1
|
Wang L, Xu R, Wang M, Wang M, Su S, Nian Y, Chen X. Exploration and Identification of Vitamin D and Related Genes as Potential Biomarkers for Colorectal Tumors. Onco Targets Ther 2025; 18:129-145. [PMID: 39872437 PMCID: PMC11769849 DOI: 10.2147/ott.s495066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
Objective To explore the relationship and underlying mechanisms between vitamin D and CRC, offering valuable insights into the diagnosis and treatment of CRC. Materials and Methods Serum levels of 1,25(OH)2D3 were measured using a double-antibody sandwich assay. Bioinformatics analysis identified vitamin D-related CRC genes, which were validated using HCT116 and HT29 cell lines. Changes in hub gene expression were analyzed via RT-qPCR. Results Serum levels of 1,25(OH)2D3 were 42.99±6.02µg/mL in the normal group, 37.06±9.56µg/mL in the CRA group, and 19.00±5.96µg/mL in the CRC group (p<0.05). No significant differences were observed in VDR SNPs among the groups. Significant expression differences were detected in vitamin D-related colon cancer genes across the groups. LASSO regression analysis identified 5 key genes. The diagnostic model based on these genes demonstrated high diagnostic efficiency and performed well in the TCGA-COAD dataset. RT-qPCR results showed that SOSTDC1, PRKAA2, and CEACAM1 expressions decreased in the CRC and CRA groups, while MMP1 and CCND1 expressions increased. In vitro experiments indicated that calcitriol inhibits the proliferation and migration of HCT116 and HT29 cell lines and significantly alters the expression of hub genes. Conclusion Serum vitamin D levels are significantly lower in CRC patients. Vitamin D has been shown to inhibit the proliferation and migration of colon cancer cells and reduce the expression of oncogenes. Therefore, vitamin D holds substantial potential for the diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Lu Wang
- Tianjin Medical University, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tian Jin, People’s Republic of China
- Baotou Medical College, The Second Affiliated Hospital of Baotou Medical College, Baotou, People’s Republic of China
| | - Ruize Xu
- Baotou Medical College, The Second Affiliated Hospital of Baotou Medical College, Baotou, People’s Republic of China
| | - Mizhu Wang
- Baotou Medical College, The Second Affiliated Hospital of Baotou Medical College, Baotou, People’s Republic of China
| | - Menghan Wang
- Baotou Medical College, The Second Affiliated Hospital of Baotou Medical College, Baotou, People’s Republic of China
| | - Shuai Su
- Tianjin Medical University, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tian Jin, People’s Republic of China
| | - Yuanyuan Nian
- Baotou Medical College, The Second Affiliated Hospital of Baotou Medical College, Baotou, People’s Republic of China
| | - Xin Chen
- Tianjin Medical University, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tian Jin, People’s Republic of China
| |
Collapse
|
2
|
Götz L, Rueckschloss U, Ergün S, Kleefeldt F. CEACAM1 in vascular homeostasis and inflammation. Eur J Clin Invest 2024; 54 Suppl 2:e14345. [PMID: 39674877 DOI: 10.1111/eci.14345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/26/2024] [Indexed: 12/17/2024]
Abstract
INTRODUCTION The glycoprotein Carcinoembryonic Antigen-related Cell Adhesion Molecule 1 (CEACAM1), also known as CD66a, is a member of the immunoglobulin superfamily. It is expressed in a variety of tissues including epithelial, immune, as well as endothelial cells, and is crucial to diverse physiological and pathological mechanisms. This review aims to provide a comprehensive understanding of CEACAM1's multifaceted roles in vascular biology and inflammatory processes. METHODS Directed literature research was conducted using databases, such as PubMed, and relevant studies were categorized based on the physiological effects of CEACAM1. RESULTS CEACAM1 plays a pivotal role in vascular homeostasis, particularly influencing the formation, maturation, and aging of blood vessels, as well as the endothelial barrier function. It supports endothelium-dependent vasodilation and nitric oxide formation, thus promoting vascular integrity and regulating blood pressure. Additionally, CEACAM1 is of emerging importance to vascular inflammation and its potential clinical consequences. CONCLUSION CEACAM1 is a crucial regulator of vascular homeostasis and inflammation with significant implications for cardiovascular health. Despite the lack of understanding of tissue-specific modulation and isoform-dependent mechanisms, CEACAM1 could be a promising therapeutic target for the prevention of cardiovascular disease in the future.
Collapse
Affiliation(s)
- Lisa Götz
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Uwe Rueckschloss
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
3
|
Zhang B, Liu R, Huang H, Wang C, Yang C. Identifying CEACAM1 as a potential prognostic biomarker for basal-like breast cancer by bioinformatics analysis and in vitro experiments. J Cancer 2024; 15:6468-6478. [PMID: 39513107 PMCID: PMC11540499 DOI: 10.7150/jca.101636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/30/2024] [Indexed: 11/15/2024] Open
Abstract
Background: Carcinoembryonic antigen related cell adhesion molecule-1 (CEACAM1) is a very important intercellular adhesion molecule, and its prognostic relevance to breast cancer (BC), especially basal-like breast cancer (BLBC), remains poorly understood. Methods: CEACAM1 mRNA expression data for BC were sourced from the Cancer Genome Atlas (TCGA) database. Kaplan-Meier survival analysis and Cox regression analysis were used to evaluate the prognostic relationship between CEACAM1 expression and BC. Signaling pathways associated with CEACAM1 were analysed using Gene Set Enrichment Analysis (GSEA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Moreover, cell counting kit-8 (CCK-8), flow cytometry, transwell and wound-healing assays were employed to identify the biological functions of CEACAM1 in BLBC. Results: CEACAM1 was correlated with overall survival (OS) of BLBC patients. Compared with the subgroup with better prognosis, the levels of CEACAM1 mRNA expression were significantly lower in the subgroup of BLBC with poorer prognosis. Both univariate and multivariate Cox regression analysis suggested that down-regulation of CEACAM1 expression may be an independent factor for poor prognosis in BLBC patients. GSEA and KEGG analysis revealed that CEACAM1 was negatively related with signaling pathways including extracellular matrix (ECM) receptor interaction, focal adhesion, and cell adhesion. The results of in vitro experiments indicated that CEACAM1 not only induced apoptosis of BLBC cells, but also inhibited the invasive and metastatic ability of cancer cells. Conclusions: CEACAM1 may contribute to improving the OS of BLBC patients due to its ability to inhibit the proliferation and metastasis of cancer cells. Therefore, CEACAM1 could be used as a potential prognostic biomarker and therapeutic target in BLBC.
Collapse
Affiliation(s)
- Boke Zhang
- Department of Clinical Laboratory Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Ran Liu
- Department of Cancer center, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Haixia Huang
- Department of Medical Oncology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Chuanzhu Wang
- Department of Clinical Laboratory, Anhui No.2 Provincial People's Hospital, Hefei, China
| | - Changcheng Yang
- Department of Medical Oncology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Department of Medical Oncology, People's Hospital of Wanning, Wanning, Hainan Province, China
| |
Collapse
|
4
|
Ma RX, Wei JR, Hu YW. Characteristics of Carcinoembryonic Antigen-Related Cell Adhesion Molecules and Their Relationship to Cancer. Mol Cancer Ther 2024; 23:939-948. [PMID: 38490257 DOI: 10.1158/1535-7163.mct-23-0461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/02/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Carcinoembryonic antigen-related cell adhesion molecules (CEACAM), such as carcinoembryonic antigen (CEA) and the oncofetal glycoprotein family, are tumor markers. The CEACAMs consist of 12 different human CEACAMs and 5 different murine CEACAMs. The CEACAM family of proteins participates in multiple biological processes that include the immune response, angiogenesis, and cancer. CEACAMs play a significant role in cancer initiation and development. Increasing evidence suggests that family members may be new cancer biomarkers and targets in that CEACEAMs tend to be aberrantly expressed and therefore may have potential diagnostic and therapeutic importance. This review systematically summarizes the biogenesis, biological properties, and functions of CEACAMs, with a focus on their relationship with cancer and potential clinical application. As our knowledge of the relationships among CEACAMs and cancer increases, and as our understanding of the involved molecular mechanisms improves, new therapeutic strategies will evolve for cancer prevention and treatment of patients with cancer.
Collapse
Affiliation(s)
- Ru-Xue Ma
- Department of Cardiac Center, Guangzhou Medical University, Guangzhou Women and Children Medical Center, Guangzhou, China
| | - Jian-Rui Wei
- Department of Cardiac Center, Guangzhou Medical University, Guangzhou Women and Children Medical Center, Guangzhou, China
| | - Yan-Wei Hu
- Department of Laboratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Götz L, Rueckschloss U, Balk G, Pfeiffer V, Ergün S, Kleefeldt F. The role of carcinoembryonic antigen-related cell adhesion molecule 1 in cancer. Front Immunol 2023; 14:1295232. [PMID: 38077351 PMCID: PMC10704240 DOI: 10.3389/fimmu.2023.1295232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
The Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), also known as CD66a, is a member of the immunoglobulin superfamily. CEACAM1 was shown to be a prognostic marker in patients suffering from cancer. In this review, we summarize pre-clinical and clinical evidence linking CEACAM1 to tumorigenicity and cancer progression. Furthermore, we discuss potential CEACAM1-based mechanisms that may affect cancer biology.
Collapse
Affiliation(s)
- Lisa Götz
- Institute of Anatomy and Cell Biology, Julius‐Maximilians‐University Würzburg, Würzburg, Germany
| | - Uwe Rueckschloss
- Institute of Anatomy and Cell Biology, Julius‐Maximilians‐University Würzburg, Würzburg, Germany
| | - Gözde Balk
- Institute of Anatomy and Cell Biology, Julius‐Maximilians‐University Würzburg, Würzburg, Germany
| | - Verena Pfeiffer
- Institute of Anatomy and Cell Biology, Julius‐Maximilians‐University Würzburg, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius‐Maximilians‐University Würzburg, Würzburg, Germany
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, Julius‐Maximilians‐University Würzburg, Würzburg, Germany
- Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
6
|
Catton EA, Bonsor DA, Herrera C, Stålhammar-Carlemalm M, Lyndin M, Turner CE, Soden J, van Strijp JAG, Singer BB, van Sorge NM, Lindahl G, McCarthy AJ. Human CEACAM1 is targeted by a Streptococcus pyogenes adhesin implicated in puerperal sepsis pathogenesis. Nat Commun 2023; 14:2275. [PMID: 37080973 PMCID: PMC10119177 DOI: 10.1038/s41467-023-37732-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/27/2023] [Indexed: 04/22/2023] Open
Abstract
Life-threatening bacterial infections in women after childbirth, known as puerperal sepsis, resulted in classical epidemics and remain a global health problem. While outbreaks of puerperal sepsis have been ascribed to Streptococcus pyogenes, little is known about disease mechanisms. Here, we show that the bacterial R28 protein, which is epidemiologically associated with outbreaks of puerperal sepsis, specifically targets the human receptor CEACAM1. This interaction triggers events that would favor the development of puerperal sepsis, including adhesion to cervical cells, suppression of epithelial wound repair and subversion of innate immune responses. High-resolution structural analysis showed that an R28 domain with IgI3-like fold binds to the N-terminal domain of CEACAM1. Together, these findings demonstrate that a single adhesin-receptor interaction can drive the pathogenesis of bacterial sepsis and provide molecular insights into the pathogenesis of one of the most important infectious diseases in medical history.
Collapse
Affiliation(s)
- Erin A Catton
- Centre for Bacterial Resistance Biology, Section of Molecular Microbiology, Department of Infectious Diseases, Imperial College London, London, SW7 2AZ, UK
| | - Daniel A Bonsor
- University of Maryland, Baltimore, MD, 21201, USA
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Carolina Herrera
- Section of Immunology of Infection, Department of Infectious Disease, Imperial College London, London, W2 1NY, UK
| | | | - Mykola Lyndin
- Sumy State University, Sumy, 40000, Ukraine
- Institute of Anatomy, Medical Faculty, University of Duisburg-Essen, Essen, 45147, Germany
| | - Claire E Turner
- The School of Biosciences, The Florey Institute, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Jo Soden
- Retrogenix, Chinley, High Peak, SK23 6FJ, Chinley, UK
| | - Jos A G van Strijp
- Department of Medical Microbiology, UMC Utrecht, Utrecht, 3584 CX, The Netherlands
| | - Bernhard B Singer
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, 1105 AZ, The Netherlands
| | - Nina M van Sorge
- Department of Medical Microbiology, UMC Utrecht, Utrecht, 3584 CX, The Netherlands.
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, 1105 AZ, The Netherlands.
- Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam UMC, location AMC, Amsterdam, 1105 AZ, The Netherlands.
| | - Gunnar Lindahl
- Department of Laboratory Medicine, Division of Medical Microbiology, Lund University, Lund, 223 62, Sweden.
- Department of Chemistry, Division of Applied Microbiology, Lund University, Lund, 221 00, Sweden.
| | - Alex J McCarthy
- Centre for Bacterial Resistance Biology, Section of Molecular Microbiology, Department of Infectious Diseases, Imperial College London, London, SW7 2AZ, UK.
- Department of Medical Microbiology, UMC Utrecht, Utrecht, 3584 CX, The Netherlands.
| |
Collapse
|
7
|
CEACAM1 Is a Prognostic Biomarker and Correlated with Immune Cell Infiltration in Clear Cell Renal Cell Carcinoma. DISEASE MARKERS 2023; 2023:3606362. [PMID: 36712923 PMCID: PMC9876685 DOI: 10.1155/2023/3606362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/24/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023]
Abstract
Background CEACAM1 has been shown to be aberrantly expressed in a variety of tumors, and modulation of CEACAM1-related signaling pathways has been suggested as a novel approach for cancer immunotherapy in recent years. However, its role in clear cell renal cell carcinoma (ccRCC) is unclear. Methods The relationship between CEACAM1 and ccRCC was demonstrated based on data from TCGA, GEO, and HPA databases. And the relationship between clinicopathological features and CEACAM1 expression was also assessed. Survival curve analysis was performed to analyze the prognostic relationship between CEACAM1 expression and ccRCC. Protein interaction network analysis was used to analyze the relationship between CEACAM1 and microenvironment-related proteins. In addition, the immunomodulatory role of CEACAM1 in ccRCC was assessed by analyzing CEACAM1 and immune cell infiltration. Results The expression of CEACAM1 was lower in ccRCC tissues than in adjacent normal tissues, and its expression level was negatively correlated with tumor size status (P < 0.001), metastasis status (P = 0.009), pathological stage (P = 0.002), gender (P < 0.001), histological grade (P < 0.001), and primary therapy outcome (P = 0.045) of ccRCC. Survival curve analysis showed that ccRCC patients with lower CEACAM1 expression exhibited shorter overall survival (P < 0.001), and CEACAM1 interacted with microenvironmental molecules such as fibronectin and integrins. Furthermore, immune infiltration analysis showed that CEACAM1 expression correlated with CD8+ and CD4+ T cells, macrophage, neutrophil, and dendritic cell infiltration in ccRCC. Conclusions CEACAM1 expression correlates with progression, prognosis, and immune cell infiltration in ccRCC patients, and it may be a promising prognostic biomarker and therapeutic target for ccRCC.
Collapse
|
8
|
Tanawattanasuntorn T, Rattanaburee T, Thongpanchang T, Graidist P. Trans-(±)-Kusunokinin Binding to AKR1B1 Inhibits Oxidative Stress and Proteins Involved in Migration in Aggressive Breast Cancer. Antioxidants (Basel) 2022; 11:antiox11122347. [PMID: 36552555 PMCID: PMC9774946 DOI: 10.3390/antiox11122347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/12/2022] [Accepted: 11/19/2022] [Indexed: 11/29/2022] Open
Abstract
Synthetic trans-(±)-kusunokinin ((±)KU), a potential anticancer substance, was revealed to have an inhibitory effect on breast cancer. According to the computational modeling prediction, AKR1B1, an oxidative stress and cancer migration protein, could be a target protein of trans-(-)-kusunokinin. In this study, we determined the binding of (±)KU and AKR1B1 on triple-negative breast and non-serous ovarian cancers. We found that (±)KU exhibited a cytotoxic effect that was significantly stronger than zopolrestat (ZP) and epalrestat (EP) (known AKR1B1 inhibitors) on breast and ovarian cancer cells. (±)KU inhibited aldose reductase activity that was stronger than trans-(-)-arctiin ((-)AR) but weaker than ZP and EP. Interestingly, (±)KU stabilized AKR1B1 on SKOV3 and Hs578T cells after being heated at 60 and 75 °C, respectively. (±)KU decreased malondialdehyde (MDA), an oxidative stress marker, on Hs578T cells in a dose-dependent manner and the suppression was stronger than EP. Furthermore, (±)KU downregulated AKR1B1 and its downstream proteins, including PKC-δ, NF-κB, AKT, Nrf2, COX2, Twist2 and N-cadherin and up-regulated E-cadherin. (±)KU showed an inhibitory effect on AKR1B1 and its downstream proteins, similar to siRNA-AKR1B1. Interestingly, the combination of siRNA-AKR1B1 with EP or (±)KU showed a greater effect on the suppression of AKR1B1, N-cadherin, E-cadherin and NF-κB than single treatments. Taken together, we concluded that (±)KU-bound AKR1B1 leads to the attenuation of cellular oxidative stress, as well as the aggressiveness of breast cancer cell migration.
Collapse
Affiliation(s)
- Tanotnon Tanawattanasuntorn
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Thidarath Rattanaburee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Tienthong Thongpanchang
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Potchanapond Graidist
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Correspondence: ; Tel.: +66-74-45-1184
| |
Collapse
|
9
|
Motawi TM, Zakhary NI, Darwish HA, Abdullah H, Tadros SA. Significance of Some Non-Invasive Biomarkers in the Early Diagnosis and Staging of Egyptian Breast Cancer Patients. Asian Pac J Cancer Prev 2020; 21:3279-3284. [PMID: 33247685 PMCID: PMC8033118 DOI: 10.31557/apjcp.2020.21.11.3279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Indexed: 12/24/2022] Open
Abstract
Introduction: Breast cancer is one of the most relevant malignancies among women. Early diagnosis and accurate staging of breast cancer is important for the selection of an appropriate therapeutic strategy and achieving a better outcome. Aim: This study aimed to explore the significance of some non-invasive biomarkers in the early diagnosis and staging of Egyptian breast cancer patients. Subjects and Methods: A total of 135 female patients with physically and pathologically confirmed breast cancer and 40 unrelated controls as well as 40 patients with benign breast mass were enrolled in this study. The malignant breast cancer group was further divided into four groups according to tumor size. Serum levels of carcinoembryonic antigen-related cell adhesion molecule-1 (CEACAM1), resistin and visfatin were determined by enzyme immunoassay. Results: Elevated levels of CEACAM1, resistin and visfatin were observed in breast cancer patients when compared with normal control and benign groups. The cutoff values, sensitivities and specificities of these biomarkers were appropriate for the discrimination of breast cancer from controls. Additionally, the serum levels of visfatin increased positively with tumor size and consequently with breast cancer stages. Conclusion: CEACAM1, resistin and visfatin are valuable in early diagnosis of breast cancer, with visfatin being preferentially used in staging.
Collapse
Affiliation(s)
- Tarek Mk Motawi
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nadia I Zakhary
- Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Hebatallah A Darwish
- Pharmacology, Toxicology and Biochemistry Department, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt (FUE), Cairo, Egypt
| | - Hassan Abdullah
- Department of Surgical Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Samer A Tadros
- Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), October, Egypt
| |
Collapse
|
10
|
Qian W, Huang P, Liang X, Chen Y, Guan B. High expression of carcinoembryonic antigen-associated cell adhesion molecule 1 is associated with microangiogenesis in esophageal squamous cell carcinoma. Transl Cancer Res 2020; 9:4762-4769. [PMID: 35117839 PMCID: PMC8798924 DOI: 10.21037/tcr-19-2039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 07/14/2020] [Indexed: 01/05/2023]
Abstract
Background Carcinoembryonic antigen-associated cell adhesion molecule 1 (CEACAM1) plays an important role in tumor progression, invasion, and metastasis by regulating angiogenesis. However, the expression of CEACAM1 in esophageal cancer tissues and its relationship with microvessel density (MVD) has not been investigated before. Methods MVD and the expression of CEACAM1 in 80 esophageal squamous cell carcinoma (ESCC) tissues were determined by immunohistochemistry (IHC). Statistical analyses were conducted to test the associations between CEACAM1 expression, MVD level, clinicopathologic factors, and prognosis. Results The expression level of CEACAM1 was significantly correlated with the level of MVD. Kaplan-Meier analysis showed no significant correlations between local recurrence and distant metastasis in high MVD and high CEACAM-1 expression group. Kaplan-Meier analysis also showed a poorer survival rate in patients with high MVD or high CEACAM-1. Univariate analysis showed that MVD levels, CEACAM1 expression, lymph node metastasis, and patient's age were prognostic factors for postoperative ESCC. The results of multivariate analysis indicated that the significance of the prognostic effect of CEACAM-1 expression observed by univariate analysis disappeared when analyzed together with MVD, suggesting that the prognostic impact of CEACAM1 expression was dependent on MVD level, while MVD was still a significant prognostic factor for adverse cancer-related survival (P=0.001). Conclusions The CEACAM1 expression is a potential prognostic factor for postoperative ESCC combined with MVD level.
Collapse
Affiliation(s)
- Weihua Qian
- Department of Oncology, Zhangjiagang Hospital of Traditional Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Pan Huang
- Department of Oncology, Zhangjiagang Hospital of Traditional Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Suzhou, China.,The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaohong Liang
- Department of Respiratory, Zhangjiagang Hospital of Traditional Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Yuan Chen
- Department of Central Research Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Bingxin Guan
- Department of Pathology, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
11
|
Hayashi S, Osada Y, Miura K, Simizu S. Cell-dependent regulation of vasculogenic mimicry by carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1). Biochem Biophys Rep 2020; 21:100734. [PMID: 32025578 PMCID: PMC6997815 DOI: 10.1016/j.bbrep.2020.100734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
Vasculogenic mimicry (VM) promotes tumor migration, metastasis, and invasion in various types of cancer, but the relationship between VM and these phenotypes remains undefined. In this study, we examined carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1) as a novel target of VM. We found that ectopic expression of CEACAM1 in HT1080 human fibrosarcoma cells suppressed the formation of a VM-like network. Further, cell migration and proliferation were abated by the introduction of CEACAM1 into HT1080 cells. Conversely, knockout (KO) of the CEACAM1 gene in SK-MEL-28 melanoma cells, which normally express high levels of CEACAM1, inhibited formation of a VM-like network, which was covered on reintroduction of CEACAM1. These results suggest that CEACAM1 differentially regulates formation of the VM-like network between cancer cell types and implicate CEACAM1 as a novel therapeutic target in malignant cancer. CEACAM1 is not expressed in HT1080 cells, and overexpression of CEACAM1 in HT1080 cells suppresses vasculogenic mimicry. CEACAM1 is highly expressed in SK-MEL-28 cells, and deletion of CEACAM1 in SK-MEL-28 cells abolishes vasculogenic mimicry. CEACAM1 regulates vasculogenic mimicry in a cell-dependent manner.
Collapse
Affiliation(s)
- Soichiro Hayashi
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Yoshiyuki Osada
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Kazuki Miura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Siro Simizu
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| |
Collapse
|
12
|
Zhang F, Qin S, Xiao X, Tan Y, Hao P, Xu Y. Overexpression of LIMD2 promotes the progression of non-small cell lung cancer. Oncol Lett 2019; 18:2073-2081. [PMID: 31423280 DOI: 10.3892/ol.2019.10473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 04/17/2019] [Indexed: 12/31/2022] Open
Abstract
LIM domain containing 2 (LIMD2) is a small LIM-only protein that has been demonstrated to promote tumor progression; however, the expression and function of LIMD2 in non-small cell lung cancer (NSCLC) has not previously been reported. In the present study, reverse transcription-quantitative PCR and western blot analysis were conducted to examine the mRNA and protein expression levels of LIMD2. Cell Counting Kit-8, Transwell and wound-healing assays were performed in order to examine cell proliferation, invasion and migration, respectively. The data revealed that the LIMD2 expression levels were significantly increased in NSCLC tissues and cell lines, compared with adjacent non-tumor tissues and normal lung epithelial cells, respectively. In addition, the high expression of LIMD2 was significantly associated with lymph node metastasis, distant metastasis and advanced clinical stage in NSCLC. The patients with NSCLC with a high expression of LIMD2 exhibited shorter survival times than those with low LIMD2 expression. The knockdown of LIMD2 caused remarkable decreases in NSCLC cell proliferation, migration and invasion. Bioinformatics analysis and luciferase reporter gene assay data further confirmed that LIMD2 was a direct target gene of microRNA-124 (miR-124), a well-known tumor suppressor in NSCLC. The expression of LIMD2 was negatively regulated by miR-124 in NSCLC cells. In addition, miR-124 was downregulated in NSCLC tissues compared with adjacent non-tumor tissues, and an inverse correlation was observed between the expression of LIMD2 and miR-124 in NSCLC tissues. In conclusion, the present study demonstrates that LIMD2 serves an oncogenic role in NSCLC, suggesting that it may be used as a potential therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Feifei Zhang
- Department of Imaging Diagnostic Center, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,PET/CT Center, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010017, P.R. China
| | - Shana Qin
- PET/CT Center, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010017, P.R. China
| | - Xiang Xiao
- Department of Imaging Diagnostic Center, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yuefa Tan
- Department of Imaging Diagnostic Center, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Peng Hao
- Department of Imaging Diagnostic Center, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yikai Xu
- Department of Imaging Diagnostic Center, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
13
|
Prognostic Impact of CEACAM1 in Node-Negative Ovarian Cancer Patients. DISEASE MARKERS 2018; 2018:6714287. [PMID: 30050594 PMCID: PMC6046165 DOI: 10.1155/2018/6714287] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/31/2018] [Indexed: 01/01/2023]
Abstract
The underlying mechanisms of ovarian cancer (OvCa) dissemination are still poorly understood, and novel molecular markers for this cancer type are urgently needed. In search of adhesion molecules with prognostic relevance in OvCa, we compared tumors with good outcome (alive > 3 years) and those with poor outcome (dead < 2 years) within data from The Cancer Genome Atlas (TCGA). The carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) turned out as the only gene with differential expression in these groups. In order to further investigation on its role in OvCa, we analyzed CEACAM1 mRNA levels extracted from TCGA microarray data (n = 517) as well as CEACAM1 protein expression by Western blot analysis in a cohort of 242 tumor samples. Further, CEACAM1 localization in tumour tissue was evaluated by immunohistochemistry and CEACAM1 splice variants by RT-PCR in representative tumours. In Kaplan–Meier analysis, high CEACAM1 mRNA levels significantly correlated with longer survival (p = 0.008). By Western blot analysis in the second cohort, similar associations of high CEACAM1 protein levels with longer recurrence-free survival (RFS, p = 0.035) and overall survival (OAS, p = 0.004) were observed. In multivariate Cox regression analysis including clinical prognostic parameters, CEACAM1 mRNA or protein expression turned out as independent prognostic markers. Stratified survival analysis showed that high CEACAM1 protein expression was prognostic in node-negative tumors (p = 0.045 and p = 0.0002 for DFS and OAS) but lost prognostic significance in node-positive carcinomas. Similarly, high CEACAM1 mRNA expression did not show prognostic relevance in tumors with lymphatic invasion (L1) but was associated with longer survival in cases without lymphovascular involvement. Further analysis showed a predominance of 4S and 4L isoforms and mostly membraneous CEACAM1 localization in ovarian tumours. Our results suggest that CEACAM1 might be an independent favorable prognostic marker in OvCa, especially in the subgroup of patients with solely intraperitoneal metastasis.
Collapse
|