1
|
Feng Y, Jiang Y, Yang L, Lu D, Li N, Zhang Q, Yang H, Qin H, Zhang J, Gou X, Jiang F. Interactions and communications in lung tumour microenvironment: chemo/radiotherapy resistance mechanisms and therapeutic targets. J Drug Target 2025; 33:817-836. [PMID: 39815747 DOI: 10.1080/1061186x.2025.2453730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
The lung tumour microenvironment (TME) is composed of various cell types, including cancer cells, stromal and immune cells, as well as extracellular matrix (ECM). These cells and surrounding ECM create a stiff, hypoxic, acidic and immunosuppressive microenvironment that can augment the resistance of lung tumours to different forms of cell death and facilitate invasion and metastasis. This environment can induce chemo/radiotherapy resistance by inducing anti-apoptosis mediators such as phosphoinositide 3-kinase (PI3K)/Akt, signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappa B (NF-κB), leading to the exhaustion of antitumor immunity and further resistance to chemo/radiotherapy. In addition, lung tumour cells can resist chemo/radiotherapy by boosting multidrug resistance mechanisms and antioxidant defence systems within cancer cells and other TME components. In this review, we discuss the interactions and communications between these different components of the lung TME and also the effects of hypoxia, immune evasion and ECM remodelling on lung cancer resistance. Finally, we review the current strategies in preclinical and clinical studies, including the inhibition of checkpoint molecules, chemoattractants, cytokines, growth factors and immunosuppressive mediators such as programmed death 1 (PD-1), insulin-like growth factor 2 (IGF-2) for targeting the lung TME to overcome resistance to chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Yuan Feng
- Guangxi University of Chinese Medicine, Nanning, China
| | - Ying Jiang
- Department of Neurology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Lin Yang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Danni Lu
- Guangxi University of Chinese Medicine, Nanning, China
| | - Ning Li
- Guangxi University of Chinese Medicine, Nanning, China
| | - Qun Zhang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Haiyan Yang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Huiyuan Qin
- Guangxi University of Chinese Medicine, Nanning, China
| | - Jiaxin Zhang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Xinyun Gou
- Guangxi University of Chinese Medicine, Nanning, China
| | - Feng Jiang
- Science and Technology Department, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
2
|
Zhou S, Sun J, Zhu W, Yang Z, Wang P, Zeng Y. Hypoxia studies in non‑small cell lung cancer: Pathogenesis and clinical implications (Review). Oncol Rep 2025; 53:29. [PMID: 39749693 PMCID: PMC11715622 DOI: 10.3892/or.2024.8862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
Non‑small cell lung cancer (NSCLC) is one of the most prevalent and lethal types of cancers worldwide and its high incidence and mortality rates pose a significant public health challenge. Despite significant advances in targeted therapy and immunotherapy, the overall prognosis of patients with NSCLC remains poor. Hypoxia is a critical driving factor in tumor progression, influencing the biological behavior of tumor cells through complex molecular mechanisms. The present review systematically examined the role of the hypoxic microenvironment in NSCLC, demonstrating its crucial role in promoting tumor cell growth, invasion and metastasis. Additionally, it has been previously reported that the hypoxic microenvironment enhances tumor cell resistance by activating hypoxia‑inducible factor and regulating exosome secretion. The hypoxic microenvironment also enables tumor cells to adapt to low oxygen and nutrient‑deficient conditions by enhancing metabolic reprogramming, such as through upregulating glycolysis. Further studies have shown that the hypoxic microenvironment facilitates immune escape by modulating tumor‑associated immune cells and suppressing the antitumor response of the immune system. Moreover, the hypoxic microenvironment increases tumor resistance to radiotherapy, chemotherapy and other types of targeted therapy through various pathways, significantly reducing the therapeutic efficacy of these treatments. Therefore, it could be suggested that early detection of cellular hypoxia and targeted therapy based on hypoxia may offer new therapeutic approaches for patients with NSCLC. The present review not only deepened the current understanding of the mechanisms of action and role of the hypoxic microenvironment in NSCLC but also provided a solid theoretical basis for the future development of precision treatments for patients with NSCLC.
Collapse
Affiliation(s)
- Sirui Zhou
- Department of Respiration, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| | - Jiazheng Sun
- Department of Respiration, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| | - Weijian Zhu
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| | - Zhiying Yang
- Department of Radiation Oncology, Minda Hospital of Hubei Minzu University, Enshi, Hubei 445000, P.R. China
| | - Ping Wang
- Department of Respiration, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| | - Yulan Zeng
- Department of Respiration, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| |
Collapse
|
3
|
Lee SY, Lee E, Lim JU, Ku B, Seong YJ, Ryu JO, Cho HJ, Kim K, Hwang Y, Moon SW, Moon MH, Kim KS, Hyun K, Kim TJ, Sung YE, Choi JY, Park CK, Kim SW, Yeo CD, Kim SJ, Lee DW. U-Shape Pillar Strip for 3D Cell-Lumped Organoid Model (3D-COM) Mimicking Lung Cancer Hypoxia Conditions in High-Throughput Screening (HTS). Anal Chem 2024; 96:10246-10255. [PMID: 38858132 DOI: 10.1021/acs.analchem.4c00890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Hypoxia is a representative tumor characteristic associated with malignant progression in clinical patients. Engineered in vitro models have led to significant advances in cancer research, allowing for the investigation of cells in physiological environments and the study of disease mechanisms and processes with enhanced relevance. In this study, we propose a U-shape pillar strip for a 3D cell-lumped organoid model (3D-COM) to study the effects of hypoxia on lung cancer in a high-throughput manner. We developed a U-pillar strip that facilitates the aggregation of PDCs mixed with an extracellular matrix to make the 3D-COM in 384-plate array form. The response to three hypoxia-activated prodrugs was higher in the 3D-COM than in the 2D culture model. The protein expression of hypoxia-inducible factor 1 alpha (HIF-1α) and HIF-2α, which are markers of hypoxia, was also higher in the 3D-COM than in the 2D culture. The results show that 3D-COM better recapitulated the hypoxic conditions of lung cancer tumors than the 2D culture. Therefore, the U-shape pillar strip for 3D-COM is a good tool to study the effects of hypoxia on lung cancer in a high-throughput manner, which can efficiently develop new drugs targeting hypoxic tumors.
Collapse
Affiliation(s)
- Sang-Yun Lee
- Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd, Suwon 16229, Republic of Korea
- Department of Biomedical Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Eunyoung Lee
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jeong Uk Lim
- Division of Pulmonary, Critical Care and Allergy, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Bosung Ku
- Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd, Suwon 16229, Republic of Korea
| | - Yu-Jeong Seong
- Department of Biomedical Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Ji-O Ryu
- Department of Biomedical Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Hyeong Jun Cho
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Kyuhwan Kim
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yongki Hwang
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seok Whan Moon
- Department of Thoracic and Cardiovascular Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Mi Hyoung Moon
- Department of Thoracic and Cardiovascular Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Kyung Soo Kim
- Department of Thoracic and Cardiovascular Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Kwanyong Hyun
- Department of Thoracic and Cardiovascular Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Tae-Jung Kim
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yeoun Eun Sung
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Joon Young Choi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Chan Kwon Park
- Division of Pulmonary, Critical Care and Allergy, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sung Won Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Biomedicine & Health Sciences, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Chang Dong Yeo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
| | - Seung Joon Kim
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Dong Woo Lee
- Department of Biomedical Engineering, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
4
|
Fu T, Ma X, Du SL, Ke ZY, Wang XC, Yin HH, Wang WX, Liu YJ, Liang AL. p21 promotes gemcitabine tolerance in A549 cells by inhibiting DNA damage and altering the cell cycle. Oncol Lett 2023; 26:471. [PMID: 37809050 PMCID: PMC10551858 DOI: 10.3892/ol.2023.14059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Gemcitabine is one of the most widely used chemotherapy drugs for advanced malignant tumors, including non-small cell lung cancer. However, the clinical efficacy of gemcitabine is limited due to drug resistance. The aim of the present study was to investigate the role of p21 in gemcitabine-resistant A549 (A549/G+) lung cancer cells. IC50 values were determined using a Cell Counting Kit-8 (CCK-8) assay. mRNA and protein expression levels of genes were measured by reverse transcription-quantitative PCR and western blotting, respectively. The cell cycle distribution and apoptosis rate were analyzed by flow cytometry. DNA damage in cells was evaluated by single-cell gel electrophoresis. The results of western blot analysis and the CCK-8 assay demonstrated that the expression of p21 was higher in A549/G+ cells than in gemcitabine-sensitive cells. Knockdown of p21 expression in gemcitabine-resistant cells sensitized these cells to gemcitabine (with the IC50 decreasing from 84.2 to 26.7 µM). Cell cycle analysis revealed different changes in the cell cycle distribution in A549/G+ cells treated with the same concentration of gemcitabine, and decreased expression of p21 was shown to promote G1 arrest. The apoptosis assay and comet assay results revealed that decreased p21 expression resulted in accumulation of unrepaired DNA double-strand breaks (DSBs) and induction of apoptosis by gemcitabine. The present study demonstrated that knockout of p21 mRNA expression in A549/G+ cells promotes apoptosis and DNA DSB accumulation, accompanied by G1 arrest. These results indicated that p21 is involved in regulating the response of A549 cells to gemcitabine.
Collapse
Affiliation(s)
- Tian Fu
- Department of Biochemistry and Molecular Biology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
- Department of Clinical Biochemistry, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
- Department of Clinical Laboratory, Zhanjiang Central Hospital, Zhanjiang, Guangdong 524045, P.R. China
| | - Xuan Ma
- Department of Clinical Laboratory, Xinle City Hospital, Shijiazhuang, Hebei 050700, P.R. China
| | - Shen-Lin Du
- Department of Clinical Laboratory, Dongguan People's Hospital, Dongguan, Guangdong 523058, P.R. China
| | - Zhi-Yin Ke
- Department of Biochemistry and Molecular Biology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
- Department of Clinical Biochemistry, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Xue-Chun Wang
- Department of Biochemistry and Molecular Biology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
- Department of Clinical Biochemistry, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Hai-Han Yin
- Department of Biochemistry and Molecular Biology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
- Department of Clinical Biochemistry, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Wen-Xuan Wang
- Department of Biochemistry and Molecular Biology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
- Department of Clinical Biochemistry, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Yong-Jun Liu
- Department of Biochemistry and Molecular Biology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
- Department of Clinical Biochemistry, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Ai-Ling Liang
- Department of Biochemistry and Molecular Biology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
- Department of Clinical Biochemistry, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| |
Collapse
|
5
|
Furuhashi T, Matsumoto Y, Ishii R, Sugasawa T, Ota S. Hypoxia and lactate influence VOC production in A549 lung cancer cells. Front Mol Biosci 2023; 10:1274298. [PMID: 37808517 PMCID: PMC10552298 DOI: 10.3389/fmolb.2023.1274298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction: Cancer cells emit characteristic volatile organic compounds (VOCs), which are potentially generated from ROS-based lipid peroxidation of polyunsaturated fatty acids. The metabolism of such VOCs and their regulation remain to be fully investigated. In fact, the enzymes involved in the synthesis of these VOCs have not been described yet. Methods: In this study, we firstly conducted in vitro enzyme assays and demonstrated that recombinant alcohol dehydrogenase (ADH) converted Trans 2-hexenal into Trans 2-hexenol. The latter has previously been reported as a cancer VOC. To study VOC metabolism, 14 different culture conditions were compared in view of Trans 2-hexenol production. Results and discussion: The data indicate that hypoxia and the addition of lactate positively influenced Trans 2-hexenol production in A549 cancer cells. The RNAseq data suggested certain gene expressions in the VOC pathway and in lactate signaling, parallel to VOC production. This implies that hypoxia and lactate signaling with a VOC production can be characteristic for cancer in vitro.
Collapse
Affiliation(s)
| | | | - Ryuga Ishii
- Anicom Specialty Medical Institute Inc., Tokyo, Japan
| | - Takehito Sugasawa
- Laboratory of Clinical Examination/Sports Medicine, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | | |
Collapse
|
6
|
Allison M, Caramés-Méndez P, Hofmann BJ, Pask CM, Phillips RM, Lord RM, McGowan PC. Cytotoxicity of Ruthenium(II) Arene Complexes Containing Functionalized Ferrocenyl β-Diketonate Ligands. Organometallics 2023; 42:1869-1881. [PMID: 37592952 PMCID: PMC10428205 DOI: 10.1021/acs.organomet.2c00553] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Indexed: 08/19/2023]
Abstract
The synthesis and characterization of 24 ruthenium(II) arene complexes of the type [(p-cym)RuCl(Fc-acac)] (where p-cym = p-cymene and Fc-acac = functionalized ferrocenyl β-diketonate ligands) are reported, including single-crystal X-ray diffraction for 21 new complexes. Chemosensitivity studies have been conducted against human pancreatic carcinoma (MIA PaCa-2), human colorectal adenocarcinoma p53-wildtype (HCT116 p53+/+) and normal human retinal epithelial cell lines (APRE-19). The most active complex, which contains a 2-furan-substituted ligand (4), is 5x more cytotoxic than the analogs 3-furan complex (5) against MIA PaCa-2. Several complexes were screened under hypoxic conditions and at shorter-time incubations, and their ability to damage DNA was determined by the comet assay. Compounds were also screened for their potential to inhibit the growth of both bacterial and fungal strains.
Collapse
Affiliation(s)
- Matthew Allison
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Pablo Caramés-Méndez
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
- Department
of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, U.K.
| | - Benjamin J. Hofmann
- School
of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Christopher M. Pask
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Roger M. Phillips
- Department
of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, U.K.
| | - Rianne M. Lord
- School
of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
- School
of Chemistry and Biosciences, University
of Bradford, Bradford BD7 1DP, U.K.
| | - Patrick C. McGowan
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| |
Collapse
|
7
|
Ashrafi A, Akter Z, Modareszadeh P, Modareszadeh P, Berisha E, Alemi PS, Chacon Castro MDC, Deese AR, Zhang L. Current Landscape of Therapeutic Resistance in Lung Cancer and Promising Strategies to Overcome Resistance. Cancers (Basel) 2022; 14:4562. [PMID: 36230484 PMCID: PMC9558974 DOI: 10.3390/cancers14194562] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is one of the leading causes of cancer-related deaths worldwide with a 5-year survival rate of less than 18%. Current treatment modalities include surgery, chemotherapy, radiation therapy, targeted therapy, and immunotherapy. Despite advances in therapeutic options, resistance to therapy remains a major obstacle to the effectiveness of long-term treatment, eventually leading to therapeutic insensitivity, poor progression-free survival, and disease relapse. Resistance mechanisms stem from genetic mutations and/or epigenetic changes, unregulated drug efflux, tumor hypoxia, alterations in the tumor microenvironment, and several other cellular and molecular alterations. A better understanding of these mechanisms is crucial for targeting factors involved in therapeutic resistance, establishing novel antitumor targets, and developing therapeutic strategies to resensitize cancer cells towards treatment. In this review, we summarize diverse mechanisms driving resistance to chemotherapy, radiotherapy, targeted therapy, and immunotherapy, and promising strategies to help overcome this therapeutic resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Li Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
8
|
Gao K, Zong H, Hou K, Zhang Y, Zhang R, Zhao D, Guo X, Luo Y, Jia S. p53N236S Activates Autophagy in Response to Hypoxic Stress Induced by DFO. Genes (Basel) 2022; 13:genes13050763. [PMID: 35627147 PMCID: PMC9141750 DOI: 10.3390/genes13050763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Abstract
Hypoxia can lead to stabilization of the tumor suppressor gene p53 and cell death. However, p53 mutations could promote cell survival in a hypoxic environment. In this study, we found that p53N236S (p53N239S in humans, hereinafter referred to as p53S) mutant mouse embryonic fibroblasts (MEFs) resistant to deferoxamine (DFO) mimic a hypoxic environment. Further, Western blot and flow cytometry showed reduced apoptosis in p53S/S cells compared to WT after DFO treatment, suggesting an antiapoptosis function of p53S mutation in response to hypoxia-mimetic DFO. Instead, p53S/S cells underwent autophagy in response to hypoxia stress presumably through inhibition of the AKT/mTOR pathway, and this process was coupled with nuclear translocation of p53S protein. To understand the relationship between autophagy and apoptosis in p53S/S cells in response to hypoxia, the autophagic inhibitor 3-MA was used to treat both WT and p53S/S cells after DFO exposure. Both apoptotic signaling and cell death were enhanced by autophagy inhibition in p53S/S cells. In addition, the mitochondrial membrane potential (MMP) and the ROS level results indicated that p53S might initiate mitophagy to clear up damaged mitochondria in response to hypoxic stress, thus increasing the proportion of intact mitochondria and maintaining cell survival. In conclusion, the p53S mutant activates autophagy instead of inducing an apoptotic process in response to hypoxia stress to protect cells from death.
Collapse
Affiliation(s)
- Kang Gao
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China; (K.G.); (H.Z.); (K.H.); (Y.Z.); (R.Z.); (D.Z.); (X.G.)
| | - Huanhuan Zong
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China; (K.G.); (H.Z.); (K.H.); (Y.Z.); (R.Z.); (D.Z.); (X.G.)
| | - Kailong Hou
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China; (K.G.); (H.Z.); (K.H.); (Y.Z.); (R.Z.); (D.Z.); (X.G.)
| | - Yanduo Zhang
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China; (K.G.); (H.Z.); (K.H.); (Y.Z.); (R.Z.); (D.Z.); (X.G.)
| | - Ruyi Zhang
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China; (K.G.); (H.Z.); (K.H.); (Y.Z.); (R.Z.); (D.Z.); (X.G.)
| | - Dan Zhao
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China; (K.G.); (H.Z.); (K.H.); (Y.Z.); (R.Z.); (D.Z.); (X.G.)
| | - Xin Guo
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China; (K.G.); (H.Z.); (K.H.); (Y.Z.); (R.Z.); (D.Z.); (X.G.)
| | - Ying Luo
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Development on Common Chronic Diseases, School of Basic Medicine, Guizhou Medical University, Guiyang 550000, China;
| | - Shuting Jia
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China; (K.G.); (H.Z.); (K.H.); (Y.Z.); (R.Z.); (D.Z.); (X.G.)
- Correspondence: ; Tel.: +86-0871-6592-0751
| |
Collapse
|
9
|
Liu C, Jin Y, Fan Z. The Mechanism of Warburg Effect-Induced Chemoresistance in Cancer. Front Oncol 2021; 11:698023. [PMID: 34540667 PMCID: PMC8446599 DOI: 10.3389/fonc.2021.698023] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/11/2021] [Indexed: 12/26/2022] Open
Abstract
Although chemotherapy can improve the overall survival and prognosis of cancer patients, chemoresistance remains an obstacle due to the diversity, heterogeneity, and adaptability to environmental alters in clinic. To determine more possibilities for cancer therapy, recent studies have begun to explore changes in the metabolism, especially glycolysis. The Warburg effect is a hallmark of cancer that refers to the preference of cancer cells to metabolize glucose anaerobically rather than aerobically, even under normoxia, which contributes to chemoresistance. However, the association between glycolysis and chemoresistance and molecular mechanisms of glycolysis-induced chemoresistance remains unclear. This review describes the mechanism of glycolysis-induced chemoresistance from the aspects of glycolysis process, signaling pathways, tumor microenvironment, and their interactions. The understanding of how glycolysis induces chemoresistance may provide new molecular targets and concepts for cancer therapy.
Collapse
Affiliation(s)
- Chang Liu
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ying Jin
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Zhimin Fan
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Xu R, Luo X, Ye X, Li H, Liu H, Du Q, Zhai Q. SIRT1/PGC-1α/PPAR-γ Correlate With Hypoxia-Induced Chemoresistance in Non-Small Cell Lung Cancer. Front Oncol 2021; 11:682762. [PMID: 34381712 PMCID: PMC8351465 DOI: 10.3389/fonc.2021.682762] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/30/2021] [Indexed: 12/18/2022] Open
Abstract
Resistance is the major cause of treatment failure and disease progression in non-small cell lung cancer (NSCLC). There is evidence that hypoxia is a key microenvironmental stress associated with resistance to cisplatin, epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), and immunotherapy in solid NSCLCs. Numerous studies have contributed to delineating the mechanisms underlying drug resistance in NSCLC; nevertheless, the mechanisms involved in the resistance associated with hypoxia-induced molecular metabolic adaptations in the microenvironment of NSCLC remain unclear. Studies have highlighted the importance of posttranslational regulation of molecular mediators in the control of mitochondrial function in response to hypoxia-induced metabolic adaptations. Hypoxia can upregulate the expression of sirtuin 1 (SIRT1) in a hypoxia-inducible factor (HIF)-dependent manner. SIRT1 is a stress-dependent metabolic sensor that can deacetylate some key transcriptional factors in both metabolism dependent and independent metabolic pathways such as HIF-1α, peroxisome proliferator-activated receptor gamma (PPAR-γ), and PPAR-gamma coactivator 1-alpha (PGC-1α) to affect mitochondrial function and biogenesis, which has a role in hypoxia-induced chemoresistance in NSCLC. Moreover, SIRT1 and HIF-1α can regulate both innate and adaptive immune responses through metabolism-dependent and -independent ways. The objective of this review is to delineate a possible SIRT1/PGC-1α/PPAR-γ signaling-related molecular metabolic mechanism underlying hypoxia-induced chemotherapy resistance in the NSCLC microenvironment. Targeting hypoxia-related metabolic adaptation may be an attractive therapeutic strategy for overcoming chemoresistance in NSCLC.
Collapse
Affiliation(s)
- Rui Xu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai, China
| | - Xin Luo
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xuan Ye
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huan Li
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongyue Liu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiong Du
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai, China.,Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qing Zhai
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai, China.,Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Hypoxia in Lung Cancer Management: A Translational Approach. Cancers (Basel) 2021; 13:cancers13143421. [PMID: 34298636 PMCID: PMC8307602 DOI: 10.3390/cancers13143421] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Hypoxia is a common feature of lung cancers. Nonetheless, no guidelines have been established to integrate hypoxia-associated biomarkers in patient management. Here, we discuss the current knowledge and provide translational novel considerations regarding its clinical detection and targeting to improve the outcome of patients with non-small-cell lung carcinoma of all stages. Abstract Lung cancer represents the first cause of death by cancer worldwide and remains a challenging public health issue. Hypoxia, as a relevant biomarker, has raised high expectations for clinical practice. Here, we review clinical and pathological features related to hypoxic lung tumours. Secondly, we expound on the main current techniques to evaluate hypoxic status in NSCLC focusing on positive emission tomography. We present existing alternative experimental approaches such as the examination of circulating markers and highlight the interest in non-invasive markers. Finally, we evaluate the relevance of investigating hypoxia in lung cancer management as a companion biomarker at various lung cancer stages. Hypoxia could support the identification of patients with higher risks of NSCLC. Moreover, the presence of hypoxia in treated tumours could help clinicians predict a worse prognosis for patients with resected NSCLC and may help identify patients who would benefit potentially from adjuvant therapies. Globally, the large quantity of translational data incites experimental and clinical studies to implement the characterisation of hypoxia in clinical NSCLC management.
Collapse
|
12
|
Aleshin VA, Zhou X, Krishnan S, Karlsson A, Bunik VI. Interplay Between Thiamine and p53/p21 Axes Affects Antiproliferative Action of Cisplatin in Lung Adenocarcinoma Cells by Changing Metabolism of 2-Oxoglutarate/Glutamate. Front Genet 2021; 12:658446. [PMID: 33868388 PMCID: PMC8047112 DOI: 10.3389/fgene.2021.658446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
Thiamine (vitamin B1) is often deficient in oncopatients, particularly those undergoing chemotherapy. However, interaction between the thiamine deficiency and anticancer action of drugs has not been characterized. A major natural thiamine derivative, thiamine diphosphate (ThDP), is a coenzyme of central metabolism, also known to affect transcriptional activity of the master metabolic regulator and genome guardian p53. A direct transcriptional target of p53, p21, regulates cell cycle dynamics and DNA damage response. Our work focuses on dependence of the action of the DNA damaging anticancer drug cisplatin on metabolic regulation through p53/p21 axes and cellular thiamine status in human lung adenocarcinoma cells A549. These cells are used as a model of a hardly curable cancer, known to develop chemoresistance to platinum drugs, such as cisplatin. Compared to wild type (A549WT), a stable line with a 60% knockdown of p21 (A549p21-) is less sensitive to antiproliferative action of cisplatin. In contrast, in the thiamine-deficient medium, cisplatin impairs the viability of A549p21- cells more than that of A549WT cells. Analysis of the associated metabolic changes in the cells indicates that (i) p21 knockdown restricts the production of 2-oxoglutarate via glutamate oxidation, stimulating that within the tricarboxylic acid (TCA) cycle; (ii) cellular cisplatin sensitivity is associated with a 4-fold upregulation of glutamic-oxaloacetic transaminase (GOT2) by cisplatin; (iii) cellular cisplatin resistance is associated with a 2-fold upregulation of p53 by cisplatin. Correlation analysis of the p53 expression and enzymatic activities upon variations in cellular thiamine/ThDP levels indicates that p21 knockdown substitutes positive correlation of the p53 expression with the activity of 2-oxoglutarate dehydrogenase complex (OGDHC) for that with the activity of glutamate dehydrogenase (GDH). The knockdown also changes correlations of the levels of OGDHC, GDH and GOT2 with those of the malate and isocitrate dehydrogenases. Thus, a p53/p21-dependent change in partitioning of the glutamate conversion to 2-oxoglutarate through GOT2 or GDH, linked to NAD(P)-dependent metabolism of 2-oxoglutarate in affiliated pathways, adapts A549 cells to thiamine deficiency or cisplatin treatment. Cellular thiamine deficiency may interfere with antiproliferative action of cisplatin due to their common modulation of the p53/p21-dependent metabolic switch between the glutamate oxidation and transamination.
Collapse
Affiliation(s)
- Vasily A. Aleshin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Xiaoshan Zhou
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Shuba Krishnan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Anna Karlsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Victoria I. Bunik
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Biological Chemistry, Sechenov University, Moscow, Russia
| |
Collapse
|
13
|
Lin J, Wang X, Wang X, Wang S, Shen R, Yang Y, Xu J, Lin J. Hypoxia increases the expression of stem cell markers in human osteosarcoma cells. Oncol Lett 2021; 21:217. [PMID: 33613706 PMCID: PMC7856697 DOI: 10.3892/ol.2021.12478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant tumor of bone. It is a common phenomenon that osteosarcoma cells have a hypoxic microenvironment. Hypoxia can dedifferentiate cells of several malignant tumor types into stem cell-like phenotypes. However, the role of hypoxia in stemness induction and the expression of cancer stem cell (CSC) markers in human osteosarcoma cells has not been reported. The present study examined the effects of hypoxia on stem-like cells in the human osteosarcoma MNNG/HOS cells. Under the incubation with 1% oxygen, the expression of CSCs markers (Oct-4, Nanog and CD133) in MNNG/HOS cells were increased. Moreover, MNNG/HOS cells cultured under hypoxic conditions were more likely to proliferate into spheres and resulted in larger xenograft tumor. Hypoxia also increased the mRNA and protein levels of hypoxia-inducible factor (HIF)-1α. Then rapamycin was used, which has been shown to lower HIF-1α protein level, to inhibit the hypoxic response. Rapamycin suppressed the expression of HIF-1α protein and CSCs markers (Oct4, Nanog and CD133) in MNNG/HOS cells. In addition, pretreatment with rapamycin reduced the efficiency of MNNG/HOS cells in forming spheres and xenograft tumors. The results demonstrated that hypoxia (1% oxygen) can dedifferentiate some of the MNNG/HOS cells into stem cell-like phenotypes, and that the mTOR signaling pathway participates in this process via regulating the expression of HIF-1α protein.
Collapse
Affiliation(s)
- Jinluan Lin
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Xinwu Wang
- Department of Orthopedics, The First Hospital of Putian City, Putian, Fujian 351100, P.R. China
| | - Xinwen Wang
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
- Department of Orthopedics, The People's Hospital of Jiangmen, Jiangmen, Guangdong 529051, P.R. China
| | - Shenglin Wang
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Rongkai Shen
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Yanbing Yang
- Department of Radiology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Jianyong Xu
- Department of Orthopedics, The People's Hospital of Guixi, Guixi, Jiangxi 335400, P.R. China
| | - Jianhua Lin
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| |
Collapse
|
14
|
Mechanisms of resistance to chemotherapy in non-small cell lung cancer. Arch Pharm Res 2021; 44:146-164. [PMID: 33608812 DOI: 10.1007/s12272-021-01312-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
Non-small cell lung cancer (NSCLC), which represents 80-85% of lung cancer cases, is one of the leading causes of human death worldwide. The majority of patients undergo an intensive and invasive treatment regimen, which may include radiotherapy, chemotherapy, targeted therapy, immunotherapy, or a combination of these, depending on disease stage and performance status. Despite advances in therapeutic regimens, the 5-year survival of NSCLC is approximately 20-30%, largely due to diagnosis at advanced stages. Conventional chemotherapy is still the standard treatment option for patients with NSCLC, especially those with advanced disease. However, the emergence of resistance to chemotherapeutic agents (chemoresistance) poses a significant obstacle to the management of patients with NSCLC. Therefore, to develop efficacious chemotherapeutic approaches for NSCLC, it is necessary to understand the mechanisms underlying chemoresistance. Several mechanisms are known to mediate chemoresistance. These include altered cellular targets for chemotherapy, decreased cellular drug concentrations, blockade of chemotherapy-induced cell cycle arrest and apoptosis, acquisition of epithelial-mesenchymal transition and cancer stem cell-like phenotypes, deregulated expression of microRNAs, epigenetic modulation, and the interaction with tumor microenvironments. In this review, we summarize the mechanisms underlying chemoresistance and tumor recurrence in NSCLC and discuss potential strategies to avoid or overcome chemoresistance.
Collapse
|
15
|
Jin X, Gong L, Peng Y, Li L, Liu G. Enhancer-bound Nrf2 licenses HIF-1α transcription under hypoxia to promote cisplatin resistance in hepatocellular carcinoma cells. Aging (Albany NY) 2020; 13:364-375. [PMID: 33290263 PMCID: PMC7835028 DOI: 10.18632/aging.202137] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/05/2020] [Indexed: 12/23/2022]
Abstract
Tumor microenvironment is hypoxic, which can cause resistance to chemotherapy, but the detailed mechanisms remain elusive. Here we find that mild hypoxia (5% O2) further increases cisplatin resistance in the already resistant HepG2/DDP but not the sensitive HepG2 cells. We find that Nrf2 is responsible for cisplatin resistance under hypoxia, as Nrf2 knockdown sensitizes HepG2/DDP cells while Nrf2 hyper-activation (though KEAP1 knockdown) increases resistance of HepG2 cells to cisplatin. Nrf2 binds to an enhancer element in the upstream of HIF-1α gene independently of hypoxia, promoting HIF-1α mRNA synthesis under hypoxic condition. As a result, Nrf2-dependent transcription counteracts HIF-1α degradation under mild hypoxia condition, leading to preferential cisplatin-resistance in HepG2/DDP cells. Our data suggest that Nrf2 regulation of HIF-1α could be an important mechanism for chemotherapy resistance in vivo.
Collapse
Affiliation(s)
- Xin Jin
- Department of Nuclear Medicine, Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Liansheng Gong
- Department of Biliary Surgery, Xiangya Hospital, Central South University. Changsha 410008, Hunan, China
| | - Ying Peng
- Department of International Joint Research Center of Minimally Invasive Endoscopic Technology Equipment and Standards, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Le Li
- Hunan Yuantai Biotechnology Co., Ltd, Changsha 410000, Hunan, China
| | - Gang Liu
- Department of Biliary Surgery, Xiangya Hospital, Central South University. Changsha 410008, Hunan, China
| |
Collapse
|
16
|
Lucas A, Belcher DA, Munoz C, Williams AT, Palmer AF, Cabrales P. Polymerized human hemoglobin increases the effectiveness of cisplatin-based chemotherapy in non-small cell lung cancer. Oncotarget 2020; 11:3770-3781. [PMID: 33144918 PMCID: PMC7584239 DOI: 10.18632/oncotarget.27776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/15/2020] [Indexed: 11/25/2022] Open
Abstract
Cisplatin is a promising therapeutic for the treatment of non-small cell lung cancer (NSCLC). Unfortunately, a significant portion of NSCLC patients relapse due to cisplatin chemoresistance. This chemoresistance is thought to be primarily associated with hypoxia in the tumor microenvironment. Administration of hemoglobin (Hb)-based oxygen (O2) carriers (HBOCs) is a promising strategy to alleviate hypoxia in the tumor, which may make cisplatin more effective. In this study, we administered a high O2 affinity, relaxed state (R-state) polymerized hemoglobin (PolyHb) to three different NSCLC cell lines cultured in vitro and implanted in vivo into healthy mice. The R-state PolyHb administered in this study is unable to deliver O2 unless under severe hypoxia which significantly limits its oxygenation potential. In vitro sensitivity studies indicate that the administration of PolyHb increases the effectiveness of cisplatin under hypoxic conditions. Additional animal studies revealed that co-administration of PolyHb with cisplatin attenuated tumor growth without alleviating hypoxia. Analysis of reactive O2 species production in the presence of hypoxic culture indicates that exogenous ROS production by oxidized PolyHb may the mechanism of chemosensitization. This ROS mechanism, coupled with oxygenation, may be a potential chemosensitizing strategy for use in NSCLC treatment.
Collapse
Affiliation(s)
- Alfredo Lucas
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Donald A. Belcher
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Carlos Munoz
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Alexander T. Williams
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Andre F. Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Pedro Cabrales
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
17
|
Activation of Mitochondrial 2-Oxoglutarate Dehydrogenase by Cocarboxylase in Human Lung Adenocarcinoma Cells A549 Is p53/p21-Dependent and Impairs Cellular Redox State, Mimicking the Cisplatin Action. Int J Mol Sci 2020; 21:ijms21113759. [PMID: 32466567 PMCID: PMC7312097 DOI: 10.3390/ijms21113759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 12/22/2022] Open
Abstract
Genetic up-regulation of mitochondrial 2-oxoglutarate dehydrogenase is known to increase reactive oxygen species, being detrimental for cancer cells. Thiamine diphosphate (ThDP, cocarboxylase) is an essential activator of the enzyme and inhibits p53–DNA binding in cancer cells. We hypothesize that the pleiotropic regulator ThDP may be of importance for anticancer therapies. The hypothesis is tested in the present work on lung adenocarcinoma cells A549 possessing the p53–p21 pathway as fully functional or perturbed by p21 knockdown. Molecular mechanisms of ThDP action on cellular viability and their interplay with the cisplatin and p53–p21 pathways are characterized. Despite the well-known antioxidant properties of thiamine, A549 cells exhibit decreases in their reducing power and glutathione level after incubation with 5 mM ThDP, not observed in non-cancer epithelial cells Vero. Moreover, thiamine deficiency elevates glutathione in A549 cells. Viability of the thiamine deficient A549 cells is increased at a low (0.05 mM) ThDP. However, the increase is attenuated by 5 mM ThDP, p21 knockdown, specific inhibitor of the 2-oxoglutarate dehydrogenase complex (OGDHC), or cisplatin. Cellular levels of the catalytically competent ThDP·OGDHC holoenzyme are dysregulated by p21 knockdown and correlate negatively with the A549 viability. The inverse relationship between cellular glutathione and holo-OGDHC is corroborated by their comparison in the A549 and Vero cells. The similarity, non-additivity, and p21 dependence of the dual actions of ThDP and cisplatin on A549 cells manifest a common OGDHC-mediated mechanism of the viability decrease. High ThDP saturation of OGDHC compromises the redox state of A549 cells under the control of p53–p21 axes.
Collapse
|
18
|
Fu T, Liang A, Liu Y. [Role of P21 in Resistance of Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 23:597-602. [PMID: 32434295 PMCID: PMC7406443 DOI: 10.3779/j.issn.1009-3419.2020.101.16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lung cancer is the most common malignant tumor in the world with the highest incidence of deaths. In recent years, the treatment of lung cancer has made a significant breakthrough. However, as the tumor progresses, lung cancer cells inevitably acquire resistance and the efficacy of the treatment are greatly reduced. P21 protein plays a dual role in tumors, which not only regulates the cell cycle, induces apoptosis, inhibits cell proliferation, but also protects cells against apoptosis and promotes tumor cell resistance. This article reviews the research on P21 and lung cancer resistance, to provide new ideas for individualized treatment of lung cancer and overcoming lung cancer resistance.
Collapse
Affiliation(s)
- Tian Fu
- Medical Molecular Diagnostics Key Laboratory of Guangdong, Dongguan 523808, China.,Department of Biochemistry and Molecular Biology and Department of Clinical Biochemistry in Guangdong Medical University, Dongguan 523808, China
| | - Ailing Liang
- Medical Molecular Diagnostics Key Laboratory of Guangdong, Dongguan 523808, China.,Department of Clinical Laboratory Biochemistry of Guangdong Medical University, Dongguan 523808, China
| | - Yongjun Liu
- Medical Molecular Diagnostics Key Laboratory of Guangdong, Dongguan 523808, China.,Department of Biochemistry and Molecular Biology and Department of Clinical Biochemistry in Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
19
|
Abildgaard C, Do Canto LM, Steffensen KD, Rogatto SR. Long Non-coding RNAs Involved in Resistance to Chemotherapy in Ovarian Cancer. Front Oncol 2020; 9:1549. [PMID: 32039022 PMCID: PMC6985280 DOI: 10.3389/fonc.2019.01549] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/20/2019] [Indexed: 12/26/2022] Open
Abstract
Ovarian cancer (OC) accounts for more than 150,000 deaths worldwide every year. Patients are often diagnosed at an advanced stage with metastatic dissemination. Although platinum- and taxane-based chemotherapies are effective treatment options, they are rarely curative and eventually, the disease will progress due to acquired resistance. Emerging evidence suggests a crucial role of long non-coding RNAs (lncRNAs) in the response to therapy in OC. Transcriptome profiling studies using high throughput approaches have identified differential expression patterns of lncRNAs associated with disease recurrence. Furthermore, several aberrantly expressed lncRNAs in resistant OC cells have been related to increased cell division, improved DNA repair, up-regulation of drug transporters or reduced susceptibility to apoptotic stimuli, supporting their involvement in acquired resistance. In this review, we will discuss the key aspects of lncRNAs associated with the development of resistance to platinum- and taxane-based chemotherapy in OC. The molecular landscape of OC will be introduced, to provide a background for understanding the role of lncRNAs in the acquisition of malignant properties. We will focus on the interplay between lncRNAs and molecular pathways affecting drug response to evaluate their impact on treatment resistance. Additionally, we will discuss the prospects of using lncRNAs as biomarkers or targets for precision medicine in OC. Although there is still plenty to learn about lncRNAs and technical challenges to be solved, the evidence of their involvement in OC and the development of acquired resistance are compelling and warrant further investigation for clinical applications.
Collapse
Affiliation(s)
- Cecilie Abildgaard
- Department of Clinical Genetics, Lillebaelt Hospital-University Hospital of Southern Denmark, Vejle, Denmark.,Department of Clinical Oncology, Lillebaelt Hospital-University Hospital of Southern Denmark, Vejle, Denmark.,Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Luisa M Do Canto
- Department of Clinical Genetics, Lillebaelt Hospital-University Hospital of Southern Denmark, Vejle, Denmark
| | - Karina D Steffensen
- Department of Clinical Oncology, Lillebaelt Hospital-University Hospital of Southern Denmark, Vejle, Denmark.,Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Silvia R Rogatto
- Department of Clinical Genetics, Lillebaelt Hospital-University Hospital of Southern Denmark, Vejle, Denmark.,Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
20
|
Exosomal microRNAs from Longitudinal Liquid Biopsies for the Prediction of Response to Induction Chemotherapy in High-Risk Neuroblastoma Patients: A Proof of Concept SIOPEN Study. Cancers (Basel) 2019; 11:cancers11101476. [PMID: 31575060 PMCID: PMC6826693 DOI: 10.3390/cancers11101476] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/10/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023] Open
Abstract
Despite intensive treatment, 50% of children with high-risk neuroblastoma (HR-NB) succumb to their disease. Progression through current trials evaluating the efficacy of new treatments for children with HR disease usually depends on an inadequate response to induction chemotherapy, assessed using imaging modalities. In this study, we sought to identify circulating biomarkers that might be detected in a simple blood sample to predict patient response to induction chemotherapy. Since exosomes released by tumor cells can drive tumor growth and chemoresistance, we tested the hypothesis that exosomal microRNA (exo-miRNAs) in blood might predict response to induction chemotherapy. The exo-miRNAs expression profile in plasma samples collected from children treated in HR-NBL-1/SIOPEN before and after induction chemotherapy was compared to identify a three exo-miRs signature that could discriminate between poor and good responders. Exo-miRNAs expression also provided a chemoresistance index predicting the good or poor prognosis of HR-NB patients.
Collapse
|
21
|
Characterisation of an Isogenic Model of Cisplatin Resistance in Oesophageal Adenocarcinoma Cells. Pharmaceuticals (Basel) 2019; 12:ph12010033. [PMID: 30791601 PMCID: PMC6469161 DOI: 10.3390/ph12010033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/18/2022] Open
Abstract
Cisplatin (cis-diamminedichloroplatinum) is widely used for the treatment of solid malignancies; however, the development of chemoresistance hinders the success of this chemotherapeutic in the clinic. This study provides novel insights into the molecular and phenotypic changes in an isogenic oesophageal adenocarcinoma (OAC) model of acquired cisplatin resistance. Key differences that could be targeted to overcome cisplatin resistance are highlighted. We characterise the differences in treatment sensitivity, gene expression, inflammatory protein secretions, and metabolic rate in an isogenic cell culture model of acquired cisplatin resistance in OAC. Cisplatin-resistant cells (OE33 Cis R) were significantly more sensitive to other cytotoxic modalities, such as 2 Gy radiation (p = 0.0055) and 5-fluorouracil (5-FU) (p = 0.0032) treatment than parental cisplatin-sensitive cells (OE33 Cis P). Gene expression profiling identified differences at the gene level between cisplatin-sensitive and cisplatin-resistant cells, uncovering 692 genes that were significantly altered between OE33 Cis R cells and OE33 Cis P cells. OAC is an inflammatory-driven cancer, and inflammatory secretome profiling identified 18 proteins secreted at significantly altered levels in OE33 Cis R cells compared to OE33 Cis P cells. IL-7 was the only cytokine to be secreted at a significantly higher levels from OE33 Cis R cells compared to OE33 Cis P cells. Additionally, we profiled the metabolic phenotype of OE33 Cis P and OE33 Cis R cells under normoxic and hypoxic conditions. The oxygen consumption rate, as a measure of oxidative phosphorylation, is significantly higher in OE33 Cis R cells under normoxic conditions. In contrast, under hypoxic conditions of 0.5% O2, the oxygen consumption rate is significantly lower in OE33 Cis R cells than OE33 Cis P cells. This study provides novel insights into the molecular and phenotypic changes in an isogenic OAC model of acquired cisplatin resistance, and highlights therapeutic targets to overcome cisplatin resistance in OAC.
Collapse
|
22
|
Meng L, Yang X, Xie X, Wang M. Mitochondrial NDUFA4L2 protein promotes the vitality of lung cancer cells by repressing oxidative stress. Thorac Cancer 2019; 10:676-685. [PMID: 30710412 PMCID: PMC6449242 DOI: 10.1111/1759-7714.12984] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/30/2018] [Accepted: 01/02/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) accounts for a significant proportion of cancer-related deaths and lacks an effective treatment strategy. NSCLC tissues are generally found in a low oxygen environment. The NDUFA4L2 protein, located in the mitochondria, is encoded by the nucleus genome and is considered a crucial mediator that regulates cell survival. A better understanding of the mechanism of NDUFA4L2 in NSCLC survival in hypoxic environments is essential to design new therapeutic methods. METHODS Twenty NSCLC and corresponding paired non-tumorous lung tissue samples were collected. NSCLC cell lines were cultured in hypoxic conditions to investigate the mechanism of NDUFA4L2 in NSCLC. The role of NDUFA4L2 was confirmed by using Western blotting, reactive oxygen species measurement, flow cytometry, immunofluorescence analysis, and wound healing and colony formation assays. RESULTS The expression of HIF-1α and mitochondrial NDUFA4L2 increased in NSCLC cell lines cultured in hypoxic conditions (1% O2 ). NDUFA4L2 was drastically overexpressed in human NSCLC tissues and cell lines cultured in hypoxic conditions. HIF-1α regulated the expression of NDUFA4L2. Knockdown of NDUFA4L2 notably increased mitochondrial reactive oxygen species production, which suppressed the viability of NSCLC. CONCLUSION In conclusion, overexpression of NDUFA4L2 is a key factor for maintaining NSCLC growth, suggesting that mitochondrial NDUFA4L2 may be a potential target for the treatment of lung cancer.
Collapse
Affiliation(s)
- Lifei Meng
- Department of Cardiothoracic Surgery, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuhui Yang
- Department of Cardiothoracic Surgery, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Xie
- Department of Cardiothoracic Surgery, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingsong Wang
- Department of Cardiothoracic Surgery, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|