1
|
Liu Q, Huang H, Zhang S, Liu F, Lou T. A novel cancer-associated lncRNA, LINC01123, participates in tumor progression, metabolism, immune escape, and resistance. Front Immunol 2025; 16:1480447. [PMID: 40255398 PMCID: PMC12006148 DOI: 10.3389/fimmu.2025.1480447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/17/2025] [Indexed: 04/22/2025] Open
Abstract
Long Intergenic Non-Protein Coding RNA 1123 (LINC01123), located on human chromosome 2q13, is a pivotal factor in tumorigenesis, exerting multifaceted oncogenic effects. Its expression strongly correlates with clinicopathological features, patient survival, and disease progression. In vivo and in vitro experiments further demonstrate that LINC01123 influences diverse cellular processes, including proliferation, apoptosis, viability, migration, invasion, stemness, and tumor growth. Notably, it also regulates metabolic reprogramming, immune escape, and tumor cell resistance to treatment. LINC01123 is regulated by multiple transcription factors and participates in gene regulation through protein interactions and competitive endogenous RNA (ceRNA) networks, thereby modulating cancer-promoting effects. This work systematically elucidates its primary functions and molecular mechanisms driving cancer initiation and progression, suggesting that LINC01123 might serve as a novel potential oncogenic driver and biomarker in various cancers.
Collapse
Affiliation(s)
- Qiang Liu
- Department of General Surgery, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, China
| | - He Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Shuwen Zhang
- Queen Mary College, Nanchang University, Nanchang, Jiangxi, China
| | - Fangteng Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Ting Lou
- Department of Hospital Admission and Medical Record Management, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
2
|
Sharma S, Mittal M, Shukla A, Khan J, Dinand V, Saluja D. Exploring serine-arginine rich splicing factors: potential predictive markers for dysregulation in oral cancer. BMC Cancer 2024; 24:1094. [PMID: 39227899 PMCID: PMC11373262 DOI: 10.1186/s12885-024-12750-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/01/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Dysregulated splicing events are a common phenomenon in cancer with the Serine-arginine-rich splicing factor (SRSF) family emerging as pivotal regulators of gene expression, exerting influence over constitutive and alternative splicing processes. Although aberrations in a few SRSF family members have been implicated in various cancers, the comprehensive roles of other family constituents remain underexplored. METHODS This study delves into the expression profile of the entire SRSF family (SRSF1-SRSF12) in 23 cancerous cell lines originating from diverse tissues using quantitative Real-Time PCR. Further, the transcript levels of the SRSF family were examined in oral cancer patient samples stratified into Pre-cancer (n = 15), Early cancer (n = 11), Late cancer (n = 14), and adjacent non-tumor tissues (n = 26) as controls. The results were corroborated by a parallel investigation utilizing the transcriptomics data of oral squamous cell carcinoma (OSCC) patients (n = 319) and controls (n = 35) available in The Cancer Genome Atlas (TCGA) database. RESULTS Our investigation reveals a notable upregulation in the expression levels of key splicing factors, namely SRSF3, SRSF9, and SRSF10 in all oral cancer cell lines (SCC-4, UM-SCC-84, CAL33, SAS-H1). Conversely, no significant associations between SRSF family members and other cancer cell lines were discerned. Further, the expression profile of the SRSF family in oral cancer patient samples revealed significant upregulation of SRSF1, SRSF3, SRSF7, SRSF9, SRSF10, and SRSF11 in patients with late-stage oral cancer compared to controls. Transcriptomics data from TCGA database demonstrated remarkable upregulation of SRSF1, SRSF4, SRSF9, SRSF10, and SRSF11 in OSCC patients. CONCLUSION Collectively our results underscore the critical involvement of SRSF family members in the context of oral cancer, highlighting their potential as key players in the altered splicing dynamics associated with cancer progression.
Collapse
Affiliation(s)
- Sakshi Sharma
- Dr. B. R. Ambedkar Centre for Biomedical Research (ACBR), University of Delhi, Delhi, 110007, India
| | - Manasi Mittal
- Dr. B. R. Ambedkar Centre for Biomedical Research (ACBR), University of Delhi, Delhi, 110007, India
| | - Akanksha Shukla
- Dr. B. R. Ambedkar Centre for Biomedical Research (ACBR), University of Delhi, Delhi, 110007, India
| | - Jiyauddin Khan
- Dr. B. R. Ambedkar Centre for Biomedical Research (ACBR), University of Delhi, Delhi, 110007, India
| | - Veronique Dinand
- Bai Jerbai Wadia Hospital for Children, Parel, Mumbai, 400014, Maharashtra, India
| | - Daman Saluja
- Dr. B. R. Ambedkar Centre for Biomedical Research (ACBR), University of Delhi, Delhi, 110007, India.
- Delhi School of Public Health, IoE, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
3
|
Long C, Ma B, Li K, Liu S. Comprehensive analysis of splicing factor SRs-related gene characteristics: predicting osteosarcoma prognosis and immune regulation status. Front Oncol 2024; 14:1456986. [PMID: 39286028 PMCID: PMC11403285 DOI: 10.3389/fonc.2024.1456986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024] Open
Abstract
Objective To investigate the impact of SRs-related genes on the overall survival and prognosis of osteosarcoma patients through bulk and single-cell RNA-seq transcriptome analysis. Methods In this study, we constructed a prognosis model based on serine/arginine-rich splicing factors (SRs) and predicted the survival of osteosarcoma patients. By analyzing single-cell RNA sequencing data and applying AUCell enrichment analysis, we revealed oncogenic pathways of SRs in osteosarcoma immune cells. Additionally, we described the regulatory role of SRSF7 in pan-cancer. Results Lasso regression analysis identified 6 key SRs-related genes, and a prognosis prediction model was established. The upregulation of these pathways revealed that SRs promote tumor cell proliferation and survival by regulating related signaling pathways and help tumor cells evade host immune surveillance. Additionally, by grouping single-cell data using AUCell, we found significant differences in T cell expression between high and low-risk groups. The analysis results indicated that the regulatory activity of SRs is closely related to T cell function, particularly in regulating immune responses and promoting immune evasion. Furthermore, SRSF7 regulates cell proliferation and apoptosis. Conclusion SRs-related genes play a critical regulatory role in osteosarcoma. T cells are key in regulating immune responses and promoting immune evasion through SRs genes. SRSF7 is a significant gene influencing the occurrence and development of osteosarcoma.
Collapse
Affiliation(s)
- Changhai Long
- Department of Orthopedic Center, The Second Hospital Affiliated to Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Biao Ma
- Department of Orthopedic Center, The Second Hospital Affiliated to Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Kai Li
- Department of Orthopedic Center, The Second Hospital Affiliated to Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Sijing Liu
- Department of Orthopedic Center, The Second Hospital Affiliated to Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
4
|
Xu D, Wang W, Wang D, Ding J, Zhou Y, Zhang W. Long noncoding RNA MALAT-1: A versatile regulator in cancer progression, metastasis, immunity, and therapeutic resistance. Noncoding RNA Res 2024; 9:388-406. [PMID: 38511067 PMCID: PMC10950606 DOI: 10.1016/j.ncrna.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 03/22/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) are RNA transcripts longer than 200 nucleotides that do not code for proteins but have been linked to cancer development and metastasis. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1) influences crucial cancer hallmarks through intricate molecular mechanisms, including proliferation, invasion, angiogenesis, apoptosis, and the epithelial-mesenchymal transition (EMT). The current article highlights the involvement of MALAT-1 in drug resistance, making it a potential target to overcome chemotherapy refractoriness. It discusses the impact of MALAT-1 on immunomodulatory molecules, such as major histocompatibility complex (MHC) proteins and PD-L1, leading to immune evasion and hindering anti-tumor immune responses. MALAT-1 also plays a significant role in cancer immunology by regulating diverse immune cell populations. In summary, MALAT-1 is a versatile cancer regulator, influencing tumorigenesis, chemoresistance, and immunotherapy responses. Understanding its precise molecular mechanisms is crucial for developing targeted therapies, and therapeutic strategies targeting MALAT-1 show promise for improving cancer treatment outcomes. However, further research is needed to fully uncover the role of MALAT-1 in cancer biology and translate these findings into clinical applications.
Collapse
Affiliation(s)
- Dexin Xu
- Department of Orthopedics, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Wenhai Wang
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Duo Wang
- Department of Geriatrics, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Jian Ding
- Department of Electrodiagnosis, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Yunan Zhou
- Department of Orthopedics, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Wenbin Zhang
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun, 130000, China
| |
Collapse
|
5
|
Shen W, Yuan L, Cheng F, Wu Z, Li X. SRSF7 is a promising prognostic biomarker in hepatocellular carcinoma and is associated with immune infiltration. Genes Genomics 2024; 46:49-64. [PMID: 37985547 DOI: 10.1007/s13258-023-01463-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/30/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Previous studies indicate that the splicing process, regulated by the cellular machinery of tumors (spliceosome), undergoes alterations, leading to oncogenic splicing events associated with the progression of tumors towards aggressiveness. However, the role of serine/arginine-rich splicing factor 7 (SRSF7) in hepatocellular carcinoma (HCC) and the tumor microenvironment (TME) remains unclear. METHODS This study was aimed to explore the role and clinical significance of SRSF7 in HCC. By conducting functional analysis and gene set enrichment analysis, it was discovered that SRSF7 contributes to multiple pathways associated with immune response and tumor advancement. Further experiments verified that silencing of SRSF7 obviously inhibits progression of HCC. RESULTS Aberrant expression of SRSF7, which were referred as an independent prognostic risk factor, effectively predicts the prognosis of patients with HCC. Functional and gene enrichment analyses revealed that SRSF7 is linked with multiple immune and tumor progression-related pathways, including the B cell receptor signaling pathway, positive regulation of leukocyte and immunoglobulin receptor binding cell activation, nuclear division, membrane invagination, cell cycle, as well as mTOR signaling pathway. Furthermore, increased SRSF7 expression was associated with tumor-infiltrating inflammatory cells (CD4+, monocytes/macrophages, CD8 + and endothelial). Additionally, multiple immune checkpoint genes were markedly positively related to SRSF7. The efficiency of SRSF7 in predicting immunomodulator and chemokine responses were also assessed in microenvironment. Moreover, in vitro analyses demonstrated that knockdown of SRSF7 suppressed the malignant evolution of HCC possibly by deactivating the PI3K/AKT/mTOR signaling. CONCLUSION The role of SRSF7 in the tumor microenvironment has been successfully assessed. It may be a valid bio-index for predicting the HCC prognosis, thereby guiding individualized immunotherapy for cancer.
Collapse
Affiliation(s)
- Wei Shen
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Lebin Yuan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Fei Cheng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Zhao Wu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Xiaodong Li
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| |
Collapse
|
6
|
Weidle UH, Birzele F. Circular RNA in Non-small Cell Lung Carcinoma: Identification of Targets and New Treatment Modalities. Cancer Genomics Proteomics 2023; 20:646-668. [PMID: 38035705 PMCID: PMC10687737 DOI: 10.21873/cgp.20413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 12/02/2023] Open
Abstract
Despite availability of several treatment options for non-small cell lung cancer (NSCLC), such as surgery, chemotherapy, radiation, targeted therapy and immunotherapy, the survival rate of patients for five years is in the range of 22%. Therefore, identification of new targets and treatment modalities for this disease is an important issue. In this context, we screened the PubMed database for up-regulated circular RNAs (circRNAs) which promote growth of NSCLC in preclinical models in vitro as well as in vivo xenograft models in immuno-compromised mice. This approach led to potential targets for further validation and inhibition with small molecules or antibody-derived entities. In case of preclinical validation, the corresponding circRNAs can be inhibited with small interfering RNAs (siRNA) or short hairpin RNAs (shRNA). The identified circRNAs act by sponging microRNAs (miRs) preventing cleavage of the mRNA of the corresponding targets. We identified nine circRNAs up-regulating transmembrane receptors, five circRNAs increasing expression of secreted proteins, nine circRNAs promoting expression of components of signaling pathways, six circRNAs involved in regulation of splicing and RNA processing, six circRNAs up-regulating actin-related and RNA processing components, seven circRNAs increasing the steady-state levels of transcription factors, two circRNAs increasing high-mobility group proteins, four circRNAs increasing components of the epigenetic modification system and three circRNAs up-regulating protein components of additional systems.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany;
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
7
|
Kumar K, Sinha SK, Maity U, Kirti PB, Kumar KRR. Insights into established and emerging roles of SR protein family in plants and animals. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1763. [PMID: 36131558 DOI: 10.1002/wrna.1763] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 05/13/2023]
Abstract
Splicing of pre-mRNA is an essential part of eukaryotic gene expression. Serine-/arginine-rich (SR) proteins are highly conserved RNA-binding proteins present in all metazoans and plants. SR proteins are involved in constitutive and alternative splicing, thereby regulating the transcriptome and proteome diversity in the organism. In addition to their role in splicing, SR proteins are also involved in mRNA export, nonsense-mediated mRNA decay, mRNA stability, and translation. Due to their pivotal roles in mRNA metabolism, SR proteins play essential roles in normal growth and development. Hence, any misregulation of this set of proteins causes developmental defects in both plants and animals. SR proteins from the animal kingdom are extensively studied for their canonical and noncanonical functions. Compared with the animal kingdom, plant genomes harbor more SR protein-encoding genes and greater diversity of SR proteins, which are probably evolved for plant-specific functions. Evidence from both plants and animals confirms the essential role of SR proteins as regulators of gene expression influencing cellular processes, developmental stages, and disease conditions. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Kundan Kumar
- Department of Biotechnology, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | - Shubham Kumar Sinha
- Department of Biotechnology, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | - Upasana Maity
- Department of Biotechnology, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | | | | |
Collapse
|
8
|
Wan L, Deng M, Zhang H. SR Splicing Factors Promote Cancer via Multiple Regulatory Mechanisms. Genes (Basel) 2022; 13:1659. [PMID: 36140826 PMCID: PMC9498594 DOI: 10.3390/genes13091659] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Substantial emerging evidence supports that dysregulated RNA metabolism is associated with tumor initiation and development. Serine/Arginine-Rich proteins (SR) are a number of ultraconserved and structurally related proteins that contain a characteristic RS domain rich in arginine and serine residues. SR proteins perform a critical role in spliceosome assembling and conformational transformation, contributing to precise alternative RNA splicing. Moreover, SR proteins have been reported to participate in multiple other RNA-processing-related mechanisms than RNA splicing, such as genome stability, RNA export, and translation. The dysregulation of SR proteins has been reported to contribute to tumorigenesis through multiple mechanisms. Here we reviewed the different biological roles of SR proteins and strategies for functional rectification of SR proteins that may serve as potential therapeutic approaches for cancer.
Collapse
Affiliation(s)
- Ledong Wan
- Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Hangzhou 310058, China
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Min Deng
- Department of Pathology, First Peoples Hospital Fuyang, Hangzhou 311400, China
| | - Honghe Zhang
- Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
9
|
Chetta M, Tarsitano M, Oro M, Rivieccio M, Bukvic N. An in silico pipeline approach uncovers a potentially intricate network involving spike SARS-CoV-2 RNA, RNA vaccines, host RNA-binding proteins (RBPs), and host miRNAs at the cellular level. J Genet Eng Biotechnol 2022; 20:129. [PMID: 36066672 PMCID: PMC9446605 DOI: 10.1186/s43141-022-00413-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/25/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND In the last 2 years, we have been fighting against SARS-CoV-2 viral infection, which continues to claim victims all over the world. The entire scientific community has been mobilized in an attempt to stop and eradicate the infection. A well-known feature of RNA viruses is their high mutational rate, particularly in specific gene regions. The SARS-CoV-2 S protein is also affected by these changes, allowing viruses to adapt and spread more easily. The vaccines developed using mRNA coding protein S undoubtedly contributed to the "fight" against the COVID-19 pandemic even though the presence of new variants in the spike protein could result in protein conformational changes, which could affect vaccine immunogenicity and thus vaccine effectiveness. RESULTS The study presents the findings of an in silico analysis using various bioinformatics tools finding conserved sequences inside SARS-CoV-2 S protein (encoding mRNA) same as in the vaccine RNA sequences that could be targeted by specific host RNA-binding proteins (RBPs). According to the results an interesting scenario emerges involving host RBPs competition and subtraction. The presence of viral RNA in cytoplasm could be a new tool in the virus's armory, allowing it to improve its chances of survival by altering cell gene expression and thus interfering with host cell processes. In silico analysis was used also to evaluate the presence of similar human miRNA sequences within RBPs motifs that can modulate human RNA expression. Increased cytoplasmic availability of exogenous RNA fragments derived from RNA physiological degradation could potentially mimic the effect of host human miRNAs within the cell, causing modulation of the host cell network. CONCLUSIONS Our in silico analysis could aid in shedding light on the potential effects of exogenous RNA (i.e. viruses and vaccines), thereby improving our understanding of the cellular interactions between virus and host biomolecules. Finally, using the computational approach, it is possible to obtain a safety assessment of RNA-based vaccines as well as indications for use in specific clinical conditions.
Collapse
Affiliation(s)
- Massimiliano Chetta
- AORN A. Cardarelli-Dipartimento delle Tecnologie Avanzate Diagnostico-Terapeutiche e dei Servizi sanitari-U.O.C. Genetica Medica e di Laboratorio, Via A. Cardarelli 9, 80131, Napoli, Italy.
| | - Marina Tarsitano
- AORN A. Cardarelli-Dipartimento delle Tecnologie Avanzate Diagnostico-Terapeutiche e dei Servizi sanitari-U.O.C. Genetica Medica e di Laboratorio, Via A. Cardarelli 9, 80131, Napoli, Italy
| | - Maria Oro
- AORN A. Cardarelli-Dipartimento delle Tecnologie Avanzate Diagnostico-Terapeutiche e dei Servizi sanitari-U.O.C. Genetica Medica e di Laboratorio, Via A. Cardarelli 9, 80131, Napoli, Italy
| | - Maria Rivieccio
- AORN A. Cardarelli-Dipartimento delle Tecnologie Avanzate Diagnostico-Terapeutiche e dei Servizi sanitari-U.O.C. Genetica Medica e di Laboratorio, Via A. Cardarelli 9, 80131, Napoli, Italy
| | - Nenad Bukvic
- AOUC "Policlinico di Bari"-UOC Lab. di Genetica Medica, Piazza Giulio Cesare 11, 70124, Bari, Italy
| |
Collapse
|
10
|
Murphy AJ, Li AH, Li P, Sun H. Therapeutic Targeting of Alternative Splicing: A New Frontier in Cancer Treatment. Front Oncol 2022; 12:868664. [PMID: 35463320 PMCID: PMC9027816 DOI: 10.3389/fonc.2022.868664] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/11/2022] [Indexed: 01/05/2023] Open
Abstract
The ability for cells to harness alternative splicing enables them to diversify their proteome in order to carry out complex biological functions and adapt to external and internal stimuli. The spliceosome is the multiprotein-RNA complex charged with the intricate task of alternative splicing. Aberrant splicing can arise from abnormal spliceosomes or splicing factors and drive cancer development and progression. This review will provide an overview of the alternative splicing process and aberrant splicing in cancer, with a focus on serine/arginine-rich (SR) proteins and their recently reported roles in cancer development and progression and beyond. Recent mapping of the spliceosome, its associated splicing factors, and their relationship to cancer have opened the door to novel therapeutic approaches that capitalize on the widespread influence of alternative splicing. We conclude by discussing small molecule inhibitors of the spliceosome that have been identified in an evolving era of cancer treatment.
Collapse
Affiliation(s)
- Anthony J. Murphy
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, United States
| | - Alex H. Li
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, United States
| | - Peichao Li
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hong Sun
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
11
|
Chen CB, Li J, Deng X, Liu LL, Deng J, Zha XF. Effects of Serine/Arginine Enriched Protein BmUP on the Development of Male Silkworm Reproductive Organs. Curr Issues Mol Biol 2022; 44:928-941. [PMID: 35723346 PMCID: PMC8929119 DOI: 10.3390/cimb44020061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 11/23/2022] Open
Abstract
Serine/arginine-rich proteins are a class of highly conserved splicing factor proteins involved in constitutive and alternative splicing. We screened a low molecular weight serine/arginine rich protein from silkworms and named it BmUP. Temporal and spatial expression analysis indicated that the BmUP gene was specifically expressed in the silkworm testis, and the highest expression occurred in the pre-pupa stage from the fifth instar to the moth stages. Here, we generated BmUP knockout individuals with the CRISPR/Cas9 system. Both the internal and external genitalia of knockout individuals were abnormal in knockout compared with wild-type male silkworms. In transgenic silkworms overexpressing BmUP, male silkworms showed a phenotype similar to that of the knockout individuals, whereas female individuals showed no significant differences from the wild type. In addition, by conducting promoter analysis, we identified Bmachi, a transcription factor that regulates the BmUP gene. Gel migration experiments revealed that BmAchi specifically binds the BmUP promoter. Quantitative real-time PCR showed that an increase in Bmachi expression up-regulated the expression of BmUP. In contrast, when the expression of Bmachi decreased, the expression of BmUP also downregulated in the experimental group compared with the control group. These results provide new insights for studying the effects of serine/arginine-rich proteins on the development of silkworm genitals.
Collapse
Affiliation(s)
- Chun-Bing Chen
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (C.-B.C.); (J.L.); (X.D.); (L.-L.L.); (J.D.)
| | - Juan Li
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (C.-B.C.); (J.L.); (X.D.); (L.-L.L.); (J.D.)
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xuan Deng
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (C.-B.C.); (J.L.); (X.D.); (L.-L.L.); (J.D.)
| | - Lian-Lian Liu
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (C.-B.C.); (J.L.); (X.D.); (L.-L.L.); (J.D.)
| | - Jing Deng
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (C.-B.C.); (J.L.); (X.D.); (L.-L.L.); (J.D.)
| | - Xing-Fu Zha
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (C.-B.C.); (J.L.); (X.D.); (L.-L.L.); (J.D.)
- Correspondence: ; Tel.: +86-23-68251573
| |
Collapse
|
12
|
Feng Q, Xia W, Wang S, Dai G, Jiao W, Guo N, Li H, Zhang G. Etodolac improves collagen induced rheumatoid arthritis in rats by inhibiting synovial inflammation, fibrosis and hyperplasia. MOLECULAR BIOMEDICINE 2021; 2:33. [PMID: 35006449 PMCID: PMC8607370 DOI: 10.1186/s43556-021-00052-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
Synovial hyperplasia is the main cause of chronic rheumatoid arthritis (RA), but the mechanism of synovial hyperplasia is still unclear. Etodolac (ETD) is a selective COX-2 inhibitor for relieving pain and stiffness in RA, but the disease modifying effect is still lack of evidence. Proteomics method was used to study the differential proteome of synovial tissue in collagen induced arthritis (CIA) in rats. With the help of STRING analysis, the upregulated proteins enriched in the cluster of complement and coagulation cascades and platelet degranulation were highlighted, these proteins with fibrogenic factors Lum, CIV, CXI and Tgfbi participated in the synovial inflammation, fibrosis and hyperplasia in CIA. Based on KOG function class analysis, the proteins involved in the events of the central dogma was explored. They might be hyperplasia related proteins for most of them are related to the proliferation of cancer. ETD significantly attenuated synovial inflammation, fibrosis and hyperplasia in CIA rats by downregulating these proteins. Several proteins have not been observed in RA so far, such as Tmsb4x, Pura, Nfic, Ruvbl1, Snrpd3, U2af2, Srrm2, Srsf7, Elavl1, Hnrnph1, Wars, Yars, Bzw2, Mcts1, Eif4b, Ctsh, Lamp1, Dpp7, Ptges3, Cdc37 and Septin9, they might be potentials targets for RA. Blood biochemistry tests showed the safety of 7 months use of ETD on rats. In conclusion, present study displayed a comprehensive mechanism of synovial hyperplasia in CIA rats, on this basis, the clinical value of ETD in the treatment of RA was well confirmed.
Collapse
Affiliation(s)
- Qin Feng
- Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co. Ltd., Linyi, China.,National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Wenkai Xia
- Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Shenglan Wang
- Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Guoxin Dai
- Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Weimei Jiao
- Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Na Guo
- Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Honghua Li
- Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Guimin Zhang
- Lunan Pharmaceutical Group Co., Ltd., Linyi, China. .,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co. Ltd., Linyi, China. .,National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co. Ltd., Linyi, China.
| |
Collapse
|
13
|
Ashok C, Ahuja N, Natua S, Mishra J, Samaiya A, Shukla S. E2F1 and epigenetic modifiers orchestrate breast cancer progression by regulating oxygen-dependent ESRP1 expression. Oncogenesis 2021; 10:58. [PMID: 34362878 PMCID: PMC8346533 DOI: 10.1038/s41389-021-00347-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/16/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Epithelial splicing regulatory protein 1 (ESRP1) is an RNA binding protein that governs the alternative splicing events related to epithelial phenotypes. ESRP1 contributes significantly at different stages of cancer progression. ESRP1 expression is substantially elevated in carcinoma in situ compared to the normal epithelium, whereas it is drastically ablated in cancer cells within hypoxic niches, which promotes epithelial to mesenchymal transition (EMT). Although a considerable body of research sought to understand the EMT-associated ESRP1 downregulation, the regulatory mechanisms underlying ESRP1 upregulation in primary tumors remained largely uncharted. This study seeks to unveil the regulatory mechanisms that spatiotemporally fine-tune the ESRP1 expression during breast carcinogenesis. Our results reveal that an elevated expression of transcription factor E2F1 and increased CpG hydroxymethylation of the E2F1 binding motif conjointly induce ESRP1 expression in breast carcinoma. However, E2F1 fails to upregulate ESRP1 despite its abundance in oxygen-deprived breast cancer cells. Mechanistically, impelled by the hypoxia-driven reduction of tet methylcytosine dioxygenase 3 (TET3) activity, CpG sites across the E2F1 binding motif lose the hydroxymethylation marks while gaining the de novo methyltransferase-elicited methylation marks. These two oxygen-sensitive epigenetic events work in concert to repel E2F1 from the ESRP1 promoter, thereby diminishing ESRP1 expression under hypoxia. Furthermore, E2F1 skews the cancer spliceome by upregulating splicing factor SRSF7 in hypoxic breast cancer cells. Our findings provide previously unreported mechanistic insights into the plastic nature of ESRP1 expression and insinuate important implications in therapeutics targeting breast cancer progression.
Collapse
Affiliation(s)
- Cheemala Ashok
- grid.462376.20000 0004 1763 8131Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh India
| | - Neha Ahuja
- grid.462376.20000 0004 1763 8131Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh India
| | - Subhashis Natua
- grid.462376.20000 0004 1763 8131Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh India
| | - Jharna Mishra
- Department of Pathology, Bansal Hospital, Bhopal, Madhya Pradesh India
| | - Atul Samaiya
- Department of Surgical Oncology, Bansal Hospital, Bhopal, Madhya Pradesh India
| | - Sanjeev Shukla
- grid.462376.20000 0004 1763 8131Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh India
| |
Collapse
|
14
|
Alternative splicing of mRNA in colorectal cancer: new strategies for tumor diagnosis and treatment. Cell Death Dis 2021; 12:752. [PMID: 34330892 PMCID: PMC8324868 DOI: 10.1038/s41419-021-04031-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
Alternative splicing (AS) is an important event that contributes to posttranscriptional gene regulation. This process leads to several mature transcript variants with diverse physiological functions. Indeed, disruption of various aspects of this multistep process, such as cis- or trans- factor alteration, promotes the progression of colorectal cancer. Therefore, targeting some specific processes of AS may be an effective therapeutic strategy for treating cancer. Here, we provide an overview of the AS events related to colorectal cancer based on research done in the past 5 years. We focus on the mechanisms and functions of variant products of AS that are relevant to malignant hallmarks, with an emphasis on variants with clinical significance. In addition, novel strategies for exploiting the therapeutic value of AS events are discussed.
Collapse
|
15
|
The Expression of Cold-Inducible RNA-Binding Protein mRNA in Sow Genital Tract Is Modulated by Natural Mating, But Not by Seminal Plasma. Int J Mol Sci 2020; 21:ijms21155333. [PMID: 32727091 PMCID: PMC7432381 DOI: 10.3390/ijms21155333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022] Open
Abstract
The RNA-binding proteins (RBPs), some of them induced by transient receptor potential (TRP) ion channels, are crucial regulators of RNA function that can contribute to reproductive pathogenesis, including inflammation and immune dysfunction. This study aimed to reveal the influence of spermatozoa, seminal plasma, or natural mating on mRNA expression of RBPs and TRP ion channels in different segments of the internal genital tract of oestrous, preovulatory sows. Particularly, we focused on mRNA expression changes of the cold-inducible proteins (CIPs) and related TRP channels. Pre-ovulatory sows were naturally mated (NM) or cervically infused with semen (Semen-AI) or sperm-free seminal plasma either from the entire ejaculate (SP-TOTAL) or the sperm-rich fraction (SP-AI). Samples (cervix to infundibulum) were collected by laparotomy under general anaesthesia for transcriptomic analysis (GeneChip® Porcine Gene 1.0 ST Array) 24 h after treatments. The NM treatment induced most of the mRNA expression changes, compared to Semen-AI, SP-AI, and SP-TOTAL treatments including unique significative changes in CIRBP, RBM11, RBM15B, RBMS1, TRPC1, TRPC4, TRPC7, and TRPM8. The findings on the differential mRNA expression on RBPs and TRP ion channels, especially to CIPs and related TRP ion channels, suggest that spermatozoa and seminal plasma differentially modulated both protein families during the preovulatory phase, probably related to a still unknown early signalling mechanism in the sow reproductive tract.
Collapse
|
16
|
Zheng X, Peng Q, Wang L, Zhang X, Huang L, Wang J, Qin Z. Serine/arginine-rich splicing factors: the bridge linking alternative splicing and cancer. Int J Biol Sci 2020; 16:2442-2453. [PMID: 32760211 PMCID: PMC7378643 DOI: 10.7150/ijbs.46751] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/22/2020] [Indexed: 01/08/2023] Open
Abstract
The serine/arginine-rich splicing factors (SRs) belong to the serine arginine-rich protein family, which plays an extremely important role in the splicing process of precursor RNA. The SRs recognize the splicing elements on precursor RNA, then recruit and assemble spliceosome to promote or inhibit the occurrence of splicing events. In tumors, aberrant expression of SRs causes abnormal splicing of RNA, contributing to proliferation, migration and apoptosis resistance of tumor cells. Here, we reviewed the vital role of SRs in various tumors and discussed the promise of analyzing mRNA alternative splicing events in tumor. Further, we highlight the challenges and discussed the perspectives for the identification of new potential targets for cancer therapy via SRs family members.
Collapse
Affiliation(s)
- Xiang Zheng
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, China
| | - Qiu Peng
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, 410008, China
| | - Lujuan Wang
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, 410008, China
| | - Xuemei Zhang
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, China
| | - Lili Huang
- Laboratory of Genetics and Metabolism, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region; Guangxi Birth Defects Research and Prevention Institute, Nanning, Guangxi, 530003, China
| | - Jia Wang
- Department of Immunology, Changzhi Medical College, Changzhi, Shanxi, 046000 China
| | - Zailong Qin
- Laboratory of Genetics and Metabolism, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region; Guangxi Birth Defects Research and Prevention Institute, Nanning, Guangxi, 530003, China
| |
Collapse
|
17
|
Cerasuolo A, Buonaguro L, Buonaguro FM, Tornesello ML. The Role of RNA Splicing Factors in Cancer: Regulation of Viral and Human Gene Expression in Human Papillomavirus-Related Cervical Cancer. Front Cell Dev Biol 2020; 8:474. [PMID: 32596243 PMCID: PMC7303290 DOI: 10.3389/fcell.2020.00474] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
The spliceosomal complex components, together with the heterogeneous nuclear ribonucleoproteins (hnRNPs) and serine/arginine-rich (SR) proteins, regulate the process of constitutive and alternative splicing, the latter leading to the production of mRNA isoforms coding multiple proteins from a single pre-mRNA molecule. The expression of splicing factors is frequently deregulated in different cancer types causing the generation of oncogenic proteins involved in cancer hallmarks. Cervical cancer is caused by persistent infection with oncogenic human papillomaviruses (HPVs) and constitutive expression of viral oncogenes. The aberrant activity of hnRNPs and SR proteins in cervical neoplasia has been shown to trigger the production of oncoproteins through the processing of pre-mRNA transcripts either derived from human genes or HPV genomes. Indeed, hnRNP and SR splicing factors have been shown to regulate the production of viral oncoprotein isoforms necessary for the completion of viral life cycle and for cell transformation. Target-therapy strategies against hnRNPs and SR proteins, causing simultaneous reduction of oncogenic factors and inhibition of HPV replication, are under development. In this review, we describe the current knowledge of the functional link between RNA splicing factors and deregulated cellular as well as viral RNA maturation in cervical cancer and the opportunity of new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumouri IRCCS–Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
18
|
SRSF7 maintains its homeostasis through the expression of Split-ORFs and nuclear body assembly. Nat Struct Mol Biol 2020; 27:260-273. [PMID: 32123389 PMCID: PMC7096898 DOI: 10.1038/s41594-020-0385-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 01/23/2020] [Indexed: 02/08/2023]
Abstract
SRSF7 is an essential RNA-binding protein whose misexpression promotes cancer. Here, we describe how SRSF7 maintains its protein homeostasis in murine P19 cells using an intricate negative feedback mechanism. SRSF7 binding to its premessenger RNA promotes inclusion of a poison cassette exon and transcript degradation via nonsense-mediated decay (NMD). However, elevated SRSF7 levels inhibit NMD and promote translation of two protein halves, termed Split-ORFs, from the bicistronic SRSF7-PCE transcript. The first half acts as dominant-negative isoform suppressing poison cassette exon inclusion and instead promoting the retention of flanking introns containing repeated SRSF7 binding sites. Massive SRSF7 binding to these sites and its oligomerization promote the assembly of large nuclear bodies, which sequester SRSF7 transcripts at their transcription site, preventing their export and restoring normal SRSF7 protein levels. We further show that hundreds of human and mouse NMD targets, especially RNA-binding proteins, encode potential Split-ORFs, some of which are expressed under specific cellular conditions.
Collapse
|
19
|
Lv B, Liu C, Chen Y, Qi L, Wang L, Ji Y, Xue Z. Light-induced injury in mouse embryos revealed by single-cell RNA sequencing. Biol Res 2019; 52:48. [PMID: 31466525 PMCID: PMC6716870 DOI: 10.1186/s40659-019-0256-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/21/2019] [Indexed: 11/18/2022] Open
Abstract
Background Light exposure is a common stress factor in in vitro manipulation of embryos in the reproductive center. Many studies have shown the deleterious effects of high-intensity light exposure in different animal embryos. However, no transcriptomic studies have explored the light-induced injury and response in preimplantation embryos. Results Here, we adopt different time-courses and illumination intensities to treat mouse embryos at the 2-cell stage and evaluate their effects on blastulation. Meanwhile, single-cell transcriptomes from the 2-cell to blastocyst stage were analyzed after high-intensity light exposure. These data show that cells at each embryonic stage can be categorized into different light conditions. Further analyses of differentially expressed genes and GO terms revealed the light-induced injury as well as the potential repair response after high-intensity lighting. Maternal-to-zygote transition is also affected by the failure to remove maternal RNAs and deactivate zygotic genome expression. Conclusion Our work revealed an integrated response to high-intensity lighting, involving morphological changes, long-lasting injury effects, and intracellular damage repair mechanisms.
Collapse
Affiliation(s)
- Bo Lv
- Department of Regenerative Medicine, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Chaojie Liu
- Department of Regenerative Medicine, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yu Chen
- School of Life Sciences and Environment, Avans University of Applied Sciences, Breda, 4818 AJ, The Netherlands
| | - Lingbin Qi
- Department of Regenerative Medicine, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Lu Wang
- Department of Regenerative Medicine, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yazhong Ji
- Reproductive Medicine Center, Tongji Hospital, Tongji University, Shanghai, 200065, China.
| | - Zhigang Xue
- Department of Regenerative Medicine, School of Medicine, Tongji University, Shanghai, 200092, China. .,Reproductive Medicine Center, Tongji Hospital, Tongji University, Shanghai, 200065, China.
| |
Collapse
|
20
|
Pervouchine D, Popov Y, Berry A, Borsari B, Frankish A, Guigó R. Integrative transcriptomic analysis suggests new autoregulatory splicing events coupled with nonsense-mediated mRNA decay. Nucleic Acids Res 2019; 47:5293-5306. [PMID: 30916337 PMCID: PMC6547761 DOI: 10.1093/nar/gkz193] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/12/2019] [Indexed: 11/12/2022] Open
Abstract
Nonsense-mediated decay (NMD) is a eukaryotic mRNA surveillance system that selectively degrades transcripts with premature termination codons (PTC). Many RNA-binding proteins (RBP) regulate their expression levels by a negative feedback loop, in which RBP binds its own pre-mRNA and causes alternative splicing to introduce a PTC. We present a bioinformatic analysis integrating three data sources, eCLIP assays for a large RBP panel, shRNA inactivation of NMD pathway, and shRNA-depletion of RBPs followed by RNA-seq, to identify novel such autoregulatory feedback loops. We show that RBPs frequently bind their own pre-mRNAs, their exons respond prominently to NMD pathway disruption, and that the responding exons are enriched with nearby eCLIP peaks. We confirm previously proposed models of autoregulation in SRSF7 and U2AF1 genes and present two novel models, in which (i) SFPQ binds its mRNA and promotes switching to an alternative distal 3'-UTR that is targeted by NMD, and (ii) RPS3 binding activates a poison 5'-splice site in its pre-mRNA that leads to a frame shift and degradation by NMD. We also suggest specific splicing events that could be implicated in autoregulatory feedback loops in RBM39, HNRNPM, and U2AF2 genes. The results are available through a UCSC Genome Browser track hub.
Collapse
Affiliation(s)
- Dmitri Pervouchine
- Skolkovo Institute of Science and Technology, Ulitsa Nobelya 3, Moscow 121205, Russia
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Leninskiye Gory 1-73, 119234 Moscow, Russia
| | - Yaroslav Popov
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Leninskiye Gory 1-73, 119234 Moscow, Russia
| | - Andy Berry
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, CB10 1SA Hinxton, Cambridge, UK
| | - Beatrice Borsari
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Adam Frankish
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, CB10 1SA Hinxton, Cambridge, UK
| | - Roderic Guigó
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| |
Collapse
|