1
|
Akdeniz FT, Avsar O. Evaluation of PI3K Levels and miRNA124-5p Expression Levels in Serum Samples from Patients With Lung Cancer. CANCER DIAGNOSIS & PROGNOSIS 2025; 5:223-229. [PMID: 40034961 PMCID: PMC11871863 DOI: 10.21873/cdp.10433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 03/05/2025]
Abstract
Background/Aim Lung cancers are malignant neoplasms located in the lung tissues. miRNAs are short non-coding RNAs. It is known that miRNA-124 prevents metastasis in lung cancers. The phosphatidylinositol 3-kinases (PI3K) signaling pathway, a basic signaling pathway interconnected with other pathways, is activated during cancer development. This study aimed to compare miRNA-124-5p and PI3K serum levels in patient and control groups. Materials and Methods miRNA isolated from patient and control serum samples were converted into cDNA. miRNA-124-5p expression was determined using Real-Time PCR and a SYBR GREEN kit. PI3K serum level was determined using the Enzyme-Linked Immunosorbent Assay. Results While miRNA-124-5p serum level was statistically significantly lower in the patient group (p>0.02), serum PI3K level was higher in the patient group than in the control group but the difference was not statistically significant (p>0.11). Conclusion Lower serum levels of miRNA-124-5p and high PI3K levels observed in the patient group, compared to the control group, may be associated with a poor disease prognosis.
Collapse
Affiliation(s)
- Fatma Tuba Akdeniz
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Türkiye
| | - Orcun Avsar
- Department of Molecular Biology & Genetics, Faculty of Arts & Science, Hitit University, Corum, Türkiye
| |
Collapse
|
2
|
Sultana A, Alam MS, Liu X, Sharma R, Singla RK, Gundamaraju R, Shen B. Single-cell RNA-seq analysis to identify potential biomarkers for diagnosis, and prognosis of non-small cell lung cancer by using comprehensive bioinformatics approaches. Transl Oncol 2023; 27:101571. [PMID: 36401966 PMCID: PMC9676382 DOI: 10.1016/j.tranon.2022.101571] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/12/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and the leading cause of cancer-related deaths worldwide. Identification of gene biomarkers and their regulatory factors and signaling pathways is very essential to reveal the molecular mechanisms of NSCLC initiation and progression. Thus, the goal of this study is to identify gene biomarkers for NSCLC diagnosis and prognosis by using scRNA-seq data through bioinformatics techniques. scRNA-seq data were obtained from the GEO database to identify DEGs. A total of 158 DEGs (including 48 upregulated and 110 downregulated) were detected after gene integration. Gene Ontology enrichment and KEGG pathway analysis of DEGs were performed by FunRich software. A PPI network of DEGs was then constructed using the STRING database and visualized by Cytoscape software. We identified 12 key genes (KGs) including MS4A1, CCL5, and GZMB, by using two topological methods based on the PPI networking results. The diagnostic, expression, and prognostic potentials of the identified 12 key genes were assessed using the receiver operating characteristics (ROC) curve and a web-based tool, SurvExpress. From the regulatory network analysis, we extracted the 7 key transcription factors (TFs) (FOXC1, YY1, CEBPB, TFAP2A, SREBF2, RELA, and GATA2), and 8 key miRNAs (hsa-miR-124-3p, hsa-miR-34a-5p, hsa-miR-21-5p, hsa-miR-155-5p, hsa-miR-449a, hsa-miR-24-3p, hsa-let-7b-5p, and hsa-miR-7-5p) associated with the KGs were evaluated. Functional enrichment and pathway analysis, survival analysis, ROC analysis, and regulatory network analysis highlighted crucial roles of the key genes. Our findings might play a significant role as candidate biomarkers in NSCLC diagnosis and prognosis.
Collapse
Affiliation(s)
- Adiba Sultana
- School of Biology and Basic Medical Sciences, Soochow University Medical College, 199 Ren'ai Road, Suzhou 215123, China; Center for Systems Biology, Soochow University, Suzhou 215006, China; Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China
| | - Md Shahin Alam
- School of Biology and Basic Medical Sciences, Soochow University Medical College, 199 Ren'ai Road, Suzhou 215123, China
| | - Xingyun Liu
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| | - Rajeev K Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Lab, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, TAS 7248, Australia
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Yousuf T, Dar SB, Bangri SA, Choh NA, Rasool Z, Shah A, Rather RA, Rah B, Bhat GR, Ali S, Afroze D. Diagnostic implication of a circulating serum-based three-microRNA signature in hepatocellular carcinoma. Front Genet 2022; 13:929787. [PMID: 36457743 PMCID: PMC9705795 DOI: 10.3389/fgene.2022.929787] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/26/2022] [Indexed: 09/10/2023] Open
Abstract
Owing to the diagnostic dilemma, the prognosis of hepatocellular carcinoma (HCC) remains impoverished, contributing to the globally high mortality rate. Currently, HCC diagnosis depends on the combination of imaging modalities and the measurement of serum alpha-fetoprotein (AFP) levels. Nevertheless, these conventional modalities exhibit poor performance in detecting HCC at early stages. Thus, there is a pressing need to identify novel circulating biomarkers to promote diagnostic accuracy and surveillance. Circulating miRNAs are emerging as promising diagnostic tools in screening various cancers, including HCC. However, because of heterogenous and, at times, contradictory reports, the universality of miRNAs in clinical settings remains elusive. Consequently, we proposed to explore the diagnostic potential of ten miRNAs selected on a candidate-based approach in HCC diagnosis. The expression of ten candidate miRNAs (Let-7a, miR-15a, miR-26a, miR-124, miR-126, miR-155, miR-219, miR-221, miR-222, and miR-340) was investigated in serum and tissue of 66 subjects, including 33 HCC patients and 33 healthy controls (HC), by rt-PCR. Receiver operating characteristic curve (ROC) analysis was used to determine the diagnostic accuracy of the prospective serum miRNA panel. To anticipate the potential biological roles of a three-miRNA signature, the target genes were evaluated using the Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway. The serum and tissue expression of miRNAs (Let-7a, miR-26a, miR-124, miR-155, miR-221, miR-222, and miR-340) were differentially expressed in HCC patients (p < 0.05). The ROC analysis revealed promising diagnostic performance of Let-7a (AUC = 0.801), miR-221 (AUC = 0.786), and miR-2 (AUC = 0.758) in discriminating HCC from HC. Furthermore, in a logistic regression equation, we identified a three-miRNA panel (Let-7a, miR-221, and miR-222; AUC = 0.932) with improved diagnostic efficiency in differentiating HCC from HC. Remarkably, the combination of AFP and a three-miRNA panel offered a higher accuracy of HCC diagnosis (AUC = 0.961) than AFP alone. The functional enrichment analysis demonstrated that target genes may contribute to pathways associated with HCC and cell-cycle regulation, indicating possible crosstalk of miRNAs with HCC development. To conclude, the combined classifier of a three-miRNA panel and AFP could be indispensable circulating biomarkers for HCC diagnosis. Furthermore, targeting predicted genes may provide new therapeutic clues for the treatment of aggressive HCC.
Collapse
Affiliation(s)
- Tahira Yousuf
- Advance Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir, India
- Department of Immunology and Molecular Medicine, SKIMS, Srinagar, Jammu and Kashmir, India
| | - Sadaf Bashir Dar
- Advance Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir, India
| | - Sadaf Ali Bangri
- Department of Surgical Gastroenterology, SKIMS, Srinagar, Jammu and Kashmir, India
| | - Naseer A. Choh
- Department of Radio-Diagnosis, SKIMS, Srinagar, Jammu and Kashmir, India
| | - Zubaida Rasool
- Department of Pathology, SKIMS, Srinagar, Jammu and Kashmir, India
| | - Altaf Shah
- Department of Gastroenterology, SKIMS, Srinagar, Jammu and Kashmir, India
| | - Rafiq Ahmed Rather
- Advance Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir, India
| | - Bilal Rah
- Advance Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir, India
| | - Gh Rasool Bhat
- Advance Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir, India
| | - Shazia Ali
- Advance Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir, India
| | - Dil Afroze
- Advance Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir, India
- Department of Immunology and Molecular Medicine, SKIMS, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
4
|
Shen Q, Xia Y, Yang L, Wang B, Peng J. Midazolam Suppresses Hepatocellular Carcinoma Cell Metastasis and Enhances Apoptosis by Elevating miR-217. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2813521. [PMID: 35309842 PMCID: PMC8926537 DOI: 10.1155/2022/2813521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 01/10/2023]
Abstract
Background Hepatocellular carcinoma (HCC) is a significant cause of human death in the world. Recently, it is found that midazolam can modulate miRs to participate in HCC progression. This research project was designed to elucidate the impacts of midazolam and miR-217 on HCC cell metastasis and apoptosis. Methods Human HCC cell strains (Hep3B and SK-HEP-1) were selected and intervened by midazolam at different concentrations in our research. miR-217-inhibitor intervened in the two HCC cell strains to observe the alterations of cell migration, invasiveness, and apoptosis. The miR-217 level in HCC cells was identified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Results As midazolam concentration was elevated, Hep3B and SK-HEP-1 viabilities were more obviously suppressed. The 10 μg/mL concentration was selected for analysis since Hep3B and SK-HEP-1 had an IC50 of 10.57 μg/mL and 9.35 μg/m, respectively. The qRT-PCR results showed the decreased of miR-217 in HCC cells, which was enhanced notably by midazolam intervention. Compared with the blank group, the invasiveness and migration (Transwell assay) of miR-217-inhibitor-transfected HCC cells were distinctly enhanced and the apoptosis rate (flow cytometry) was noticeably reduced. Conclusion Midazolam can upregulate miR-217 in HCC cells, thus inhibiting HCC cell metastasis and apoptosis.
Collapse
Affiliation(s)
- Qian Shen
- Department of Anesthesiology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, China
| | - Yanqiong Xia
- Department of Anesthesiology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, China
| | - Leilei Yang
- Department of Anesthesiology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, China
| | - Bo Wang
- Department of Anesthesiology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, China
| | - Jian Peng
- Department of Anesthesiology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, China
| |
Collapse
|
5
|
Veryaskina YA, Titov SE, Zhimulev IF. Reference Genes for qPCR-Based miRNA Expression Profiling in 14 Human Tissues. Med Princ Pract 2022; 31:322-332. [PMID: 35354155 PMCID: PMC9485981 DOI: 10.1159/000524283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/22/2022] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs) are promising biomarkers for the diagnosis and prognosis of various diseases. Quantitative PCR is the most frequently used method of measuring expression levels of miRNA. However, the lack of validated reference genes represents the main source of potential bias in results. It is normal practice to use small nuclear RNAs as reference genes; however, they often have variable expression. Researchers tend to prefer the most stable reference genes in each experiment. The review includes reference genes for the following tissue types: gliomas, lung cancer, melanoma, gastric cancer, liver cancer, prostate cancer, breast cancer, thyroid cancer, ovarian cancer, cervical cancer, endometrial cancer, rectal cancer, blood tumors, and placental tissues.
Collapse
Affiliation(s)
- Yulia Andreevna Veryaskina
- Laboratory of Gene Engineering, Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russian Federation
- Department of the Structure and Function of Chromosomes, Laboratory of Molecular Genetics Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russian Federation
- *Yulia Andreevna Veryaskina,
| | - Sergei Evgenievich Titov
- Department of the Structure and Function of Chromosomes, Laboratory of Molecular Genetics Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russian Federation
- AO Vector-Best, Novosibirsk, Russian Federation
| | - Igor Fyodorovich Zhimulev
- Department of the Structure and Function of Chromosomes, Laboratory of Molecular Genetics Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russian Federation
| |
Collapse
|
6
|
Zhang X, Wang W, Wang Y, Jiang G. Identification of genes and pathways leading to metastasis and poor prognosis in melanoma. Aging (Albany NY) 2021; 13:22474-22489. [PMID: 34582363 PMCID: PMC8507267 DOI: 10.18632/aging.203554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 09/03/2021] [Indexed: 01/08/2023]
Abstract
Melanoma causes the highest mortality rate among all skin cancers. However, the underlying molecular mechanisms leading to metastasis and poor prognosis in melanoma have not been fully elucidated. In this study, the differentially expressed genes (DEGs) related to metastasis in melanoma were screened out. The results of gene annotation was combined with The Cancer Genome Atlas (TCGA) database. The microRNA (miRNA) network that regulates key genes and their correlation with BRAFV600E was preliminarily analyzed. Cell and molecular biology experiments were conducted to verify the results of bioinformatics analysis. Results showed that the PI3K-Akt signaling pathway contained the key genes CDK2, CDK4, KIT, and Von Willebrand factor. Survival analysis showed that high expression of the four key genes significantly reduced the survival rate of patients with melanoma. Correlation analysis showed that BRAFV600E may regulate the expression of the four key genes, and a total of 240 miRNAs may regulate this expression. Experiments showed that the inactivation of key genes inhibits the proliferation, migration, and invasion of melanoma. In conclusion, the PI3K-Akt signaling pathway and the four key genes promoted the proliferation, migration, and invasion of melanoma, and related to poor prognosis of patients with melanoma.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Dermatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Xuzhou Medical University, Xuzhou, China
| | - Wandong Wang
- Department of Dermatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Xuzhou Medical University, Xuzhou, China
| | - Yun Wang
- Department of Dermatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Xuzhou Medical University, Xuzhou, China
| | - Guan Jiang
- Department of Dermatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
7
|
Li Q, Liu S, Yan J, Sun MZ, Greenaway FT. The potential role of miR-124-3p in tumorigenesis and other related diseases. Mol Biol Rep 2021; 48:3579-3591. [PMID: 33877528 DOI: 10.1007/s11033-021-06347-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/07/2021] [Indexed: 01/16/2023]
Abstract
MicroRNAs (miRNAs) are a class of single-stranded noncoding and endogenous RNA molecules with a length of 18-25 nucleotides. Previous work has shown that miR-124-3p leads to malignant progression of cancer including cell apoptosis, migration, invasion, drug resistance, and also recovers neural function, affects adipogenic differentiation, facilitates wound healing through control of various target genes. miR-124-3p has been mainly previously characterized as a tumor suppressor regulating tumorigenesis and progression in several cancers, such as hepatocellular carcinoma (HCC), gastric cancer (GC), bladder cancer, ovarian cancer (OC), and leukemia, as a tumor promotor in breast cancer (BC), and it has been also widely studied in a variety of neurological diseases, like Parkinson's disease (PD), dementia and Alzheimer's disease (AD), and cardiovascular diseases, ulcerative colitis (UC), acute respiratory distress syndrome (ARDS). To lay the groundwork for future therapeutic strategies, in this review we mainly focus on the most recent years of literature on the functions of miR-124-3p in related major cancers, as well as its downstream target genes. Although current work as yet provides an incomplete picture, miR-124-3p is still worthy of more attention as a practical and effective clinical biomarker.
Collapse
Affiliation(s)
- Qian Li
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun Southern Road, Dalian, 116044, China.,Department of Hematology, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China
| | - Shuqing Liu
- Department of Biochemistry, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun Southern Road, Dalian, 116044, China. .,Department of Hematology, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China.
| | - Jinsong Yan
- Department of Hematology, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China
| | - Ming-Zhong Sun
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun Southern Road, Dalian, 116044, China. .,Department of Hematology, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China.
| | - Frederick T Greenaway
- Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA, 01610, USA
| |
Collapse
|
8
|
Zhong D, Lyu X, Fu X, Xie P, Liu M, He F, Huang G. Upregulation of miR-124-3p by Liver X Receptor Inhibits the Growth of Hepatocellular Carcinoma Cells Via Suppressing Cyclin D1 and CDK6. Technol Cancer Res Treat 2020; 19:1533033820967473. [PMID: 33073697 PMCID: PMC7592319 DOI: 10.1177/1533033820967473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
MiR-124-3p has been identified as a novel tumor suppressor and a potential therapeutic target in hepatocellular carcinoma (HCC) through regulating its target genes. However, the upstream regulatory mechanisms of mir-124-3p in HCC has not been fully understood. The transcription factor liver X receptor (LXR) plays a critical role in suppressing the proliferation of HCC cells, but it is unclear whether LXR is involved in the regulation of mir-124-3p. In the present study, we demonstrated that the expression of mir-124-3p was positively correlated with that of LXR in HCC, and the cell growth of HCC was significantly inhibited by LXR agonists. Moreover, activation of LXR with the agonists up-regulated the expression of mir-124-3p, and in turn down-regulated cyclin D1 and cyclin-dependent kinase 6 (CDK6) expression, which are the target genes of mir-124-3p. Mechanistically, miR-124-3p mediates LXR induced inhibition of HCC cell growth and down-regulation of cyclin D1 and CDK6 expression. In vivo experiments also confirmed that LXR induced miR-124-3p expression inhibited the growth of HCC xenograft tumors, as well as cyclin D1 and CDK6 expression. Our findings revealed that miR-124-3p is a novel target gene of LXR, and regulation of the miR-124-3p-cyclin D1/CDK6 pathway by LXR plays a crucial role in the proliferation of HCC cells. LXR-miR-124-3p-cyclin D1/CDK6 pathway may be a novel potential therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Dan Zhong
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, 12525Army Medical University (Third Military Medical University), Chongqing, China
| | - Xilin Lyu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, 12525Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaohong Fu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, 12525Army Medical University (Third Military Medical University), Chongqing, China
| | - Peng Xie
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, 12525Army Medical University (Third Military Medical University), Chongqing, China
| | - Menggang Liu
- Department of Hepatobiliary Surgery, Daping Hospital (Army Medical Center), 12525Army Medical University (Third Military Medical University), Chongqing, China
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, 12525Army Medical University (Third Military Medical University), Chongqing, China
| | - Gang Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, 12525Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
9
|
Majid A, Wang J, Nawaz M, Abdul S, Ayesha M, Guo C, Liu Q, Liu S, Sun MZ. miR-124-3p Suppresses the Invasiveness and Metastasis of Hepatocarcinoma Cells via Targeting CRKL. Front Mol Biosci 2020; 7:223. [PMID: 33094104 PMCID: PMC7522612 DOI: 10.3389/fmolb.2020.00223] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022] Open
Abstract
Abnormal expressions of microRNAs are involved in growth and progression of human cancers including hepatocellular carcinoma (HCC). An adaptor protein CRKL plays a pivotal role in HCC growth, whereas miR-124-3p downregulation is associated with clinical stage and the poor survival of patients. However, the relationship between miR-124-3p and CRKL and the molecular mechanisms through which they regulate HCC metastasis remains unclear. In the current work, we explored miR-124-3p and its correlation with CRKL expression in HCC patient tissues. We found that miR-124-3p deficiency is inversely co-related with CRKL overexpression in tumorous tissues of HCC patients, which was also consistent in HCCLM3 and Huh7 HCC cell lines. Target validation data shows that miR-124-3p directly targets CRKL. The overexpression of miR-124-3p reverses the CRKL expression at both mRNA and protein levels and inhibits the cell development, migration, and invasion. Mechanistic investigations showed that CRKL downregulation suppresses the ERK pathway and EMT process, and concomitant decrease in invasion and metastasis of HCC cells. The expressions of key molecules in the ERK pathway such as RAF, MEK, ERK1/2, and pERK1/2 and key promoters of EMT such as N-cadherin and vimentin were downregulated, whereas E-cadherin, a key suppression indicator of EMT, was upregulated. MiR-124-3p-mediated CRKL suppression led to BAX/BCL-2 increase and C-JUN downregulation, which inhibited the cell proliferation and promoted the apoptosis in HCC cells. Collectively, our data illustrates that miR-124-3p acts as an important tumor-suppressive miRNA to suppress HCC carcinogenesis through targeting CRKL. The miR-124-3p-CRKL axial regulated pathway may offer valuable indications for cancer research, diagnosis, and treatment.
Collapse
Affiliation(s)
- Abbasi Majid
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jinxia Wang
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Muhammad Nawaz
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sattar Abdul
- Department of Biochemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Munawar Ayesha
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Chunmei Guo
- Department of Biochemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qinglong Liu
- Department of General Surgery, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Shuqing Liu
- Department of Biochemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ming-Zhong Sun
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
10
|
Vuokila N, Aronica E, Korotkov A, van Vliet EA, Nuzhat S, Puhakka N, Pitkänen A. Chronic Regulation of miR-124-3p in the Perilesional Cortex after Experimental and Human TBI. Int J Mol Sci 2020; 21:ijms21072418. [PMID: 32244461 PMCID: PMC7177327 DOI: 10.3390/ijms21072418] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) dysregulates microRNAs, which are the master regulators of gene expression. Here we investigated the changes in a brain-enriched miR-124-3p, which is known to associate with major post-injury pathologies, such as neuroinflammation. RT-qPCR of the rat tissue sampled at 7 d and 3 months in the perilesional cortex adjacent to the necrotic lesion core (aPeCx) revealed downregulation of miR-124-3p at 7 d (fold-change (FC) 0.13, p < 0.05 compared with control) and 3 months (FC 0.40, p < 0.05) post-TBI. In situ hybridization confirmed the downregulation of miR-124-3p at 7 d and 3 months post-TBI in the aPeCx (both p < 0.01). RT-qPCR confirmed the upregulation of the miR-124-3p target Stat3 in the aPeCx at 7 d post-TBI (7-fold, p < 0.05). mRNA-Seq revealed 312 downregulated and 311 upregulated miR-124 targets (p < 0.05). To investigate whether experimental findings translated to humans, we performed in situ hybridization of miR-124-3p in temporal lobe autopsy samples of TBI patients. Our data revealed downregulation of miR-124-3p in individual neurons of cortical layer III. These findings indicate a persistent downregulation of miR-124-3p in the perilesional cortex that might contribute to post-injury neurodegeneration and inflammation.
Collapse
Affiliation(s)
- Niina Vuokila
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (N.V.); (S.N.); (A.P.)
| | - Eleonora Aronica
- Department of (Neuro)pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (E.A.); (A.K.); (E.A.v.V.)
- Stichting Epilepsie Instellingen Nederland (SEIN), 0397 Heemstede, The Netherlands
| | - Anatoly Korotkov
- Department of (Neuro)pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (E.A.); (A.K.); (E.A.v.V.)
| | - Erwin Alexander van Vliet
- Department of (Neuro)pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (E.A.); (A.K.); (E.A.v.V.)
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, P.O. Box 94246, 1090 GE Amsterdam, The Netherlands
| | - Salma Nuzhat
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (N.V.); (S.N.); (A.P.)
| | - Noora Puhakka
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (N.V.); (S.N.); (A.P.)
- Correspondence: ; Tel.: +358-40-861-4939
| | - Asla Pitkänen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (N.V.); (S.N.); (A.P.)
| |
Collapse
|
11
|
Jin J, Jia ZH, Luo XH, Zhai HF. Long non-coding RNA HOXA11-AS accelerates the progression of keloid formation via miR-124-3p/TGFβR1 axis. Cell Cycle 2020; 19:218-232. [PMID: 31878829 PMCID: PMC6961662 DOI: 10.1080/15384101.2019.1706921] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Emerging evidence reveals the importance of long non-coding RNAs (lncRNAs) in the development and progression of keloid formation, whereas the underlying mechanisms are not well understood. In the present study, we investigated the biological effects and molecular mechanisms of lncRNA HOXA11-AS in keloid formation. First, the expression levels of HOXA11-AS, miR-124-3p, and transforming growth factor β receptor type I (TGFβR1) were measured in both keloid tissues and human keloid fibroblasts (HKFs) using qRT-PCR and western blot analysis, respectively. Next, we adopted both gain- and loss-of-function strategies to explore the significance of HOXA11-AS. TUNEL, flow cytometry, DNA ladder, and tube formation assays were performed to measure cell apoptosis and angiogenesis, respectively. Besides, the potential binding relationship between HOXA11-AS and miR-124-3p, as well as miR-124-3p and TGFβR1 was identified using bioinformatic screening and verified by luciferase reporter assay. Furthermore, we explored the importance of miR-124-3p in HOXA11-AS-induced phenotypes and regulations on TGFβ signaling or PI3K/Akt signaling. We found that HOXA11-AS and TGFβR1 were significantly up-regulated, while miR-124-3p was down-regulated both in keloid tissues or fibroblasts than in normal skin tissues or fibroblasts. Functionally, high expression of HOXA11-AS essentially inhibited cell apoptosis and promoted fibroblast-induced angiogenesis. Mechanistically, miR-124-3p was identified as a downstream effector to be involved in HOXA11-AS-mediated phenotypes through directly targeting TGFβR1, thus modulating PI3K/Akt signaling pathway. Taken together, our findings revealed that HOXA11-AS inhibits cell apoptosis and promotes angiogenesis through miR-124-3p/TGFβR1 axis, contributing to the progression of keloid formation, which might provide a novel target for keloid therapy.
Collapse
Affiliation(s)
- Jun Jin
- Department of Plastic Surgery, People's Hospital of Zhengzhou University, Henan People's Hospital, Zhengzhou, P.R. China
| | - Zhen-Hua Jia
- Department of Plastic Surgery, People's Hospital of Zhengzhou University, Henan People's Hospital, Zhengzhou, P.R. China
| | - Xiao-Hua Luo
- Department of Plastic Surgery, People's Hospital of Zhengzhou University, Henan People's Hospital, Zhengzhou, P.R. China
| | - Hong-Feng Zhai
- Department of Plastic Surgery, People's Hospital of Zhengzhou University, Henan People's Hospital, Zhengzhou, P.R. China
| |
Collapse
|
12
|
Rong MH, Cai KT, Lu HP, Guo YN, Huang XY, Zhu ZH, Tang W, Huang SN. Overexpression of MiR-452-5p in hepatocellular carcinoma tissues and its prospective signaling pathways. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:4041-4056. [PMID: 31933800 PMCID: PMC6949781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The implication of miR-452-5p and its prospective machinery in hepatocellular carcinoma (HCC) remains largely unknown. For this reason, this study aimed to inspect the clinical implication of miR-452-5p expression in HCC tissues with multiple detection approaches, to analyze its potential function via in silico methods, and to validate this using a dual-luciferase reporter assay. METHODS The assessment of the expression level of miR-452-5p in HCC was conducted via four methods: 1) in-house real-time quantitative PCR (RT-qPCR), 2) miRNA-sequencing (miRNA-seq) from The Cancer Genome Atlas (TCGA), 3) miRNA microarrays from the Gene Expression Omnibus (GEO), and 4) comprehensive meta-analyses calculating the standard mean difference (SMD) and summary of receiver operator characteristic (sROC). Following the target prediction, one of the potential targets of miR-452-5p was validated through a dual-luciferase reporter assay. RESULTS MiR-452-5p was consistently elevated in HCC tissues via various detection methods, including in-house RT-qPCR, miRNA-seq, and miRNA microarrays. The final SMD was 0.842 for 820 cases of HCC samples. Simultaneously, the area under curve (AUC) of the sROC was 0.80 (0.76-0.83). The 1,135 predicted targets of miR-452-5p were enriched in the pathways of cytokine-cytokine receptor interaction, carbon metabolism, and complement and coagulation cascades. Among these predicted targets, CDKN1B was verified to be a real target of miR-452-5p. CONCLUSION The overexpression of miR-452-5p may play a pivotal role in the carcinogenesis of HCC via targeting multiple signaling pathways and genes. The function and molecular machinery of miR-452-5p in HCC requires further in-depth exploration.
Collapse
Affiliation(s)
- Min-Hua Rong
- Research Department, Affiliated Cancer Hospital, Guangxi Medical University71 Hedi Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Kai-Teng Cai
- Research Department, Affiliated Cancer Hospital, Guangxi Medical University71 Hedi Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Hui-Ping Lu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Yi-Nan Guo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Xiong-Yan Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Zhan-Hui Zhu
- Research Department, Affiliated Cancer Hospital, Guangxi Medical University71 Hedi Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Wei Tang
- Department of Breast Surgery, Affiliated Cancer Hospital, Guangxi Medical University71 Hedi Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Su-Ning Huang
- Department of Radiotherapy, Affiliated Cancer Hospital, Guangxi Medical University71 Hedi Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| |
Collapse
|
13
|
Jia X, Wang X, Guo X, Ji J, Lou G, Zhao J, Zhou W, Guo M, Zhang M, Li C, Tai S, Yu S. MicroRNA-124: An emerging therapeutic target in cancer. Cancer Med 2019; 8:5638-5650. [PMID: 31389160 PMCID: PMC6745873 DOI: 10.1002/cam4.2489] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 01/10/2023] Open
Abstract
MicroRNAs (miRNAs) are noncoding single-stranded RNAs, approximately 20-24 nucleotides in length, known as powerful posttranscriptional regulators. miRNAs play important regulatory roles in cellular processes by changing messenger RNA expression and are widely involved in human diseases, including tumors. It has been reported in the literature that miRNAs have a precise role in cell proliferation, programmed cell death, differentiation, and expression of coding genes. MicroRNA-124 (miR-124) has reduced exparession in various human neoplasms and is believed to be related to the occurrence, development, and prognosis of malignant tumors. In our review, we focus on the specific molecular functions of miR-124 and the downstream gene targets in major cancers, which provide preclinical evidence for the treatment of human cancer. Although some obstacles exist, miR-124 is still attracting intensive research focus as a promising and effective anticancer weapon.
Collapse
Affiliation(s)
- Xinqi Jia
- Department of Hepatopancreatobiliary SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Xu Wang
- Department of NeurologyThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Xiaorong Guo
- Department of PathologyThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Jingjing Ji
- Department of PathologyThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Ge Lou
- Department of PathologyThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Junjie Zhao
- Department of Hepatopancreatobiliary SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Wenjia Zhou
- Department of Hepatopancreatobiliary SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Mian Guo
- Department of Neurosurgerythe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Maomao Zhang
- Key Laboratory of Myocardial IschemiaDepartment of Cardiologythe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Chao Li
- Department of Orthopedicsthe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Sheng Tai
- Department of Hepatopancreatobiliary SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Shan Yu
- Department of PathologyThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| |
Collapse
|
14
|
Chen YT, Xie JY, Sun Q, Mo WJ. Novel drug candidates for treating esophageal carcinoma: A study on differentially expressed genes, using connectivity mapping and molecular docking. Int J Oncol 2018; 54:152-166. [PMID: 30387840 PMCID: PMC6254996 DOI: 10.3892/ijo.2018.4618] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/23/2018] [Indexed: 12/14/2022] Open
Abstract
Patients with esophageal carcinoma (ESCA) have a poor prognosis and high mortality rate. Although standard therapies have had effect, there is an urgent requirement to develop novel options, as increasing drug tolerance has been identified in clinical practice. In the present study, differentially expressed genes (DEGs) of ESCA were identified in The Cancer Genome Atlas and Genotype-Tissue Expression databases. Functional and protein-protein interaction (PPI) analyses were performed. The Connectivity Map (CMAP) was selected to predict drugs for the treatment of ESCA, and their target genes were acquired from the Search Tool for Interactions of Chemicals (STITCH) by uploading the Simplified Molecular-Input Line-Entry System structure. Additionally, significant target genes and ESCA-associated hub genes were extracted using another PPI analysis, and the corresponding drugs were added to construct a network. Furthermore, the binding affinity between predicted drug candidates and ESCA-associated hub genes was calculated using molecular docking. Finally, 827 DEGs (|log2 fold-change|≥2; q-value <0.05), which are principally involved in protein digestion and absorption (P<0.005), the plasminogen-activating cascade (P<0.01), as well as the ‘biological regulation’ of the Biological Process, ‘membrane’ of the Cellular Component and ‘protein binding’ of the Molecular Function categories, were obtained. Additionally, 11 hub genes were obtained from the PPI network (all degrees ≥30). Furthermore, the 15 first screen drugs were extracted from CMAP (score <−0.85) and the 9 second screen drugs with 70 target genes were extracted from STITCH. Furthermore, another PPI analysis extracted 51 genes, and apigenin, baclofen, Prestwick-685, menadione, butyl hydroxybenzoate, gliclazide and valproate were selected as drug candidates for ESCA. Those molecular docking results with a docking score of >5.52 indicated the significance of apigenin, Prestwick-685 and menadione. The results of the present study may lead to novel drug candidates for ESCA, among which Prestwick-685 and menadione were identified to be significant new drug candidates.
Collapse
Affiliation(s)
- Yu-Ting Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jia-Yi Xie
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qi Sun
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wei-Jia Mo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
15
|
Xu X, Tao Y, Shan L, Chen R, Jiang H, Qian Z, Cai F, Ma L, Yu Y. The Role of MicroRNAs in Hepatocellular Carcinoma. J Cancer 2018; 9:3557-3569. [PMID: 30310513 PMCID: PMC6171016 DOI: 10.7150/jca.26350] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/23/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers, leading to the second cancer-related death in the global. Although the treatment of HCC has greatly improved over the past few decades, the survival rate of patients is still quite low. Thus, it is urgent to explore new therapies, especially seek for more accurate biomarkers for early diagnosis, treatment and prognosis in HCC. MicroRNAs (miRNAs), small noncoding RNAs, are pivotal participants and regulators in the development and progression of HCC. Great progress has been made in the studies of miRNAs in HCC. The key regulatory mechanisms of miRNAs include proliferation, apoptosis, invasion, metastasis, epithelial-mesenchymal transition (EMT), angiogenesis, drug resistance and autophagy in HCC. And exosomal miRNAs also play important roles in proliferation, invasion, metastasis, and drug resistance in HCC by regulating gene expression in the target cells. In addition, some miRNAs, including exosomal miRNAs, can be as potential diagnostic and prediction markers in HCC. This review summarizes the latest researches development of miRNAs in HCC in recent years.
Collapse
Affiliation(s)
- Xin Xu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Yuquan Tao
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Liang Shan
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Rui Chen
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Hongyuan Jiang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Zijun Qian
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Feng Cai
- Department of Clinical Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Lifang Ma
- Department of Clinical Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Yongchun Yu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
- Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P.R. China
| |
Collapse
|
16
|
Moazeni-Roodi A, Hashemi M. Association between miR-124-1 rs531564 polymorphism and risk of cancer: An updated meta-analysis of case-control studies. EXCLI JOURNAL 2018; 17:608-619. [PMID: 30108465 PMCID: PMC6088220 DOI: 10.17179/excli2018-1419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 06/25/2018] [Indexed: 12/23/2022]
Abstract
Many studies examined the association between miR-124-1 rs531564 polymorphism and the risk of some human cancers, but the findings remain controversial. This update meta-analysis aimed to validate the association between rs531564 polymorphism of miR-124-1 and cancer risk. Eligible studies including 6,502 cancer cases and 7,213 controls were documented by searching Web of Science, PubMed, Scopus, and Google scholar databases. Pooled odds ratios (ORs) with 95 % confidence intervals (CIs) were estimated to quantitatively evaluate the association between rs531564 variant and cancer risk. The results indicated that rs531564 variant significantly decreased the risk of cancer in homozygous codominant (OR=0.54, 95 % CI=0.43-0.69, p<0.00001, GG vs CC), dominant (OR=0.84, 95 % CI=0.72-0.99, p=0.03, CG+GG vs CC), recessive (OR=0.65, 95 % CI=0.54-0.78, p<0.00001, GG vs CG+CC), and allele (OR=0.84, 95 % CI=0.73-0.96, p=0.008, G vs C) genetic model. Stratified analysis by cancer type revealed that rs531564 variant was associated with gastric cancer, cervical cancer, esophageal squamous cell carcinoma and colorectal cancer risk. In summary, the findings of this meta-analysis support an association between miR-124-1 rs531564 polymorphism and cancer risk. Larger and well-designed studies are required to estimate this association in detail.
Collapse
Affiliation(s)
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
17
|
Xu S, Liu R, Da Y. Comparison of tumor related signaling pathways with known compounds to determine potential agents for lung adenocarcinoma. Thorac Cancer 2018; 9:974-988. [PMID: 29870138 PMCID: PMC6068465 DOI: 10.1111/1759-7714.12773] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/02/2018] [Indexed: 12/14/2022] Open
Abstract
Background This study compared tumor‐related signaling pathways with known compounds to determine potential agents for lung adenocarcinoma (LUAD) treatment. Methods Kyoto Encyclopedia of Genes and Genomes signaling pathway analyses were performed based on LUAD differentially expressed genes from The Cancer Genome Atlas (TCGA) project and genotype‐tissue expression controls. These results were compared to various known compounds using the Connectivity Mapping dataset. The clinical significance of the hub genes identified by overlapping pathway enrichment analysis was further investigated using data mining from multiple sources. A drug‐pathway network for LUAD was constructed, and molecular docking was carried out. Results After the integration of 57 LUAD‐related pathways and 35 pathways affected by small molecules, five overlapping pathways were revealed. Among these five pathways, the p53 signaling pathway was the most significant, with CCNB1, CCNB2, CDK1, CDKN2A, and CHEK1 being identified as hub genes. The p53 signaling pathway is implicated as a risk factor for LUAD tumorigenesis and survival. A total of 88 molecules significantly inhibiting the five LUAD‐related oncogenic pathways were involved in the LUAD drug‐pathway network. Daunorubicin, mycophenolic acid, and pyrvinium could potentially target the hub gene CHEK1 directly. Conclusion Our study highlights the critical pathways that should be targeted in the search for potential LUAD treatments, most importantly, the p53 signaling pathway. Some compounds, such as ciclopirox and AG‐028671, may have potential roles for LUAD treatment but require further experimental verification.
Collapse
Affiliation(s)
- Song Xu
- Department of Lung Cancer Surgery, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Renwang Liu
- Department of Lung Cancer Surgery, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yurong Da
- Key Laboratory of Cellular and Molecular Immunology in Tianjin, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|