1
|
Cao XM, Kang WD, Xia TH, Yuan SB, Guo CA, Wang WJ, Liu HB. High expression of the circadian clock gene NPAS2 is associated with progression and poor prognosis of gastric cancer: A single-center study. World J Gastroenterol 2023; 29:3645-3657. [PMID: 37398880 PMCID: PMC10311614 DOI: 10.3748/wjg.v29.i23.3645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/16/2023] [Accepted: 05/04/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND The prognostic assessment of patients after surgical resection of gastric cancer (GC) patients is critical. However, the role of the circadian clock gene NPAS2 expression in GC remains unknown.
AIM To explore the relationship between NPAS2 and the survival prognosis of GC patients and clarify its role in evaluating GC prognosis.
METHODS The tumor tissues and clinical data of 101 patients with GC were collected retrospectively. Immunohistochemical staining (IHC) was used to detect the expression of NPAS2 protein in GC and adjacent tissues. Univariate and multivariate Cox regression analysis was used to determine the independent prognostic factors of GC, and a nomogram prediction model was established. The receiver operating characteristic (ROC) curve, the ROC area under the curve, the calibration curve, and C-index were used to evaluate the predictive effectiveness of the model. Kaplan Meier analysis was used to compare the risk stratification of subgroups according to the median score in the nomogram model of each patient.
RESULTS Microarray IHC analysis showed that the positive rate of NPAS2 protein expression in GC tissues was 65.35%, which was significantly higher than 30.69% in adjacent tissues. The high expression of NPAS2 was correlated with tumor-node-metastasis (TNM) stage (P < 0.05), pN stage (P < 0.05), metastasis (P < 0.05), venous invasion (P < 0.05), lymphatic invasion (P < 0.05), and lymph node positive (P < 0.05) of GC. Kaplan Meier survival analysis showed that the 3-year overall survival (OS) of patients with high NPAS2 expression was significantly shortened (P < 0.0001). Univariate and multivariate COX regression analysis showed that TNM stage (P = 0.009), metastasis (P = 0.009), and NPAS2 expression (P = 0.020) were independent prognostic factors of OS in GC patients for 3 years. The nomogram prediction model based on independent prognostic factors has a C-Index of 0.740 (95%CI: 0.713-0.767). Furthermore, subgroup analysis showed that the 3-year OS time of the high-risk group was significantly lower than that of the low-risk group (P < 0.0001).
CONCLUSION NPAS2 is highly expressed in GC tissues and is closely related to worse OS in patients. Therefore, the evaluation of NPAS2 expression may be a potential marker for GC prognosis evaluation. Notably, the nomogram model based on NPAS2 can improve the accuracy of GC prognosis prediction and assist clinicians in postoperative patient management and decision-making.
Collapse
Affiliation(s)
- Xiao-Meng Cao
- Department of General Surgery, Gansu Provincial Hospital of TCM, Lanzhou 730050, Gansu Province, China
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730030, Gansu Province, China
| | - Wen-Di Kang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tian-Hong Xia
- Clinical Medicine College, Ningxia Medical University, Clinical Medicine college, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Shao-Bin Yuan
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730030, Gansu Province, China
| | - Chang-An Guo
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou 730030, Gansu Province, China
| | - Wen-Jie Wang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, Gansu Province, China
| | - Hong-Bin Liu
- Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, Gansu Province, China.
| |
Collapse
|
2
|
Zhao L, Tang Y, Yang J, Lin F, Liu X, Zhang Y, Chen J. Integrative analysis of circadian clock with prognostic and immunological biomarker identification in ovarian cancer. Front Mol Biosci 2023; 10:1208132. [PMID: 37409345 PMCID: PMC10318361 DOI: 10.3389/fmolb.2023.1208132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
Objective: To identify circadian clock (CC)-related key genes with clinical significance, providing potential biomarkers and novel insights into the CC of ovarian cancer (OC). Methods: Based on the RNA-seq profiles of OC patients in The Cancer Genome Atlas (TCGA), we explored the dysregulation and prognostic power of 12 reported CC-related genes (CCGs), which were used to generate a circadian clock index (CCI). Weighted gene co-expression network analysis (WGCNA) and protein-protein interaction (PPI) network were used to identify potential hub genes. Downstream analyses including differential and survival validations were comprehensively investigated. Results: Most CCGs are abnormally expressed and significantly associated with the overall survival (OS) of OC. OC patients with a high CCI had lower OS rates. While CCI was positively related to core CCGs such as ARNTL, it also showed significant associations with immune biomarkers including CD8+ T cell infiltration, the expression of PDL1 and CTLA4, and the expression of interleukins (IL-16, NLRP3, IL-1β, and IL-33) and steroid hormones-related genes. WGCNA screened the green gene module to be mostly correlated with CCI and CCI group, which was utilized to construct a PPI network to pick out 15 hub genes (RNF169, EDC4, CHCHD1, MRPL51, UQCC2, USP34, POM121, RPL37, SNRPC, LAMTOR5, MRPL52, LAMTOR4, NDUFB1, NDUFC1, POLR3K) related to CC. Most of them can exert prognostic values for OS of OC, and all of them were significantly associated with immune cell infiltration. Additionally, upstream regulators including transcription factors and miRNAs of key genes were predicted. Conclusion: Collectively, 15 crucial CC genes showing indicative values for prognosis and immune microenvironment of OC were comprehensively identified. These findings provided insight into the further exploration of the molecular mechanisms of OC.
Collapse
Affiliation(s)
- Lianfang Zhao
- Prenatal Diagnosis Center, Suining Central Hospital, Suining, Sichuan, China
| | - Yuqin Tang
- Clinical Bioinformatics Experimental Center, Henan Provincial People’s Hospital, Zhengzhou University, Zhengzhou, China
| | - Jiayan Yang
- Prenatal Diagnosis Center, Suining Central Hospital, Suining, Sichuan, China
| | - Fang Lin
- Prenatal Diagnosis Center, Suining Central Hospital, Suining, Sichuan, China
| | - Xiaofang Liu
- Prenatal Diagnosis Center, Suining Central Hospital, Suining, Sichuan, China
| | - Yongqiang Zhang
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jianhui Chen
- Prenatal Diagnosis Center, Suining Central Hospital, Suining, Sichuan, China
| |
Collapse
|
3
|
Liu S, Cheng Y, Wang S, Liu H. Circadian Clock Genes Modulate Immune, Cell Cycle and Apoptosis in the Diagnosis and Prognosis of Pan-Renal Cell Carcinoma. Front Mol Biosci 2022; 8:747629. [PMID: 34977153 PMCID: PMC8717949 DOI: 10.3389/fmolb.2021.747629] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/10/2021] [Indexed: 01/20/2023] Open
Abstract
Background: Pan-renal cell carcinoma (pan-RCC) is mainly divided into renal clear cell carcinoma (KIRC), renal papillary cell carcinoma (KIRP), and chromophobe cell carcinoma (KICH). Pan-RCC is a common malignant neoplasm with a high incidence and poor prognosis. Several studies have demonstrated a close association between cancer development and circadian rhythms; however, the clinical significance and molecular mechanism of the clock gene remain unclear in pan-RCC. Methods: In this study, we systematically characterized the alterations of 15 well-known clock genes of three types of kidney cancer. Bioinformatics methods, including differential expression analysis, survival analysis, signing pathway analysis, co-expression network analysis, and drug sensitivity analysis were used to study the diagnosis, prognostic role, and mechanism of clock genes. Results: Thirteen rhythmic genes fluctuated in circadian rhythm in the kidney tissue of mice, and the opposite trend of these rhythm phases was also found in baboons. There are twelve clock genes that were differentially expressed in at least two types of RCC, of which NR1D1, DBP, BHLHE40, CRY1, and CLOCK had the same trend in RCC. Changes in clock control genes may be regulated through methylation, copy number, and mutations. Five rhythmic genes, including PER2, DBP, PER3, CRY2, and RORA, have significant prognostic role in patient survival in at least two types of kidney cancer. Immune infiltration analysis showed that the expression of these rhythmic genes related to prognosis was positively correlated with the infiltration levels of CD4 and CD8 T cells. Pathway analysis suggests that the clock genes is widely related to cancer-related signaling pathways, such as apoptosis, cell cycle, and other pathways. The PPI network showed that circadian genes are closely linked to cancer-related genes such as HIF-1A, TP53, and ERBB2. Moreover, clock gene expression is correlated with the sensitivity of anticancer drugs such as bleomycin and methotrexate in pan-RCC. Conclusion: Taken together, the abnormal expression of biological clock genes plays an important role in the clinical prognosis of RCC through immunity, cell cycle, and apoptosis. These findings provide a reliable basis for the diagnosis, prognosis, and drug guidance for RCC.
Collapse
Affiliation(s)
- Shuwen Liu
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China.,Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yongxian Cheng
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China.,Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Shaoxiang Wang
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Huiyu Liu
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
4
|
Herichova I, Reis R, Hasakova K, Vician M, Zeman M. Sex-dependent regulation of estrogen receptor beta in human colorectal cancer tissue and its relationship with clock genes and VEGF-A expression. Physiol Res 2019; 68:S297-S305. [PMID: 31928047 DOI: 10.33549/physiolres.934352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The incidence of colorectal cancer (CRC) shows a sex-dependent difference in humans. The aim of this study was to analyze estrogen receptor beta mRNA (ERbeta) expression in patients with CRC with respect to their gender and clinicopathological features. Since cancer progression is accompanied by tumor vascularization, VEGF-A (vascular endothelial growth factor A) transcription was analyzed along with ERbeta mRNA. ERbeta mRNA was also correlated with the expression of clock genes, which are known to influence the cell cycle. ERbeta mRNA expression in females with CRC showed an inverse association with increasing tumor staging that was not observed in males. Lower levels of ERbeta mRNA were observed in females with a higher clinical stage compared with those with earlier-stage tumors. ERbeta mRNA expression showed a significant positive correlation with mRNA of clock genes period 2 and cryptochrome 2 in healthy but not in cancerous tissue in males. Expression of VEGF-A mRNA showed a negative correlation with ERbeta mRNA after splitting of the cohort according to gender and nodus involvement. We propose that gender differences in ERbeta mRNA expression in tumors during the early stages of CRC can partially explain the lower occurrence of CRC in females compared with males.
Collapse
Affiliation(s)
- I Herichova
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovak Republic.
| | | | | | | | | |
Collapse
|
5
|
de Assis LVM, Moraes MN, Castrucci AMDL. The molecular clock in the skin, its functionality, and how it is disrupted in cutaneous melanoma: a new pharmacological target? Cell Mol Life Sci 2019; 76:3801-3826. [PMID: 31222374 PMCID: PMC11105295 DOI: 10.1007/s00018-019-03183-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/13/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
Abstract
The skin is the interface between the organism and the external environment, acting as its first barrier. Thus, this organ is constantly challenged by physical stimuli such as UV and infrared radiation, visible light, and temperature as well as chemicals and pathogens. To counteract the deleterious effects of the above-mentioned stimuli, the skin has complex defense mechanisms such as: immune and neuroendocrine systems; shedding of epidermal squamous layers and apoptosis of damaged cells; DNA repair; and pigmentary system. Here we have reviewed the current knowledge regarding which stimuli affect the molecular clock of the skin, the consequences to skin-related biological processes and, based on such knowledge, we suggest some therapeutic targets. We also explored the recent advances regarding the molecular clock disruption in melanoma, its impact on the carcinogenic process, and its therapeutic value in melanoma treatment.
Collapse
Affiliation(s)
- Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, R. do Matão, Trav. 14, No. 101, São Paulo, 05508-090, Brazil
| | - Maria Nathalia Moraes
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, R. do Matão, Trav. 14, No. 101, São Paulo, 05508-090, Brazil
- School of Health Science, University Anhembi Morumbi, São Paulo, Brazil
| | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, R. do Matão, Trav. 14, No. 101, São Paulo, 05508-090, Brazil.
| |
Collapse
|
6
|
Qiu MJ, Liu LP, Jin S, Fang XF, He XX, Xiong ZF, Yang SL. Research on circadian clock genes in common abdominal malignant tumors. Chronobiol Int 2019; 36:906-918. [PMID: 31014126 DOI: 10.1080/07420528.2018.1477792] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Circadian rhythm describes the 24-h oscillation in physiology and behavior of living organisms and presents a timing controller for life activity. Studies in recent years have reported that the abnormal expression of clock genes is closely related to the development of common abdominal malignant tumors. The expression of the 14 kinds of clock genes in 6 abdominal malignant tumors from Cancer Genome Atlas (TCGA) data was integrated and analyzed using R and Perl programming languages to show the association between clock gene expression and prognosis of cancer patients. Analysis of TCGA data indicated that the overexpression of Per1-3, Cry2, CLOCK, NR1D2 and RORA with underexpression of Timeless and NPAS2 was associated with a favorable prognosis in kidney cancer. In liver cancer, high expressions of Cry2 and RORA were correlated with prolonged overall survival (OS) in patients, while high expressions of NPAS2 and Timeless were correlated with a poor survival. High expression of CLOCK was positively correlated with OS in colon cancer patients. High expression of Cry2 and low expression of DEC1 were associated with a favorable prognosis in pancreatic cancer patients, respectively. Most of these clock-genes expressions were closely related to the clinical stage and degree of tumor differentiation of patients. Aberrant clock gene expression is related to the biological characteristics of abdominal malignant tumors, which likely has a causal role in cancer development and survival.
Collapse
Affiliation(s)
- Meng-Jun Qiu
- a Division of Gastroenterology, Liyuan Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan China
| | - Li-Ping Liu
- b Department of Hepatobiliary and Pancreas Surgery , Second Clinical Medical College of Jinan University (Shenzhen People's Hospital) , Shenzhen , Guangdong Province , China
| | - Si Jin
- c Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan China
| | - Xie-Fan Fang
- d Department of Pediatrics , College of Medicine, University of Florida , Gainesville, FL , USA
| | - Xiao-Xiao He
- a Division of Gastroenterology, Liyuan Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan China
| | - Zhi-Fan Xiong
- a Division of Gastroenterology, Liyuan Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan China
| | - Sheng-Li Yang
- e Cancer Center, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan China
| |
Collapse
|
7
|
Qiu M, Chen YB, Jin S, Fang XF, He XX, Xiong ZF, Yang SL. Research on circadian clock genes in non-small-cell lung carcinoma. Chronobiol Int 2019; 36:739-750. [PMID: 31014124 DOI: 10.1080/07420528.2018.1509080] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Circadian clock genes have become a hot topic in cancer research in recent years, and more and more studies are showing that clock genes are involved in regulating cell proliferation cycle and apoptosis of malignant tumors, neuroendocrine and immune function, and other processes. Lung cancer is a malignant tumor with increasing incidence worldwide. The pathogenesis of lung cancer is extremely complicated and includes genetic factors, living environment, and smoking, and the occurrence of lung cancer is related to the regulation of many oncogenes and tumor suppressor genes. But there are few studies on clock genes in lung cancer. Studies on clock genes may help to better understand the mechanism of lung cancer development for an improved treatment. The expressions of all 14 kinds of clock genes in adenocarcinoma (ADC) and squamous cell carcinoma (SCC), two main kinds of non-small-cell lung cancer (NSCLC), were studied based on integration and analysis of data from The Cancer Genome Atlas (TCGA) to show the association between clock gene expression and prognosis of cancer patients. Analysis of TCGA data indicated that overexpression of Cry2, BMAL1, and RORA with underexpression of Timeless and NPAS2 was associated with a favorable prognosis of ADC, and the expression of NPAS2 was associated with the time of patient survival. Additionally, the expression of Cry2 was related to TNM stage. In SCC, high expression of DEC1 was correlated with poor overall survival in patients and the expression of Timeless was associated with the time of patient survival. In NSCLC, circadian clock genes constitute cancer circadian rhythm by interacting with each other, showing that asynchrony with normal tissues, which collectively controlling the occurrence and development of NSCLC.
Collapse
Affiliation(s)
- Mengjun Qiu
- a Division of Gastroenterology, Liyuan Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Yao-Bing Chen
- b Institute of Pathology, Tongji Hospital, Tongji Medical College , Huangzhong University of Science and Technology , Wuhan , China
| | - Si Jin
- c Department of Geriatric Medicine , Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Xie-Fan Fang
- d Department of Pediatrics , College of Medicine, University of Florida , Gainesville , FL , USA
| | - Xiao-Xiao He
- a Division of Gastroenterology, Liyuan Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Zhi-Fan Xiong
- a Division of Gastroenterology, Liyuan Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Sheng-Li Yang
- e Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
8
|
de Assis LVM, Moraes MN, Magalhães-Marques KK, Kinker GS, da Silveira Cruz-Machado S, Castrucci AMDL. Non-Metastatic Cutaneous Melanoma Induces Chronodisruption in Central and Peripheral Circadian Clocks. Int J Mol Sci 2018; 19:E1065. [PMID: 29614021 PMCID: PMC5979525 DOI: 10.3390/ijms19041065] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022] Open
Abstract
The biological clock has received increasing interest due to its key role in regulating body homeostasis in a time-dependent manner. Cancer development and progression has been linked to a disrupted molecular clock; however, in melanoma, the role of the biological clock is largely unknown. We investigated the effects of the tumor on its micro- (TME) and macro-environments (TMaE) in a non-metastatic melanoma model. C57BL/6J mice were inoculated with murine B16-F10 melanoma cells and 2 weeks later the animals were euthanized every 6 h during 24 h. The presence of a localized tumor significantly impaired the biological clock of tumor-adjacent skin and affected the oscillatory expression of genes involved in light- and thermo-reception, proliferation, melanogenesis, and DNA repair. The expression of tumor molecular clock was significantly reduced compared to healthy skin but still displayed an oscillatory profile. We were able to cluster the affected genes using a human database and distinguish between primary melanoma and healthy skin. The molecular clocks of lungs and liver (common sites of metastasis), and the suprachiasmatic nucleus (SCN) were significantly affected by tumor presence, leading to chronodisruption in each organ. Taken altogether, the presence of non-metastatic melanoma significantly impairs the organism's biological clocks. We suggest that the clock alterations found in TME and TMaE could impact development, progression, and metastasis of melanoma; thus, making the molecular clock an interesting pharmacological target.
Collapse
Affiliation(s)
- Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-900, Brazil.
| | - Maria Nathália Moraes
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-900, Brazil.
| | - Keila Karoline Magalhães-Marques
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-900, Brazil.
| | - Gabriela Sarti Kinker
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-900, Brazil.
| | - Sanseray da Silveira Cruz-Machado
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-900, Brazil.
| | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-900, Brazil.
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|