1
|
Li Z, Zheng Z, Dai X. SIRT5 induces autophagy and alleviates myocardial infarction via desuccinylation of TOM1. BMC Cardiovasc Disord 2024; 24:464. [PMID: 39210272 PMCID: PMC11363360 DOI: 10.1186/s12872-024-04120-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Myocardial infarction (MI) is a prevalent form of ischemic heart disease, significantly contributing to heart disease-related deaths worldwide. This condition is primarily caused by myocardial ischemic-reperfusion injury (MIRI). Sirtuin 5 (SIRT5) is a desuccinylase known for its ability to reduce protein succinylation. Recent studies have highlighted the potential role of SIRT5 in various human diseases, including MIRI. This study aims to investigate the specific role of SIRT5 in modulating autophagy and cardiomyocyte death in a MIRI model, as well as to identify the downstream protein targets of SIRT5. Initially, we established a hypoxia/reoxygenation (H/R)-induced MIRI cell model to measure SIRT5 expression and assess its functions. Our results indicated that H/R induction led to a downregulation of SIRT5 expression, decreased autophagy, and increased cell death. Notably, overexpression of SIRT5 effectively promoted autophagy and inhibited cell death in the MIRI cell model. Mechanistically, SIRT5 was found to directly interact with the target of myb1 membrane trafficking protein (TOM1) at the K48 site, inducing its desuccinylation and stabilization. Further rescue assays revealed that TOM1 knockdown reversed the changes in autophagy and apoptosis caused by SIRT5 overexpression in the MIRI cell model. In vivo experiments demonstrated that SIRT5 alleviated myocardial injury in MI models. In conclusion, this study uncovers the role of SIRT5-mediated desuccinylation of TOM1 in regulating autophagy-related cell death in MIRI, providing new insights into potential therapeutic strategies for MI.
Collapse
Affiliation(s)
- Zengliang Li
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, Fuzhou City, Fujian, 350001, China
| | - Zihe Zheng
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, Fuzhou City, Fujian, 350001, China
| | - Xiaofu Dai
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, Fuzhou City, Fujian, 350001, China.
| |
Collapse
|
2
|
Kong S, Zhou D, Fan Q, Zhao T, Ren C, Nie H. Salviae miltiorrhizae Liguspyragine Hydrochloride and Glucose Injection Protects against Myocardial Ischemia-Reperfusion Injury and Heart Failure. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7809485. [PMID: 35813430 PMCID: PMC9259341 DOI: 10.1155/2022/7809485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 12/02/2022]
Abstract
Purpose Myocardial ischemia-reperfusion (MIR) injury is a common stimulus for cardiac diseases like cardiac arrhythmias and heart failure and may cause high mortality rates. Salviae miltiorrhizae liguspyragine hydrochloride and glucose injection (SGI) has been widely used to treat myocardial and cerebral infarctions in China even though its pharmacological mechanisms are not completely clear. Methods The protective effect and mechanism of SGI on MIR injury and heart failure were investigated through the H9c2 cell model induced by hypoxia/reoxygenation (H/R) and rapamycin, zebrafish model induced by H/R and isoprenaline, and rat MIR model. Results SGI significantly reduced the infarct size and alleviated the impairment of cardiac functions in the MIR rat model and H/R zebrafish model and promoted cell viability of cardiomyocyte-like H9c2 cells under H/R condition. Consistently, SGI significantly downregulated the serum level of biomarkers for cardiac damage and attenuated the oxidative damage in the MIR and H/R models. We also found that SGI could downregulate the increased autophagy level in those MIR and H/R models since autophagy can contribute to the injurious effects of ischemia-reperfusion in the heart, suggesting that SGI may alleviate MIR injury via regulating the autophagy pathway. In addition, we demonstrated that SGI also played a protective role in the isoproterenol-induced zebrafish heart failure model, and SGI significantly downregulated the increased autophagy and SP1/GATA4 pathways. Conclusion SGI may exert anti-MIR and heart failure by inhibiting activated autophagy and the SP1/GATA4 pathway.
Collapse
Affiliation(s)
- Shang Kong
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Dan Zhou
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qinghong Fan
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Tingting Zhao
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Chunguang Ren
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China
| | - Hong Nie
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
3
|
Xing Y, Sui Z, Liu Y, Wang MM, Wei X, Lu Q, Wang X, Liu N, Lu C, Chen R, Wu M, Wang Y, Zhao YH, Guo F, Cao JL, Qi J, Wang W. Blunting TRPML1 channels protects myocardial ischemia/reperfusion injury by restoring impaired cardiomyocyte autophagy. Basic Res Cardiol 2022; 117:20. [PMID: 35389129 DOI: 10.1007/s00395-022-00930-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/15/2022] [Accepted: 03/26/2022] [Indexed: 01/31/2023]
Abstract
Accumulating evidence suggests that autophagy dysfunction plays a critical role in myocardial ischemia/reperfusion (I/R) injury. However, the underling mechanism of malfunctional autophagy in the cardiomyocytes subjected to I/R has not been well defined. As a result, there is no effective therapeutic option by targeting autophagy to prevent myocardial I/R injury. Here, we used both an in vitro and an in vivo I/R model to monitor autophagic flux in the cardiomyocytes, by exposing neonatal rat ventricular myocytes to hypoxia/reoxygenation and by subjecting mice to I/R, respectively. We observed that the autophagic flux in the cardiomyocytes subjected to I/R was blocked in both in vitro and in vivo models. Down-regulating a lysosomal cationic channel, TRPML1, markedly restored the blocked myocardial autophagic flux induced by I/R, demonstrating that TRPML1 directly contributes to the blocked autophagic flux in the cardiomyocytes subjected to I/R. Mechanistically, TRPML1 is activated secondary to ROS elevation following ischemia/reperfusion, which in turn induces the release of lysosomal zinc into the cytosol and ultimately blocks the autophagic flux in cardiomyocytes, presumably by disrupting the fusion between autophagosomes and lysosomes. As a result, the inhibited myocardial autophagic flux induced by TRPML1 disrupted mitochondria turnover and resulted in mass accumulation of damaged mitochondria and further ROS release, which directly led to cardiomyocyte death. More importantly, pharmacological and genetic inhibition of TRPML1 channels greatly reduced infarct size and rescued heart function in mice subjected to I/R in vivo by restoring impaired myocardial autophagy. In summary, our study demonstrates that secondary to ROS elevation, activation of TRPML1 results in autophagy inhibition in the cardiomyocytes subjected to I/R, which directly leads to cardiomyocyte death by disrupting mitochondria turnover. Therefore, targeting TRPML1 represents a novel therapeutic strategy to protect against myocardial I/R injury.
Collapse
Affiliation(s)
- Yanhong Xing
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Zhongheng Sui
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Yucheng Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Meng-Meng Wang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital, China Medical University, Shenyang, 110122, Liaoning, China
| | - Xiangqing Wei
- Department of Anesthesiology, the Second Affiliated Hospital of Nantong University, Nantong, 226006, Jiangsu, China
| | - Qixia Lu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Xinyan Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Nan Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Chen Lu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Rong Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Mengmei Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Yuqing Wang
- Department of Medicine and Biosystemic Science, Faculty of Medicine, Kyushu University, Fukuoka, Kyushu, 8128582, Japan
| | - Yu-Hong Zhao
- Department of Clinical Epidemiology, Clinical Research Center, Shengjing Hospital of China Medical University, No. 36 San Hao Street, Shenyang, 110004, Liaoning, China
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning, China.
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China.
| | - Jiansong Qi
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China. .,Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| | - Wuyang Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
4
|
Dong C, Ma A, Shang L. Animal models used in the research of nanoparticles for cardiovascular diseases. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2021; 23:172. [PMID: 34393623 PMCID: PMC8353219 DOI: 10.1007/s11051-021-05289-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality and morbidity worldwide. Tremendous progress has been made in the prevention and treatment of CVD; however, there are still lots of limitations and new technology is needed. Nanoparticles have been studied recently for CVD due to their nanoscale size and unique properties, and hold a potential to be a novel therapy for the treatment. To test the safety and effectiveness of drug-loaded nanoparticles for CVD prior to human studies, animal disease models are unavoidably needed. This review summarized the animal models used in the research of nanoparticles for CVD and provided a generic picture of current use of CVD animal models according to the different types of diseases which should be prioritized when considering the application of nanoparticles in treating CVD. This review would be useful resources not only for life science researchers and clinicians but also for those from chemistry and materials sciences background who may not have a systematic knowledge about CVD animal models.
Collapse
Affiliation(s)
- Caijuan Dong
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710054 Shaanxi China
| | - Aiqun Ma
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710054 Shaanxi China
| | - Lijun Shang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710054 Shaanxi China
- Faculty of Life Science, Northwest University, Xi’an, 710032 Shaanxi China
- School of Human Sciences, London Metropolitan University, London, N7 8DB UK
| |
Collapse
|
5
|
The potentials of distinct functions of autophagy to be targeted for attenuation of myocardial ischemia/reperfusion injury in preclinical studies: an up-to-date review. J Physiol Biochem 2021; 77:377-404. [PMID: 34173955 DOI: 10.1007/s13105-021-00824-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/07/2021] [Indexed: 12/16/2022]
Abstract
Despite remarkable advances in our knowledge about the function of autophagy in myocardial ischemia/reperfusion (I/R) injury, the debate continues over whether autophagy is protective or deleterious in cardiac I/R. Due to the complexity of autophagy signaling, autophagy can play a dual role in the pathological processes of myocardial I/R injury. Thus, more researches are needed to shed light on the complex roles of autophagy in cardioprotection for the future clinical development. Such researches can lead to the finding of new therapeutic strategies for improving cardiac I/R outcomes in patients. Several preclinical studies have targeted autophagy flux as a beneficial strategy against myocardial I/R injury. In this review, we aimed to discuss the complex contribution of autophagy in myocardial I/R injury, as well as the therapeutic agents that have been shown to be useful in reducing myocardial I/R injury by targeting autophagy. For this reason, we provided an updated summary of the data from in vivo, ex vivo, and in vitro experimental studies about the therapeutic agents that exert positive effects against myocardial I/R injury by modulating autophagy flux. By addressing these valuable studies, we try to provide a motivation for the promising hypothesis of "autophagy modulation as a therapeutic strategy against cardiac I/R" in the future clinical studies.
Collapse
|
6
|
Thanthrige N, Bhowmik SD, Ferguson BJ, Kabbage M, Mundree SG, Williams B. Potential Biotechnological Applications of Autophagy for Agriculture. FRONTIERS IN PLANT SCIENCE 2021; 12:760407. [PMID: 34777441 PMCID: PMC8579036 DOI: 10.3389/fpls.2021.760407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/29/2021] [Indexed: 05/02/2023]
Abstract
Autophagy is a genetically regulated, eukaryotic cellular degradation system that sequestrates cytoplasmic materials in specialised vesicles, termed autophagosomes, for delivery and breakdown in the lysosome or vacuole. In plants, autophagy plays essential roles in development (e.g., senescence) and responses to abiotic (e.g., nutrient starvation, drought and oxidative stress) and biotic stresses (e.g., hypersensitive response). Initially, autophagy was considered a non-selective bulk degradation mechanism that provides energy and building blocks for homeostatic balance during stress. Recent studies, however, reveal that autophagy may be more subtle and selectively target ubiquitylated protein aggregates, protein complexes and even organelles for degradation to regulate vital cellular processes even during favourable conditions. The selective nature of autophagy lends itself to potential manipulation and exploitation as part of designer protein turnover machinery for the development of stress-tolerant and disease-resistant crops, crops with increased yield potential and agricultural efficiency and reduced post-harvest losses. Here, we discuss our current understanding of autophagy and speculate its potential manipulation for improved agricultural performance.
Collapse
Affiliation(s)
- Nipuni Thanthrige
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Sudipta Das Bhowmik
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Brett J. Ferguson
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| | - Sagadevan G. Mundree
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Brett Williams
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
- *Correspondence: Brett Williams,
| |
Collapse
|
7
|
Zang X, Zhou J, Zhang X, Han Y, Chen X. Ischemia Reperfusion Injury: Opportunities for Nanoparticles. ACS Biomater Sci Eng 2020; 6:6528-6539. [PMID: 33320610 DOI: 10.1021/acsbiomaterials.0c01197] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ischemia reperfusion (IR)-induced oxidative stress, accompanied by inflammatory responses, contributes to morbidity and mortality in numerous diseases such as acute coronary syndrome, stroke, organ transplantation, and limb injury. Ischemia results in profound hypoxia and tissue dysfunction, whereas subsequent reperfusion further aggravates ischemic tissue damage through inducing cell death and activating inflammatory responses. In this review, we highlight recent studies of therapeutic strategies against IR injury. Furthermore, nanotechnology offers significant improvements in this area. Hence, we also review recent advances in nanomedicines for IR therapy, suggesting them as potent and promising strategies to improve drug delivery to IR-injured tissues and achieve protective effects.
Collapse
Affiliation(s)
- Xinlong Zang
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao 110016, P.R. China
| | - Jingyi Zhou
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao 110016, P.R. China
| | - Xiaoxu Zhang
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao 110016, P.R. China
| | - Yantao Han
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao 110016, P.R. China
| | - Xuehong Chen
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao 110016, P.R. China
| |
Collapse
|
8
|
Liang Q, Huang X, Zeng C, Li D, Shi Y, Zhao G, Zhong M. BW373U86 upregulates autophagy by inhibiting the PI3K/Akt pathway and regulating the mTOR pathway to protect cardiomyocytes from hypoxia-reoxygenation injury. Can J Physiol Pharmacol 2020; 98:684-690. [PMID: 32955950 DOI: 10.1139/cjpp-2019-0684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The purpose of this study was to explore the protective effect of BW373U86 (a δ-opioid receptor (DOR) agonist) on ischemia-reperfusion (I/R) injury in rat cardiomyocytes and its underlying mechanism. Primary rat cardiomyocytes were cultured and pretreated with BW373U86 for intervention. The cardiomyocytes were cultured under the condition of 94% N2 and 5% CO2 for 24 h to perform hypoxia culture and conventionally cultured for 12 h to perform reoxygenation culture. The cell viability of cardiomyocytes was detected by an MTT assay (Sigma-Aldrich). The autophagy lysosome levels in cardiomyocytes were evaluated by acidic vesicular organelles with dansylcadaverine (MDC) staining (autophagy test kit, Kaiji Biology, kgatg001). The protein expression levels of LC3, p62, and factors in the PI3K/Akt/mTOR signaling pathway were detected by Western blot. Pretreatment with BW373U86 could improve the cell viability of cardiomyocytes with hypoxia-reoxygenation (H/R) injury (p < 0.05). Interestingly, after coculture of BW373U86 and PI3K inhibitor (3-methyladenine), the protein expression levels of p-Akt in cardiomyocytes were markedly increased in comparison with those in the BW373U86 group (p < 0.05). However, there were no significant differences in the protein expression levels of mTOR between the coculture group and the BW373U86 group (p > 0.05). BW373U86 upregulated autophagy to protect cardiomyocytes from H/R injury, which may be related to the PI3K/Akt/m TOR pathway.
Collapse
Affiliation(s)
- Qianyi Liang
- Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoling Huang
- Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Chaokun Zeng
- Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Dewei Li
- Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Yongyong Shi
- Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Gaofeng Zhao
- Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Min Zhong
- Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
9
|
Wu D, Zhang K, Hu P. The Role of Autophagy in Acute Myocardial Infarction. Front Pharmacol 2019; 10:551. [PMID: 31214022 PMCID: PMC6554699 DOI: 10.3389/fphar.2019.00551] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/01/2019] [Indexed: 12/14/2022] Open
Abstract
Acute myocardial infarction refers to a sudden death of cardiomyocytes, which leads to a large mortality worldwide. To attenuate acute myocardial infarction, strategies should be made to increase cardiomyocyte survival, improve postinfarcted cardiac function, and reverse the process of cardiac remodeling. Autophagy, a pivotal cellular response, has been widely studied and is known to be involved in various kinds of diseases. In the recent few years, the role of autophagy in diseases has been drawn increasing attention to by researchers. Here in this review, we mainly focus on the discussion of the effect of autophagy on the pathogenesis and progression of acute myocardial infarction under ischemic and ischemia/reperfusion injuries. Furthermore, several popular therapeutic agents and strategies taking advantage of autophagy will be described.
Collapse
Affiliation(s)
- Du Wu
- Department of Internal Medicine, The WuYun Mountain Sanatorium of Hangzhou, Hangzhou, China
| | - Kangfeng Zhang
- Department of Internal Medicine, The WuYun Mountain Sanatorium of Hangzhou, Hangzhou, China
| | - Pengfei Hu
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
10
|
Qi H, Ren J, E M, Zhang Q, Cao Y, Ba L, Song C, Shi P, Fu B, Sun H. MiR-103 inhibiting cardiac hypertrophy through inactivation of myocardial cell autophagy via targeting TRPV3 channel in rat hearts. J Cell Mol Med 2019; 23:1926-1939. [PMID: 30604587 PMCID: PMC6378213 DOI: 10.1111/jcmm.14095] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/22/2018] [Accepted: 11/29/2018] [Indexed: 12/17/2022] Open
Abstract
Cardiac hypertrophy is a common pathological change frequently accompanied by chronic hypertension and myocardial infarction. Nevertheless, the pathophysiological mechanisms of cardiac hypertrophy have never been elucidated. Recent studies indicated that miR-103 expression was significantly decreased in heart failure patients. However, less is known about the role of miR-103 in cardiac hypertrophy. The present study was designed to investigate the relationship between miR-103 and the mechanism of pressure overload-induced cardiac hypertrophy. TRPV3 protein, cardiac hypertrophy marker proteins (BNP and β-MHC) and autophagy associated proteins (Beclin-1 and LC3-II) were up-regulated, as well as, miR-103 expression and autophagy associated proteins (p62) were down-regulated in cardiac hypertrophy models in vivo and in vitro respectively. Further results indicated that silencing TRPV3 or forcing overexpression of miR-103 could dramatically inhibit cell surface area, relative fluorescence intensity of Ca2+ signal and the expressions of BNP, β-MHC, Beclin-1 and LC3-II, but promote p62 expression. Moreover, TRPV3 protein was decreased in neonatal rat ventricular myocyte transfected with miR-103, but increased by AMO-103. Co-transfection of the miR-103 with the luciferase reporter vector into HEK293 cells caused a sharp decrease in luciferase activity compared with transfection of the luciferase vector alone. The miR-103-induced depression of luciferase activity was rescued by an AMO-103. These findings suggested that TRPV3 was a direct target of miR-103. In conclusion, miR-103 could attenuate cardiomyocyte hypertrophy partly by reducing cardiac autophagy activity through the targeted inhibition of TRPV3 signalling in the pressure-overloaded rat hearts.
Collapse
Affiliation(s)
- Hanping Qi
- Department of PharmacologyHarbin Medical University‐DaqingDaqingChina
| | - Jing Ren
- Department of PharmacologyHarbin Medical University‐DaqingDaqingChina
| | - Mingyao E
- Department of PharmacologyHarbin Medical University‐DaqingDaqingChina
| | - Qianhui Zhang
- Department of PharmacologyHarbin Medical University‐DaqingDaqingChina
| | - Yonggang Cao
- Department of PharmacologyHarbin Medical University‐DaqingDaqingChina
| | - Lina Ba
- Department of PharmacologyHarbin Medical University‐DaqingDaqingChina
| | - Chao Song
- Department of PharmacologyHarbin Medical University‐DaqingDaqingChina
| | - Pilong Shi
- Department of PharmacologyHarbin Medical University‐DaqingDaqingChina
| | - Bowen Fu
- Department of PharmacologyHarbin Medical University‐DaqingDaqingChina
| | - Hongli Sun
- Department of PharmacologyHarbin Medical University‐DaqingDaqingChina
| |
Collapse
|
11
|
Yagudin TA, Shabanova AT, Liu HY. Novel Aspects of Cardiac Ischemia and Reperfusion Injury Mechanisms. ACTA ACUST UNITED AC 2019. [DOI: 10.24060/2076-3093-2018-8-3-216-224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Introduction.The present article, in which a contemporary analysis of the literature on the pathophysiology of ischemic and reperfusion injury (IRI) of the myocardium is presented, focuses on the possible role played by of the calpain system and oxidative stress. Several process development options were proposed, including cytosolic and mitochondrial Ca2+ overload, reactive oxygen stress release, acute inflammatory response and metabolic degradation. The combined effect of all of the above factors produces irreversible ischemic and reperfused damage of cardiomyocytes.Materials and methods.The role of the calpain system in the creation of myocardial IRI was experimentally investigated. It was found that active calpain substrates play a significant role in the processes of cell cycle, apoptosis and differentiation, adversely affecting cardiomyocyte functionality. The calpain system is part of an integrated proteolytic system that is critical to the relationship between the structure and function of the cardiac sarcomere. Uncontrolled activation of calpain is indicated in the pathophysiology of many cardiovascular disorders. As shown by research, inhibitor calpain reduces the size of the zone of infarction following ischemia reperfusion and thus lessens the risk of “stunning” the myocardium. As is known, a consequence of IRI is acute myocardial infarction (AMI), which is a central factor in cardiovascular disease (CVD) and is one of the primary causes of mortality. Understanding the exact pathophysiological mechanisms remains an urgent problem for clinical physicians. To date, the mechanisms of IRI are not fully known, which creates certain difficulties in further treatment and prevention tactics. In addition, myocardial IRI is also an important issue for pathoanatomical service, since sudden coronary death can occur despite timely reperfusion therapy following AMI.Conclusion.The development of strategies for creating conditions that limit the degree of damage to myocardial tissues significantly increases the ability of the heart to withstand ischemic damage.
Collapse
|