and NDRG1 statuses in ESCC after NAC was significantly associated with an overall worse prognosis, with no significant changes in their expression levels before and after NAC. Therefore, increased activity of the GC-GR pathway with enhanced induction of Sgk1 and NDRG1 in carcinoma cells play pivotal roles in tumor progression and development of chemo-resistance in patients with ESCC undergoing NAC.
Collapse
Affiliation(s)
- Shunsuke Ueki
- Department of Gastrointestinal Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.
- Department of Pathology, Tohoku University Graduate School of Medicine, 1-2 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.
| | - Fumiyoshi Fujishima
- Department of Pathology, Tohoku University Graduate School of Medicine, 1-2 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Takuro Kumagai
- Department of Gastrointestinal Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Hirotaka Ishida
- Department of Gastrointestinal Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Hiroshi Okamoto
- Department of Gastrointestinal Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Kai Takaya
- Department of Gastrointestinal Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Chiaki Sato
- Department of Gastrointestinal Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Yusuke Taniyma
- Department of Gastrointestinal Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Takashi Kamei
- Department of Gastrointestinal Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, 1-2 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| |
Collapse
|