1
|
Muthusamy M, Ramani P, Arumugam P, Rudrapathy P, Kangusamy B, Veeraraghavan VP, Jayaraman S, Kannan B, Pandi A. Assessment of various etiological factors for oral squamous cell carcinoma in non-habit patients- a cross sectional case control study. BMC Oral Health 2025; 25:62. [PMID: 39800703 PMCID: PMC11727232 DOI: 10.1186/s12903-024-05406-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is one of the most prevalent oral cancers in the world. The major etiological factors are considered to be tobacco and alcohol. However, the etiological factors for non-habit associated oral squamous cell carcinoma (NHOSCC) remains an enigma. So we focused in assessing various etiological factors like genetic factor, microbial factor, dental factor and the biochemical factor of non-habit associated oral squamous cell carcinoma. The aim was to assess Harvey Rat Sarcoma Virus gene (HRAS) mutation, total bacterial count, Herpes Simplex Virus-1 (HSV-1), regressive changes of teeth, total antioxidant capacity and its association with NHOSCC. MATERIALS AND METHODS A total of 564 (n = 564) patients with OSCC were included in the study. Out of 564 patients, 282 patients had NHOSCC and 282 patients had habit associated oral squamous cell carcinoma (HOSCC). The isolated DNA from the tissue was subjected to Sanger's sequencing analysis for mutation analysis of the HRAS gene. The isolated serum was subjected to HSV-1 ELISA analysis and TAC ELISA analysis. The dental cast used to analyze the presence of sharp teeth/ any other form of regressive changes of teeth. RESULTS Firstly, we found 3 novel pathogenic mutations c.16C > A/p.L6M (missense mutation), c.359 T > C/p.L120P (point mutation), c.382C > T/p.R128W (missense mutation) of HRAS gene in NHOSCC samples by genetic analysis. No significant difference was noted in the total bacterial count between the non-habit associated and habit associated oral squamous cell carcinoma (HOSCC). The binary logistic regression showed patients with HSV1 infection have 2.667 odds (2.667 OR, CI, 1.589- 4.484) of getting NHOSCC and it was found to be statistically significant (p < 0.001).The dental analysis revealed that patients with regressive changes have 4.432 odds (4.432 OR, CI, 2.807- 6.998) of getting NHOSCC and it was found to be statistically significant (p < 0.001). The biochemical analysis revealed patients with lower total antioxidant capacity have 0.671 odds (0.671 OR, CI, 0.621-0.725) of getting NHOSCC and was found to be statistically significant (p < 0.001). Our results suggest that the frequency of HRAS mutation in NHOSCC is high. HSV1, oxidative stress and regressive changes of teeth are associated with NHOSCC. CONCLUSION Our results suggest that the frequency of HRAS mutation in NHOSCC is high. HSV1, oxidative stress and regressive changes of teeth are associated with NHOSCC.
Collapse
Affiliation(s)
- Mudiyayirakkani Muthusamy
- Department of Oral and Maxillofacial Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, 162, Poonamallee High Road, Velappanchavadi, Chennai, Tamil Nadu, 600077, India.
| | - Pratibha Ramani
- Department of Oral and Maxillofacial Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, 162, Poonamallee High Road, Velappanchavadi, Chennai, Tamil Nadu, 600077, India
| | - Paramasivam Arumugam
- Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, 162, Poonamallee High Road, Velappanchavadi, Chennai, Tamil Nadu, 600077, India.
| | - Parthiban Rudrapathy
- Microbiology Division, Department of CLSTR, Malabar Cancer Centre, Post Graduate Institute of Oncological Sciences and Research, Thalassery, Kerala, 670103, India
| | - Boopathi Kangusamy
- ICMR-National Institute of Epidemiology, Chennai, Tamil Nadu, 600077, India
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics, Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, 162, Poonamallee High Road, Velappanchavadi, Chennai, Tamil Nadu, 600077, India
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics, Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, 162, Poonamallee High Road, Velappanchavadi, Chennai, Tamil Nadu, 600077, India
| | - Balachander Kannan
- Molecular Biology Laboratory, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, 162, Poonamallee High Road, Velappanchavadi, Chennai, Tamil Nadu, 600077, India
| | - Anitha Pandi
- Clinical Genetics Lab, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, 162, Poonamallee High Road, Velappanchavadi, Chennai, Tamil Nadu, 600077, India
| |
Collapse
|
2
|
Ebedes DM, Ganam S, Sujka JA, DuCoin CG. Double Digest: A Rare Case Report of Amphicrine Gastric Carcinoma Co-occurring With Papillary Thyroid Carcinoma. Cureus 2024; 16:e59205. [PMID: 38807830 PMCID: PMC11131435 DOI: 10.7759/cureus.59205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2024] [Indexed: 05/30/2024] Open
Abstract
With improved cancer treatments and patient lifespans, the incidence of a second cancer diagnosis in a person's lifetime is increasing. While dual cancer diagnoses during one's lifetime are becoming more common, diagnosis with two separate cancers simultaneously is less so. In this report we present a 55-year-old obese woman with a history of chronic lymphocytic thyroiditis and a non-specific family history of thyroid cancer who received synchronous diagnoses of amphicrine carcinoma (AC) and papillary thyroid carcinoma (PTC) during work-up for bariatric surgery. AC is a very rare form of gastric cancer characterized by the presence of both endocrine and epithelial cell components within the same cell with only a few case reports in the literature. This is the first case report to present the co-occurrence of AC with PTC.
Collapse
Affiliation(s)
- Dominique M Ebedes
- Surgery, University of South Florida Morsani College of Medicine, Tampa, USA
| | | | - Joseph A Sujka
- General, Bariatric, Foregut, and Hernia Surgery, Tampa General Hospital, Tampa, USA
- Surgery, University of South Florida Morsani College of Medicine, Tampa, USA
| | | |
Collapse
|
3
|
Rocha SM, Santos FM, Socorro S, Passarinha LA, Maia CJ. Proteomic analysis of STEAP1 knockdown in human LNCaP prostate cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119522. [PMID: 37315586 DOI: 10.1016/j.bbamcr.2023.119522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
Prostate cancer (PCa) continues to be one of the most common cancers in men worldwide. The six transmembrane epithelial antigen of the prostate 1 (STEAP1) protein is overexpressed in several types of human tumors, particularly in PCa. Our research group has demonstrated that STEAP1 overexpression is associated with PCa progression and aggressiveness. Therefore, understanding the cellular and molecular mechanisms triggered by STEAP1 overexpression will provide important insights to delineate new strategies for PCa treatment. In the present work, a proteomic strategy was used to characterize the intracellular signaling pathways and the molecular targets downstream of STEAP1 in PCa cells. A label-free approach was applied using an Orbitrap LC-MS/MS system to characterize the proteome of STEAP1-knockdown PCa cells. More than 6700 proteins were identified, of which a total of 526 proteins were found differentially expressed in scramble siRNA versus STEAP1 siRNA (234 proteins up-regulated and 292 proteins down-regulated). Bioinformatics analysis allowed us to explore the mechanism through which STEAP1 exerts influence on PCa, revealing that endocytosis, RNA transport, apoptosis, aminoacyl-tRNA biosynthesis, and metabolic pathways are the main biological processes where STEAP1 is involved. By immunoblotting, it was confirmed that STEAP1 silencing induced the up-regulation of cathepsin B, intersectin-1, and syntaxin 4, and the down-regulation of HRas, PIK3C2A, and DIS3. These findings suggested that blocking STEAP1 might be a suitable strategy to activate apoptosis and endocytosis, and diminish cellular metabolism and intercellular communication, leading to inhibition of PCa progression.
Collapse
Affiliation(s)
- Sandra M Rocha
- CICS-UBI-Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal
| | - Fátima M Santos
- CICS-UBI-Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Calle Darwin 3, Campus de Cantoblanco, 28029 Madrid, Spain
| | - Sílvia Socorro
- CICS-UBI-Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal
| | - Luís A Passarinha
- CICS-UBI-Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal; UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal; Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, 6201-284 Covilhã, Portugal
| | - Cláudio J Maia
- CICS-UBI-Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal.
| |
Collapse
|
4
|
Muthusamy M, Ramani P, Arumugam P. Effect of Harvey Rat Sarcoma Virus Mutation in Oral Squamous Cell Carcinoma and Its Influence on Different Populations: A Systematic Review. Cureus 2023; 15:e45505. [PMID: 37868370 PMCID: PMC10584992 DOI: 10.7759/cureus.45505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
The information for protein synthesis is given by the genes. These proteins are responsible for controlling functions like cell growth, differentiation, cell maturation, and cell death. In the case of genetic mutations, the protein functions get disturbed leading to a drastic shift in the normal physiological functions of cell growth, differentiation, and proliferation, making the normal cell cancerous. The Harvey rat sarcoma virus (HRAS) gene is an oncogene that belongs to the rat sarcoma virus (RAS) family. HRAS gene provides the instructions for making the HRAS protein that plays an important role in regulating cell division and when the HRAS gene gets mutated it gets involved in initiating cancer. HRAS mutation has been frequently noted in head and neck cancers; however, the mechanism of HRAS mutation involved in the initiation of oral squamous cell carcinoma (OSCC) still remains unexplored. An elaborate systematic literature search was done in PubMed, Scopus, and Web of Science databases. It was found that the Ras-dependent mutations affect the involved upstream and downstream components of the Ras-Raf-MAPK (rat sarcoma virus-rapidly accelerated fibrosarcoma-mitogen-activated protein kinase) pathway deregulating the signal leading to tumorigenesis. The Ras mutation can affect the Ras-Raf-MAPK pathway at different stages. The disease caused is based on the frequency of the HRAS mutation and it can lead to diverse cellular outcomes as it is mainly associated with cell division, differentiation, growth, survival, and the cell cycle. The crosstalk between the signaling pathways is controlled by the signaling molecules resulting in the creation of molecular networks. The balance of these molecular networks is very important to determine the cellular outcome. This systematic review inspects the molecular network of HRAS and its vital role in carcinogenesis. It is aimed at exploring and summarizing the contributions of the HRAS mutation involved in the pathogenesis of OSCC.
Collapse
Affiliation(s)
| | - Pratibha Ramani
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Paramasivam Arumugam
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Chennai, IND
| |
Collapse
|
5
|
TTN mutations predict a poor prognosis in patients with thyroid cancer. Biosci Rep 2022; 42:231494. [PMID: 35766333 PMCID: PMC9310696 DOI: 10.1042/bsr20221168] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE We aimed to investigate the relationship between titin (TTN) gene mutations and thyroid cancer (THCA) and to explore the feasibility of the TTN gene as a potential prognostic indicator of THCA. METHODS From TCGA-THCA cohort, we performed a series of analyses to evaluate the prognostic value and potential mechanism of TTN in THCA. These patients were divided into the mutant-type (MUT) group and the wild-type (WT) group. Differentially expressed genes (DEGs) in the two groups were screened using the 'DESeq2' R package. Functional enrichment analysis was performed, and the protein-protein interaction (PPI) network, transcription factor (TF)-target interaction networks, and competitive endogenous RNA (ceRNA) regulatory networks were established for the DEGs. The TIMER database was applied for immune cell infiltration. Survival analysis and Cox regression analysis were used to analyze the potential prognostic value of the TTN gene. RESULTS Differential expression analysis showed that 409 genes were significantly up-regulated and 36 genes were down-regulated. Functional enrichment analysis revealed that TTN gene mutations played a potential role in the development of THCA. Analysis of the immune microenvironment indicated that TTN gene mutations were significantly associated with enrichment of M0 macrophages. Survival analysis showed that the MUT group predicted poorer prognosis than the WT group. Cox regression analysis demonstrated that TTN gene mutations were an independent risk factor for THCA. Nomograms also confirmed the prognostic values of the TTN gene in THCA. Conclusions In summary, our results demonstrated that TTN gene mutations predict poor prognosis in patients with THCA. This is the first study to research TTN gene mutations in THCA and to investigate their prognostic value in THCA.
Collapse
|
6
|
Rashid FA, Bhat GH, Khan MS, Tabassum S, Bhat MH. Variations in MAP kinase gladiators and risk of differentiated thyroid carcinoma. Mol Clin Oncol 2022; 16:45. [PMID: 35003743 PMCID: PMC8739702 DOI: 10.3892/mco.2021.2478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 10/27/2021] [Indexed: 12/02/2022] Open
Abstract
Thyroid carcinoma (TC) accounts for ~2.1% of newly diagnosed cancer cases. Mutations in KRAS, HRAS, NRAS and BRAF are primary participants in the development and progression of various types of malignancy, including differentiated TC (DTC). Therefore, the present prospective cohort study aimed to screen patients with DTC for variations in RAS gene family and BRAF gene. Exon 1 and 2 of KRAS, HRAS, NRAS and exon 15 of BRAF gene were screened for hotspot mutations in 72 thyroid tumor and adjacent normal tissue samples using di-deoxy Sanger sequencing. HRAS T81C mutation was found in 21% (15 of 72) of DTC tissue samples, therefore this mutation was investigated in blood samples from patients with DTC and controls as a genetic polymorphism. In addition, HRAS T81C genotypes were determined in 180 patients with DTC and 220 healthy controls by performing restriction fragment length polymorphism. BRAFV600E mutation was confined to classical variant of papillary thyoid cancer (CPTC; 44.4%) and was significantly associated with multifocality and lymph node (LN) metastasis. No mutation was found in exons 1 and 2 of KRAS and NRAS and exon 2 of HRAS genes, however, mutation was detected in exon 1 of HRAS gene (codon 27) at nucleotide position 81 in 21% (15 of 72) of DTC tumor tissue samples. Furthermore, HRAS T81C single nucleotide polymorphism was significantly associated with the risk of DTC with variant genotypes more frequently detected in cases compared with controls (P≤0.05). Moreover, frequency of variant genotypes (TC+CC) was significantly higher among DTC cases with no history of smoking, males, greater age, multifocality and LN metatasis compared with healthy controls (P<0.05). BRAFV600E mutation was primarily present in CPTC and associated with an aggressive tumor phenotype but mutations in RAS gene family were not present in patients with DTC. HRAS T81C polymorphism may be involved in the etiopathogenesis of DTC in a Pakistani cohort. Furthermore, testing for the BRAFV600E mutation may be useful for selecting initial therapy and follow-up monitoring.
Collapse
Affiliation(s)
- Faiza A Rashid
- Department of Biological Sciences, International Islamic University, Islamabad 1243, Pakistan
| | - Ghulam Hassan Bhat
- Department of Biochemistry, Government Medical College and Associated Shri Maharaja Hari Singh and Super Speciality Hospital, Srinagar, Jammu and Kashmir 190010, India
| | - Mosin S Khan
- Department of Biochemistry, Government Medical College and Associated Shri Maharaja Hari Singh and Super Speciality Hospital, Srinagar, Jammu and Kashmir 190010, India
| | - Sobia Tabassum
- Department of Biological Sciences, International Islamic University, Islamabad 1243, Pakistan
| | - Mohammad Hayat Bhat
- Department of Endocrinology, Government Medical College and Associated Shri Maharaja Hari Singh and Super Speciality Hospital, Srinagar, Jammu and Kashmir 190010, India
| |
Collapse
|
7
|
Masood A, Benabdelkamel H, Jammah AA, Ekhzaimy AA, Alfadda AA. Identification of Protein Changes in the Urine of Hypothyroid Patients Treated with Thyroxine Using Proteomics Approach. ACS OMEGA 2021; 6:2367-2378. [PMID: 33521475 PMCID: PMC7841925 DOI: 10.1021/acsomega.0c05686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/04/2021] [Indexed: 05/14/2023]
Abstract
The thyroid gland and thyroid hormones control a multitude of homeostatic functions including maintenance of fluid and electrolyte balance and normal functioning of the kidneys. Thyroid dysfunction alters the sytemic hemodynamic and metabolic balance, thereby affecting the kidney. In this study, we aimed to identify and characterize the urinary proteome of the patients with hypothyroidism. An untargeted proteomic approach with network analysis was used to identify changes in total urinary proteome in patients with newly diagnosed overt hypothyroidism. Urine samples were collected from nine age-matched patients' before and after l-thyroxine treatment. Differences in the abundance of urinary proteins between hypothyroid and euthyroid states were determined using a two-dimensional difference in gel electrophoresis (2D-DIGE) coupled to matrix-assisted laser desorption and ionization time-of-flight (MALDI TOF) mass spectrometry. Alterations in the abundance of urinary proteins, analyzed by Progenesis software, revealed statistically significant differential abundance in a total of 49 spots corresponding to 42 proteins, 28 up and 14 down (≥1.5-fold change, analysis of variance (ANOVA), p ≤ 0.05). The proteins identified in the study are known to regulate processes related to transport, acute phase response, oxidative stress, generation of reactive oxygen species, cellular proliferation, and endocytosis. Bioinformatic analysis using Ingenuity Pathway Analysis (IPA) identified dysregulation of pathways related to amino acid metabolism, molecular transport, and small-molecule biochemistry and involved the MAPK kinase, vascular endothelial growth factor (VEGF), PI3 kinase/Akt, protein kinase C (PKC), signaling pathways. The identified proteins were involved in the regulation of thyroglobulin (Tg) and thyrotropin (TSH) metabolism. Alterations in their levels indicate the presence of a compensatory mechanism aimed at increasing the regulation of Tg in the hypothyroid state.
Collapse
Affiliation(s)
- Afshan Masood
- Proteomics
Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Hicham Benabdelkamel
- Proteomics
Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Anwar A. Jammah
- Department
of Medicine, College of Medicine and King Saud Medical City, King Saud University, Riyadh 12372, Saudi Arabia
| | - Aishah A. Ekhzaimy
- Department
of Medicine, College of Medicine and King Saud Medical City, King Saud University, Riyadh 12372, Saudi Arabia
| | - Assim A. Alfadda
- Proteomics
Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
- Department
of Medicine, College of Medicine and King Saud Medical City, King Saud University, Riyadh 12372, Saudi Arabia
| |
Collapse
|
8
|
Iacobas S, Ede N, Iacobas DA. The Gene Master Regulators (GMR) Approach Provides Legitimate Targets for Personalized, Time-Sensitive Cancer Gene Therapy. Genes (Basel) 2019; 10:genes10080560. [PMID: 31349573 PMCID: PMC6723146 DOI: 10.3390/genes10080560] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/11/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023] Open
Abstract
The dynamic and never exactly repeatable tumor transcriptomic profile of people affected by the same form of cancer requires a personalized and time-sensitive approach of the gene therapy. The Gene Master Regulators (GMRs) were defined as genes whose highly controlled expression by the homeostatic mechanisms commands the cell phenotype by modulating major functional pathways through expression correlation with their genes. The Gene Commanding Height (GCH), a measure that combines the expression control and expression correlation with all other genes, is used to establish the gene hierarchy in each cell phenotype. We developed the experimental protocol, the mathematical algorithm and the computer software to identify the GMRs from transcriptomic data in surgically removed tumors, biopsies or blood from cancer patients. The GMR approach is illustrated with applications to our microarray data on human kidney, thyroid and prostate cancer samples, and on thyroid, prostate and blood cancer cell lines. We proved experimentally that each patient has his/her own GMRs, that cancer nuclei and surrounding normal tissue are governed by different GMRs, and that manipulating the expression has larger consequences for genes with higher GCH. Therefore, we launch the hypothesis that silencing the GMR may selectively kill the cancer cells from a tissue.
Collapse
Affiliation(s)
- Sanda Iacobas
- Personalized Genomics Laboratory, Center for Computational Systems Biology, Roy G. Perry College of Engineering, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Nneka Ede
- Personalized Genomics Laboratory, Center for Computational Systems Biology, Roy G. Perry College of Engineering, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Dumitru A Iacobas
- Personalized Genomics Laboratory, Center for Computational Systems Biology, Roy G. Perry College of Engineering, Prairie View A&M University, Prairie View, TX 77446, USA.
| |
Collapse
|