1
|
Xu M, Hou Y, Li N, Yu W, Chen L. Targeting histone deacetylases in head and neck squamous cell carcinoma: molecular mechanisms and therapeutic targets. J Transl Med 2024; 22:418. [PMID: 38702756 PMCID: PMC11067317 DOI: 10.1186/s12967-024-05169-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/05/2024] [Indexed: 05/06/2024] Open
Abstract
The onerous health and economic burden associated with head and neck squamous cell carcinoma (HNSCC) is a global predicament. Despite the advent of novel surgical techniques and therapeutic protocols, there is an incessant need for efficacious diagnostic and therapeutic targets to monitor the invasion, metastasis and recurrence of HNSCC due to its substantial morbidity and mortality. The differential expression patterns of histone deacetylases (HDACs), a group of enzymes responsible for modifying histones and regulating gene expression, have been demonstrated in neoplastic tissues. However, there is limited knowledge regarding the role of HDACs in HNSCC. Consequently, this review aims to summarize the existing research findings and explore the potential association between HDACs and HNSCC, offering fresh perspectives on therapeutic approaches targeting HDACs that could potentially enhance the efficacy of HNSCC treatment. Additionally, the Cancer Genome Atlas (TCGA) dataset, CPTAC, HPA, OmicShare, GeneMANIA and STRING databases are utilized to provide supplementary evidence on the differential expression of HDACs, their prognostic significance and predicting functions in HNSCC patients.
Collapse
Affiliation(s)
- Mengchen Xu
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Shandong Provincial Clinical Research Center for Oral Diseases, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yiming Hou
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Shandong Provincial Clinical Research Center for Oral Diseases, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Na Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, Shandong, China
- Center of Clinical Laboratory, Shandong Second Provincial General Hospital, Jinan, 250022, Shandong, China
| | - Wenqian Yu
- Research Center of Translational Medicine, Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Lei Chen
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Shandong Provincial Clinical Research Center for Oral Diseases, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
2
|
Sripodok P, Saito H, Kouketsu A, Takahashi T, Kumamoto H. Immunoexpression of SIRT1, 6, and 7 in oral leukoplakia and oral squamous cell carcinoma. Odontology 2024; 112:221-229. [PMID: 37191889 DOI: 10.1007/s10266-023-00816-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/25/2023] [Indexed: 05/17/2023]
Abstract
Sirtuins (SIRTs) are a family of proteins involved in the metabolic process responsible for extending the lifespan. The role of SIRT1, 6, and 7 in oral squamous cell carcinoma (OSCC) and oral leukoplakia (OLP), one of its precursors, is still elusive. In this study, 82 OLP and 77 OSCC were immunohistochemically examined for SIRT1, 6, and 7. Stained sections were thoroughly scanned and evaluated using a digital image analysis program. The SIRT1, 6, and 7 expressions were detected in the nuclei of epithelial and carcinoma cells in various degrees. Afterward, any correlations among SIRTs, including associations with clinicopathological features and the Kaplan-Meier curves were analyzed. OSCC demonstrated significantly higher SIRT1 expression than OLP, while non-dysplastic lesions showed significantly higher SIRT6 expression than other lesions. A strong correlation was observed between SIRT6 and 7 in OLP, SIRT1 and 6 in in OSCC and in SIRT6 and 7 when all lesion types were considered. There were no significant differences between SIRTs reactivity and the clinical features in OLP. For OSCC, SIRT1 and 6 was found to be directly associated with site of the lesion, while SIRT7 showed a direct relationship between gender, stromal lymphocytic infiltration, and depth of the invasion. OSCC with high SIRT7 expression revealed a slightly lower survival probability, although not statistically significant (p = 0.1019). Our findings suggest that SIRT1, 6, and 7 may play correlated and diverse roles in the development and advancement of OSCC.
Collapse
Affiliation(s)
- Pawat Sripodok
- Division of Oral and Maxillofacial Surgery, Department of Disease Management Dentistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan.
| | - Haruka Saito
- Division of Oral Pathology, Department of Disease Management Dentistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Atsumu Kouketsu
- Division of Oral and Maxillofacial Surgery, Department of Disease Management Dentistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Tetsu Takahashi
- Division of Oral and Maxillofacial Surgery, Department of Disease Management Dentistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Hiroyuki Kumamoto
- Division of Oral Pathology, Department of Disease Management Dentistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| |
Collapse
|
3
|
Gong Y, Li S, Wu J, Zhang T, Fang S, Feng D, Luo X, Yuan J, Wu Y, Yan X, Zhang Y, Zhu J, Wu J, Lian J, Xiang W, Ni Z. Autophagy in the pathogenesis and therapeutic potential of post-traumatic osteoarthritis. BURNS & TRAUMA 2023; 11:tkac060. [PMID: 36733467 PMCID: PMC9887948 DOI: 10.1093/burnst/tkac060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/29/2022] [Indexed: 02/04/2023]
Abstract
Autophagy, as a fundamental mechanism for cellular homeostasis, is generally involved in the occurrence and progression of various diseases. Osteoarthritis (OA) is the most common musculoskeletal disease that often leads to pain, disability and economic loss in patients. Post-traumatic OA (PTOA) is a subtype of OA, accounting for >12% of the overall burden of OA. PTOA is often caused by joint injuries including anterior cruciate ligament rupture, meniscus tear and intra-articular fracture. Although a variety of methods have been developed to treat acute joint injury, the current measures have limited success in effectively reducing the incidence and delaying the progression of PTOA. Therefore, the pathogenesis and intervention strategy of PTOA need further study. In the past decade, the roles and mechanisms of autophagy in PTOA have aroused great interest in the field. It was revealed that autophagy could maintain the homeostasis of chondrocytes, reduce joint inflammatory level, prevent chondrocyte death and matrix degradation, which accordingly improved joint symptoms and delayed the progression of PTOA. Moreover, many strategies that target PTOA have been revealed to promote autophagy. In this review, we summarize the roles and mechanisms of autophagy in PTOA and the current strategies for PTOA treatment that depend on autophagy regulation, which may be beneficial for PTOA patients in the future.
Collapse
Affiliation(s)
| | | | | | - Tongyi Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Changjiang Street, Yuzhong District, Chongqing 400042, China,Department of General practice, Chinese PLA General Hospital of the Central Theater Command, Wuluo Street, Wuchang District, Wuhan 430000, China
| | - Shunzheng Fang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Changjiang Street, Yuzhong District, Chongqing 400042, China
| | - Daibo Feng
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Changjiang Street, Yuzhong District, Chongqing 400042, China
| | - Xiaoqing Luo
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Changjiang Street, Yuzhong District, Chongqing 400042, China
| | - Jing Yuan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Gantaoyan Street, Shapinba District, Chongqing 400038, China
| | - Yaran Wu
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Gantaoyan Street, Shapinba District, Chongqing 400038, China
| | - Xiaojing Yan
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Gantaoyan Street, Shapinba District, Chongqing 400038, China
| | - Yan Zhang
- Department of Pediatrics, People's Hospital Affiliated to Chongqing Three Gorges Medical College, Guoben Street, Wanzhou district, Chongqing 404000, China
| | - Jun Zhu
- Department of Cardiology, Shanghai Hospital, Shanghai Street, Wanzhou District, Chongqing 404000, China
| | - Jiangyi Wu
- Department of Sports Medicine and Rehabilitation, Shenzhen Hospital, Peking University, Lianhua Street, Futian District, Shenzhen 518034, China
| | - Jiqin Lian
- Correspondence. Zhenghong Ni, ; Wei Xiang, ; Jiqin Lian,
| | - Wei Xiang
- Correspondence. Zhenghong Ni, ; Wei Xiang, ; Jiqin Lian,
| | - Zhenhong Ni
- Correspondence. Zhenghong Ni, ; Wei Xiang, ; Jiqin Lian,
| |
Collapse
|
4
|
Pan Z, Dong H, Huang N, Fang J. Oxidative stress and inflammation regulation of sirtuins: New insights into common oral diseases. Front Physiol 2022; 13:953078. [PMID: 36060706 PMCID: PMC9437461 DOI: 10.3389/fphys.2022.953078] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/29/2022] [Indexed: 12/22/2022] Open
Abstract
Sirtuins are a family of nicotinamide adenine dinucleotide (NAD)+-dependent histone deacetylases, comprising seven members SIRT1-SIRT7. Sirtuins have been extensively studied in regulating ageing and age-related diseases. Sirtuins are also pivotal modulators in oxidative stress and inflammation, as they can regulate the expression and activation of downstream transcriptional factors (such as Forkhead box protein O3 (FOXO3a), nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-kappa B (NF-κB)) as well as antioxidant enzymes, through epigenetic modification and post-translational modification. Most importantly, studies have shown that aberrant sirtuins are involved in the pathogenesis of infectious and inflammatory oral diseases, and oral cancer. In this review, we provide a comprehensive overview of the regulatory patterns of sirtuins at multiple levels, and the essential roles of sirtuins in regulating inflammation, oxidative stress, and bone metabolism. We summarize the involvement of sirtuins in several oral diseases such as periodontitis, apical periodontitis, pulpitis, oral candidiasis, oral herpesvirus infections, dental fluorosis, and oral cancer. At last, we discuss the potential utilization of sirtuins as therapeutic targets in oral diseases.
Collapse
Affiliation(s)
- Zijian Pan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hao Dong
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ning Huang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Fang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jie Fang,
| |
Collapse
|
5
|
Value of Serum Sirtuin-1 (SIRT1) Levels and SIRT1 Gene Variants in Periodontitis Patients. Medicina (B Aires) 2022; 58:medicina58050653. [PMID: 35630070 PMCID: PMC9144289 DOI: 10.3390/medicina58050653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 12/03/2022] Open
Abstract
Background and Objectives: Periodontitis is a multifactorial inflammatory disease associated with biofilm dysbiosis and is defined by progressive periodontium destruction. Genes largely regulate this entire process. SIRTs are a group of histone deacetylases (HDACs) intimately involved in cell metabolism and are responsible for altering and regulating numerous cell functions. Understanding SIRTs and their functions in periodontitis may be useful for therapeutic treatment strategies in the future. The aim of our study was to investigate the associations amid SIRT1 single-gene nucleotide polymorphisms (rs3818292, rs3758391, and rs7895833) and SIRT1 serum levels for patients affected by periodontitis in the Caucasian population. Materials and Methods: The study included 201 patients affected by periodontitis and 500 healthy controls. DNA extraction from peripheral leukocytes was carried out using commercial kits. The real-time PCR method was selected for the determination of the genotype of the periodontitis patients and the control group. The ELISA method was used to measure the SIRT1 concentration. A statistical data analysis was performed using “BM SPSS Statistics 27.0” software. Results: The SIRT1 rs3818292 AG genotype was associated with a 2-fold and 1.9-fold increase in the development of periodontitis under the codominant and overdominant models (OR = 1.959; CI = 1.239–3.098; p = 0.004; and OR = 1.944; CI = 1.230–3.073; p = 0.004, respectively). The serum SIRT1 levels were not statistically significantly different between subjects in the periodontitis and control groups (0.984 (5.159) ng/mL vs. 0.514 (7.705) ng/mL, p = 0.792). Conclusions: in our study, the genotypes and alleles of SIRT1 rs3818292, rs3758391, and rs7895833 statistically significantly differed between the periodontitis and control groups, exclusively in the male population and subjects older than 60 years.
Collapse
|
6
|
Colloca A, Balestrieri A, Anastasio C, Balestrieri ML, D’Onofrio N. Mitochondrial Sirtuins in Chronic Degenerative Diseases: New Metabolic Targets in Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23063212. [PMID: 35328633 PMCID: PMC8949044 DOI: 10.3390/ijms23063212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 12/23/2022] Open
Abstract
Sirtuins (SIRTs) are a family of class III histone deacetylases (HDACs) consisting of seven members, widely expressed in mammals. SIRTs mainly participate in metabolic homeostasis, DNA damage repair, cell survival, and differentiation, as well as other cancer-related biological processes. Growing evidence shows that SIRTs have pivotal roles in chronic degenerative diseases, including colorectal cancer (CRC), the third most frequent malignant disease worldwide. Metabolic alterations are gaining attention in the context of CRC development and progression, with mitochondrion representing a crucial point of complex and intricate molecular mechanisms. Mitochondrial SIRTs, SIRT2, SIRT3, SIRT4 and SIRT5, control mitochondrial homeostasis and dynamics. Here, we provide a comprehensive review on the latest advances on the role of mitochondrial SIRTs in the initiation, promotion and progression of CRC. A deeper understanding of the pathways by which mitochondrial SIRTs control CRC metabolism may provide new molecular targets for future innovative strategies for CRC prevention and therapy.
Collapse
Affiliation(s)
- Antonino Colloca
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. de Crecchio 7, 80138 Naples, Italy; (A.C.); (C.A.); (N.D.)
| | - Anna Balestrieri
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, U.O.C. Food Control and Food Safety, 80055 Portici, Italy;
| | - Camilla Anastasio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. de Crecchio 7, 80138 Naples, Italy; (A.C.); (C.A.); (N.D.)
| | - Maria Luisa Balestrieri
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. de Crecchio 7, 80138 Naples, Italy; (A.C.); (C.A.); (N.D.)
- Correspondence: ; Tel.: +39-081-566-5865
| | - Nunzia D’Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. de Crecchio 7, 80138 Naples, Italy; (A.C.); (C.A.); (N.D.)
| |
Collapse
|
7
|
Ramesh N, Krithika C, Kannan A, Anuradha G, Aniyan Y. Expression of Sirtuin 3 in oral cancer and oral leukoplakia: A cross-sectional observational study. J Int Oral Health 2022. [DOI: 10.4103/jioh.jioh_9_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
8
|
Sirtuins as Interesting Players in the Course of HIV Infection and Comorbidities. Cells 2021; 10:cells10102739. [PMID: 34685718 PMCID: PMC8534645 DOI: 10.3390/cells10102739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 02/07/2023] Open
Abstract
The sirtuins (SIRTs) are a family of enzymes from the group of NAD+-dependent deacetylases. Through the reaction of splitting the acetyl group of various transcription factors and histones they regulate many processes in the organism. The activity of sirtuins is linked to metabolic control, oxidative stress, inflammation and apoptosis, and they also affect the course of viral infections. For this reason, they may participate in the pathogenesis and development of many diseases, but little is known about their role in the course of human immunodeficiency virus (HIV) infection, which is the subject of this review. In the course of HIV infection, comorbidities such as: neurodegenerative disorders, obesity, insulin resistance and diabetes, lipid disorders and cardiovascular diseases, renal and bone diseases developed more frequently and faster compared to the general population. The role of sirtuins in the development of accompanying diseases in the course of HIV infection may also be interesting. There is still a lack of detailed information on this subject. The role of sirtuins, especially SIRT1, SIRT3, SIRT6, are indicated to be of great importance in the course of HIV infection and the development of the abovementioned comorbidities.
Collapse
|
9
|
Faruk EM, Sabry D, Morsi AA, El-Din YA, Taha NM, Medhat E. The anti-tumour effect of induced pluripotent stem cells against submandibular gland carcinoma in rats is achieved via modulation of the apoptotic response and the expression of Sirt-1, TGF-β, and MALAT-1 in cancer cells. Mol Cell Biochem 2021; 477:53-65. [PMID: 34533647 DOI: 10.1007/s11010-021-04255-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/31/2021] [Indexed: 11/09/2022]
Abstract
The era of induced pluripotent stem cells (iPSCs) was used as novel biotechnology to replace embryonic stem cells bypassing the ethical concerns and problems of stem cell transplant rejection. The anti-tumour potential of iPSCs against many tumours including salivary cancer was proven in previous studies. The current study aimed to investigate the contribution of the Bax, Sirt-1, TGF-β, and MALAT genes and/or their protein expression to the pathogenesis of submandibular carcinogenesis before and after iPSCs treatment. Thirty Wistar albino rats were equally assigned into three groups: group I (control), group II (Squamous cell carcinoma (SCC)): submandibular glands were injected SCC cells, and group III (SCC/iPSCs): SCC rats were treated by 5 × 106 iPSCs. Submandibular gland sections were subjected to histological and immunohistochemical analyses to detect mucopolysaccharides, Bax, and TGF-β expression as well as PCR quantification for TGF-β, Sirt-1, and lncRNA MALAT-1 gene expressions. Western blotting was also used to detect Sirt-1 and TGF-β protein expressions. SCC group revealed infiltration by sheets of malignant squamous cells with or without keratin pearls and inflammatory cells, in addition to upregulation of TGF-β, Sirt-1, MALAT-1, and Bax, whereas SCC/iPSCs group showed an improved submandibular histoarchitecture with the maintenance of the secretory function. Bax and TGF-β immunoexpression were significantly reduced. The upregulated TGF-β, Sirt-1, and MALAT-1 genes were significantly decreased. iPSCs protected against the experimentally induced submandibular gland carcinoma that might be achieved via their regenerative potential and their regulatory modulation of Sirt-1, TGF-β, and MALAT-1 gene/protein expressions and of the apoptotic response in cancer cells.
Collapse
Affiliation(s)
- Eman Mohamed Faruk
- Department of Histology and Cytology, Faculty of Medicine, Benha University, Benha, Egypt.,Department of Anatomy, College of Medicine, Umm Al-Qura University, Mecca, Kingdom of Saudi Arabia
| | - Dina Sabry
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt.,Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Badr University in Cairo, Badr City, 11829, Egypt
| | - Ahmed A Morsi
- Department of Histology and Cell Biology, Faculty of Medicine, Fayoum University, Fayoum, Fayoum Governorate, Egypt.
| | - Yasmine Alaa El-Din
- Department of Oral Pathology, Faculty of Dentistry, October 6 University, Giza, Egypt
| | - Neama M Taha
- Department of Physiology, Umm Al-Qura University, Mecca, Kingdom of Saudi Arabia
| | - Engy Medhat
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Mallela K, Shivananda S, Gopinath KS, Kumar A. Oncogenic role of MiR-130a in oral squamous cell carcinoma. Sci Rep 2021; 11:7787. [PMID: 33833339 PMCID: PMC8032739 DOI: 10.1038/s41598-021-87388-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
Aberrant activation of the PI3K/AKT/mTOR pathway is attributed to the pathogenesis of oral squamous cell carcinoma (OSCC). In recent years, increasing evidence suggests the involvement of microRNAs (miRNAs) in oral carcinogenesis by acting as tumor suppressors or oncogenes. TSC1, as a component of the above pathway, regulates several cellular functions such as cell proliferation, apoptosis, migration and invasion. Downregulation of TSC1 is reported in oral as well as several other cancers and is associated with an unfavourable clinical outcome in patients. Here we show that oncogenic miR-130a binds to the 3′UTR of TSC1 and represses its expression. MiR-130a-mediated repression of TSC1 increases cell proliferation, anchorage independent growth and invasion of OSCC cells, which is dependent on the presence of the 3′UTR in TSC1. We observe an inverse correlation between the expression levels of miR-130a and TSC1 in OSCC samples, suggesting that their interaction is physiologically relevant. Delivery of antagomiR-130a to OSCC cells results in a significant decrease in xenograft size. Taken together, the findings of the study indicate that miR-130a-mediated TSC1 downregulation is not only a novel mechanism in OSCC, but also the restoration of TSC1 levels by antagomiR-130a may be a potential therapeutic strategy for the treatment of OSCC.
Collapse
Affiliation(s)
- Karthik Mallela
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | | | | | - Arun Kumar
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
11
|
D’Onofrio N, Mele L, Martino E, Salzano A, Restucci B, Cautela D, Tatullo M, Balestrieri ML, Campanile G. Synergistic Effect of Dietary Betaines on SIRT1-Mediated Apoptosis in Human Oral Squamous Cell Carcinoma Cal 27. Cancers (Basel) 2020; 12:cancers12092468. [PMID: 32878301 PMCID: PMC7563158 DOI: 10.3390/cancers12092468] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Betaines are important human nutrients widely distributed in plants, animals, and dietary sources. δ-valerobetaine (δVB) is a naturally occurring betaine with antioxidant, anti-inflammatory and anticancer activities. The aim of our study was to investigate the possible synergism between δVB and the structurally related γ-butyrobetaine (γBB) by testing the in vitro anticancer activity in head and neck squamous cell carcinomas. Combined δVB and γBB caused a marked inhibition of cell proliferation and induction of apoptosis in Cal 27 cells. The increased reactive oxygen species accumulation influenced the nuclear expression of SIRT1. Gene silencing with small interfering RNA confirmed the role of SIRT1 in the apoptotic cell death. Synergism of δVB and γBB is useful for novel strategies to optimize their content in meat, milk and dairy products to sustain human health and wellbeing. Abstract Betaines are food components widely distributed in plants, animals, microorganisms, and dietary sources. Among betaines, δ-valerobetaine (N,N,N-trimethyl-5-aminovaleric acid, δVB) shares a metabolic pathway common to γ-butyrobetaine (γBB). The biological properties of δVB are particularly attractive, as it possesses antioxidant, anti-inflammatory and anticancer activities. Here, we investigated the possible synergism between δVB and the structurally related γBB, to date unexplored, by testing the in vitro anticancer activity in head and neck squamous cell carcinoma cell lines, FaDu, UM-SCC-17A and Cal 27. Among cell lines tested, results indicated that betaines showed the highest effect in reducing Cal 27 cell proliferation up to 72 h (p < 0.01). This effect was enhanced when betaines were administered in combination (δVB plus γBB) (p < 0.001). Inhibition of cell growth by δVB plus γBB involved reactive oxygen species (ROS) accumulation, upregulation of sirtuin 1 (SIRT1), and apoptosis (p < 0.001). SIRT1 gene silencing by small interfering RNA decreased the apoptotic effect of δVB plus γBB by modulating downstream procaspase-3 and cyclin B1 (p < 0.05). These findings might have important implications for novel prevention strategies for tongue squamous cell carcinoma by targeting SIRT1 with naturally occurring betaines.
Collapse
Affiliation(s)
- Nunzia D’Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (N.D.); (E.M.)
| | - Luigi Mele
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Via Luciano Armanni 5, 80138 Naples, Italy;
| | - Elisa Martino
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (N.D.); (E.M.)
| | - Angela Salzano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy; (A.S.); (B.R.); (G.C.)
| | - Brunella Restucci
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy; (A.S.); (B.R.); (G.C.)
| | - Domenico Cautela
- Experimental Station for the Industry of the Essential Oils and Citrus Products (SSEA), Special Agency of the Chamber of Commerce in Reggio Calabria, Via G. Tommasini 2, 89125 Reggio Calabria, Italy;
| | - Marco Tatullo
- Marrelli Health—Tecnologica Research Institute, Biomedical Section, Via E. Fermi, 88900 Crotone, Italy;
| | - Maria Luisa Balestrieri
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (N.D.); (E.M.)
- Correspondence: ; Tel.: +39-081-566-5865; Fax: +39-081-566-5863
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy; (A.S.); (B.R.); (G.C.)
| |
Collapse
|
12
|
Wu Y, Li W, Hu Y, Liu Y, Sun X. Suppression of sirtuin 1 alleviates airway inflammation through mTOR‑mediated autophagy. Mol Med Rep 2020; 22:2219-2226. [PMID: 32705226 PMCID: PMC7411491 DOI: 10.3892/mmr.2020.11338] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
Sirtuin 1 (SIRT1) is involved in the pathogenesis of allergic asthma. This study aimed to investigate whether EX-527, a specific SIRT1 inhibitor, exerted suppressive effects on allergic airway inflammation in mice submitted to ovalbumin (OVA) inhalation. In addition, this study assessed whether such a protective role was mediated by autophagy suppression though mammalian target of rapamycin (mTOR) activation. Female C57BL/6 mice were sensitized to OVA and EX-527 (10 mg/kg) was administered prior to OVA challenge. The study found that EX-527 reversed OVA-induced airway inflammation, and reduced OVA-induced increases in inflammatory cytokine expression, and total cell and eosinophil counts in bronchoalveolar lavage fluid. In addition, EX-527 enhanced mTOR activation, thereby suppressing autophagy in allergic mice. To assess whether EX-527 inhibited airway inflammation in asthma through the mTOR-mediated autophagy pathway, rapamycin was administered to mice treated with EX-527 after OVA sensitization. All effects induced by EX-527, including increased phosphorylated-mTOR and decreased autophagy, were abrogated by rapamycin treatment. Taken together, the present findings indicated that EX-527 may inhibit allergic airway inflammation by suppressing autophagy, an effect mediated by mTOR activation in allergic mice.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Wei Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yifan Hu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yun Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xiuzhen Sun
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
13
|
Laws MT, Bonomi RE, Gelovani DJ, Llaniguez J, Lu X, Mangner T, Gelovani JG. Noninvasive quantification of SIRT1 expression-activity and pharmacologic inhibition in a rat model of intracerebral glioma using 2-[ 18F]BzAHA PET/CT/MRI. Neurooncol Adv 2020; 2:vdaa006. [PMID: 32118205 PMCID: PMC7034639 DOI: 10.1093/noajnl/vdaa006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Several studies demonstrated that glioblastoma multiforme progression and recurrence is linked to epigenetic regulatory mechanisms. Sirtuin 1 (SIRT1) plays an important role in glioma progression, invasion, and treatment response and is a potential therapeutic target. The aim of this study is to test the feasibility of 2-[18F]BzAHA for quantitative imaging of SIRT1 expression–activity and monitoring pharmacologic inhibition in a rat model of intracerebral glioma. Methods Sprague Dawley rats bearing 9L (N = 12) intracerebral gliomas were injected with 2-[18F]BzAHA (300–500 µCi/animal i.v.) and dynamic positron-emission tomography (PET) imaging was performed for 60 min. Then, SIRT1 expression in 9L tumors (N = 6) was studied by immunofluorescence microscopy (IF). Two days later, rats with 9L gliomas were treated either with SIRT1 specific inhibitor EX-527 (5 mg/kg, i.p.; N = 3) or with histone deacetylases class IIa specific inhibitor MC1568 (30 mg/kg, i.p.; N = 3) and 30 min later were injected i.v. with 2-[18F]BzAHA. PET-computerized tomography-magnetic resonance (PET/CT/MR) images acquired after EX-527 and MC1568 treatments were co-registered with baseline images. Results Standard uptake values (SUVs) of 2-[18F]BzAHA in 9L tumors measured at 20 min post-radiotracer administration were 1.11 ± 0.058 and had a tumor-to-brainstem SUV ratio of 2.73 ± 0.141. IF of 9L gliomas revealed heterogeneous upregulation of SIRT1, especially in hypoxic and peri-necrotic regions. Significant reduction in 2-[18F]BzAHA SUV and distribution volume in 9L tumors was observed after administration of EX-527, but not MC1568. Conclusions PET/CT/MRI with 2-[18F]BzAHA can facilitate studies to elucidate the roles of SIRT1 in gliomagenesis and progression, as well as to optimize therapeutic doses of novel SIRT1 inhibitors.
Collapse
Affiliation(s)
- Maxwell T Laws
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Robin E Bonomi
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - David J Gelovani
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Jeremy Llaniguez
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Xin Lu
- Positron Emission Tomography Center, Wayne State University, Detroit, Michigan, USA
| | - Thomas Mangner
- Positron Emission Tomography Center, Wayne State University, Detroit, Michigan, USA
| | - Juri G Gelovani
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, Michigan, USA.,Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA.,Molecular Imaging Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
14
|
Islam S, Uehara O, Matsuoka H, Kuramitsu Y, Adhikari BR, Hiraki D, Toraya S, Jayawardena A, Saito I, Muthumala M, Nagayasu H, Abiko Y, Chiba I. DNA hypermethylation of sirtuin 1 (SIRT1) caused by betel quid chewing-a possible predictive biomarker for malignant transformation. Clin Epigenetics 2020; 12:12. [PMID: 31931863 PMCID: PMC6958620 DOI: 10.1186/s13148-019-0806-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/30/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND DNA hypermethylation of tumor suppressor genes is observed in precancerous lesions and oral cancer of individuals with the habits of betel quid (BQ) chewing. SIRT1 has been identified as playing a role in the maintenance of epithelial integrity, and its alteration is often related to carcinogenesis. However, the methylation and transcription status of SIRT1 in patients with BQ chewing-related oral cancer has not been investigated. We examined the methylation status of SIRT1 in paraffin-embedded tissue samples of oral squamous cell carcinoma (OSCC) obtained from BQ chewing and non-chewing patients and in tissue samples from healthy control subjects. In addition, we examined whether the hypermethylation of SIRT1 followed by its transcriptional downregulation in the human gingival epithelial cells could be caused by arecoline, a major component of BQ. Furthermore, we investigated the methylation status of SIRT1 in smear samples of macroscopically healthy buccal mucosa from subjects with a habit of BQ chewing. RESULTS SIRT1 was significantly hypermethylated in tissue samples of OSCC from BQ chewers and non-chewers than in oral mucosa from healthy control subjects. Results also showed that the hypermethylation level of SIRT1 was significantly higher in OSCC of patients with BQ chewing habits than in those of non-chewing habits (p < 0.05). Our in vitro model showed that hypermethylation is followed by downregulation of the transcriptional level of SIRT1 (p < 0.05). The methylation levels of SIRT1 in the smear samples obtained from BQ chewing individuals were significantly higher than those in the samples obtained from individuals that did not chew BQ. The duration of BQ chewing habits was correlated positively to the frequency of SIRT1 hypermethylation (p < 0.05). CONCLUSIONS Our results suggest that DNA hypermethylation of SIRT1 is involved in the occurrence of oral cancer in BQ chewing patients and that hypermethylation in the oral mucosa of BQ chewers could be a predictive marker for the occurrence of malignant transformation. This is the first report that showed DNA hypermethylation in clinically healthy oral epithelium of BQ chewers. Our study shows evidence that DNA hypermethylation may be an early event of oral carcinogenesis prior to observable clinical changes.
Collapse
Affiliation(s)
- Shajedul Islam
- Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, 061-0293, Japan.,Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, 061-0293, Japan
| | - Osamu Uehara
- Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, 061-0293, Japan.,Research Institute of Cancer Prevention, Health Sciences University of Hokkaido, Hokkaido, 061-0293, Japan
| | - Hirofumi Matsuoka
- Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, 061-0293, Japan
| | - Yasuhiro Kuramitsu
- Research Institute of Cancer Prevention, Health Sciences University of Hokkaido, Hokkaido, 061-0293, Japan
| | - Bhoj Raj Adhikari
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, 061-0293, Japan
| | - Daichi Hiraki
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, 061-0293, Japan
| | - Seiko Toraya
- Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, 061-0293, Japan
| | - Asiri Jayawardena
- Department of General Education, School of Dental Medicine, Tsurumi University, Kanagawa, 230-8501, Japan
| | - Ichiro Saito
- Department of Pathology, School of Dental Medicine, Tsurumi University, Kanagawa, 230-8501, Japan
| | - Malsantha Muthumala
- Department of Oral and Maxillofacial Surgery, Army Hospital, Colombo, Sri Lanka
| | - Hiroki Nagayasu
- Division of Oral and Maxillofacial Surgery, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, 061-0293, Japan
| | - Yoshihiro Abiko
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, 061-0293, Japan.
| | - Itsuo Chiba
- Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, 061-0293, Japan
| |
Collapse
|
15
|
Cheng WL, Chen KY, Lee KY, Feng PH, Wu SM. Nicotinic-nAChR signaling mediates drug resistance in lung cancer. J Cancer 2020; 11:1125-1140. [PMID: 31956359 PMCID: PMC6959074 DOI: 10.7150/jca.36359] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 10/26/2019] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is the leading cause of cancer death worldwide. Cigarette smoking is the most common risk factor for lung carcinoma; other risks include genetic factors and exposure to radon gas, asbestos, secondhand smoke, and air pollution. Nicotine, the primary addictive constituent of cigarettes, contributes to cancer progression through activation of nicotinic acetylcholine receptors (nAChRs), which are membrane ligand-gated ion channels. Activation of nicotine/nAChR signaling is associated with lung cancer risk and drug resistance. We focused on nAChR pathways activated by nicotine and its downstream signaling involved in regulating apoptotic factors of mitochondria and drug resistance in lung cancer. Increasing evidence suggests that several sirtuins play a critical role in multiple aspects of cancer drug resistance. Thus, understanding the consequences of crosstalk between nicotine/nAChRs and sirtuin signaling pathways in the regulation of drug resistance could be a critical implication for cancer therapy.
Collapse
Affiliation(s)
- Wan-Li Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Kuan-Yuan Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Kang-Yun Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Po-Hao Feng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Sheng-Ming Wu
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
16
|
Xie Y, Liu J, Jiang H, Wang J, Li X, Wang J, Zhu S, Guo J, Li T, Zhong Y, Zhang Q, Liu Z. Proteasome inhibitor induced SIRT1 deacetylates GLI2 to enhance hedgehog signaling activity and drug resistance in multiple myeloma. Oncogene 2019; 39:922-934. [PMID: 31576013 DOI: 10.1038/s41388-019-1037-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/15/2022]
Abstract
Multiple myeloma (MM) is still incurable despite the successful application of proteasome inhibitors in clinic. Bortezomib represents the most common chemotherapy for MM, whereas acquired drug resistance and eventually developed relapse remain the major obstruction. In the current study, we established bortezomib-resistant myeloma cell lines and screened gene expression profiles using single cell RNA-sequencing. Resistant MM cells exhibited increased clonogenic potential, specific metabolic, and epigenetic signatures, along with the self-renewal signaling characteristic of MM stem-like cells. Aberrant activation of hedgehog (Hh) signaling was correlated with drug resistance and stem cell-like transcriptional program. The key transcriptional factor GLI2 of the Hh pathway was restricted in the high acetylation and low ubiquitination states in bortezomib-resistant myeloma cells. Further investigation revealed that SIRT1 deacetylates and stabilizes GLI2 protein at lysine 757 and consequentially activates the Hh signaling, and itself serves as a direct target of Hh signaling to format a positive regulating loop. Using combination screening with an epigenetic compound library, we identified the SIRT1 specific inhibitor S1541 and S2804 had very obvious synergetic antimyeloma effect. Sirt1 inhibition could partially impeded the Hh pathway and conferred bortezomib sensitivity in vitro and in vivo. Notably, elevated SIRT1 level was also a prominent hallmark for the resistant myeloma cells, and this expression pattern was confirmed in myeloma patients, but independent of RAS/RAF mutations. Clinically, SIRT1 expression in patients with complete response was suppressed but elevated in relapsed patients, and retrospective analysis showed patients with higher SIRT1 expression had poorer outcomes. In conclusion, the cooperation of SIRT1 and Hh is an important mechanism of drug resistance in myeloma, and therapeutics combining SIRT1 inhibitors will sensitize myeloma cells to proteasome inhibitors.
Collapse
Affiliation(s)
- Ying Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Jing Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Hongmei Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Jingya Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Xin Li
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Jingjing Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Shuai Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Jing Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Tao Li
- School of Medicine, Hunan Normal University, Changsha, Hunan, 410006, China
| | - Yuping Zhong
- Department of Hematology, Myeloma Research Center of Beijing, Beijing Chao-Yang Hospital, Capital Medical University, Chaoyang, Beijing, 100020, China
| | - Qiguo Zhang
- Department of Hematology, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Zhiqiang Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China.
| |
Collapse
|
17
|
Nan P, Niu Y, Wang X, Li Q. MiR-29a function as tumor suppressor in cervical cancer by targeting SIRT1 and predict patient prognosis. Onco Targets Ther 2019; 12:6917-6925. [PMID: 31692593 PMCID: PMC6717154 DOI: 10.2147/ott.s218043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/31/2019] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Cervical cancer is the second most frequently malignant tumors in females and metastasis is a challenge of the treatment of cervical cancer. MiR-29a is usually low expressed in several tumors and its functions in cervical cancer remain unclear. PATIENTS AND METHODS The quantitative real-time polymerase chain reaction was employed to assess the expression of miR-29a and the Sirtuin-1 (SIRT1). Cell metastatic ability was assessed using Transwell and Western blot assays. The dual-luciferase reporter assay was performed to verify that miR-29a targeted to the 3'-untranslated region (UTR) of SIRT1 mRNA. RESULTS MiR-29a was low expressed in cervical cancer and downregulation of miR-29a was associated with poor outcome. MiR-29a regulated the expression of SIRT1 by targeting to its 3'-UTR of mRNA in HeLa cells. SIRT1 was upregulated in cervical cancer tissues and cells in comparison with the non-tumor tissues and normal cells. Upregulation of SIRT1 predicted worse outcome of cervical cancer patients. MiR-29a was participated in the migration, invasion and epithelial-mesenchymal transition (EMT) in cervical cancer through directly targeting to the 3'-UTR of SIRT1 mRNA. SIRT1 reversed partial roles of miR-29a on metastasis in cervical cancer. CONCLUSION miR-29a suppressed migration, invasion and EMT by directly targeting to SIRT1 in cervical cancer. The newly identified miR-29a/SIRT1 axis provides novel insight into the pathogenesis of cervical cancer.
Collapse
Affiliation(s)
- Ping Nan
- Department of Gynaecology, Shengli Oil Centre Hospital, Dongying, People’s Republic of China
| | - Yugui Niu
- Department of Joint Surgery, Shengli Oil Center Hospital, Dongying, People’s Republic of China
| | - Xiuhua Wang
- Department of Gynecology, Dongying District People’s Hospital, Dongying, People’s Republic of China
| | - Qiang Li
- Department of Gynaecology, Shengli Oil Centre Hospital, Dongying, People’s Republic of China
| |
Collapse
|
18
|
Hałasa M, Bartuzi D, Cieślak D, Kaczor AA, Miziak P, Stepulak A, Matosiuk D. Role of N-terminus in function and dynamics of sirtuin 7: an in silico study. J Biomol Struct Dyn 2019; 38:1283-1291. [PMID: 31025603 DOI: 10.1080/07391102.2019.1600585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The sirtuin family comprises seven NAD+-dependent histone deacetylases named SIRT1 to SIRT7. The least investigated SIRT7 is currently considered as a promising therapeutic target for cardiovascular diseases, diabetes and different types of cancer. So far, its structure was not experimentally resolved, except of a fragment of its N-terminus. The aim of this study was to create in silico model of SIRT7 containing its core together with N-terminus, which is known to affect the enzyme's catalytic activity and to find pockets that could be targeted by structure-based virtual screening. Homology model of SIRT7 was prepared using X-ray structures of other sirtuins and a resolved fragment of the N-terminus of SIRT7 as templates. All atom-unbiased molecular dynamics simulations were performed. It was found that N-terminus of SIRT7 remains in spatial proximity of the catalytic core for considerable fraction of time, and therefore, it may affect its catalytic activity by helping the enzyme to hold the substrate peptide. It may also participate in holding and release of the cofactor. Preferred orientations of NAD+ and acetyl-lysine inside SIRT7 were found, with all components forming a stable complex. Molecular dynamics provided an ensemble of conformations that will be targeted with virtual screening. Reliable in silico structure of SIRT7 will be a useful tool in searching for its inhibitors, which can be potential drugs in cancer treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Marta Hałasa
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Damian Bartuzi
- Department of Synthesis and Chemical Technology of Pharmaceutical, Medical University of Lublin, Lublin, Poland
| | - Dominika Cieślak
- Department of Synthesis and Chemical Technology of Pharmaceutical, Medical University of Lublin, Lublin, Poland
| | - Agnieszka A Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical, Medical University of Lublin, Lublin, Poland.,School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Paulina Miziak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
19
|
How Each Component of Betel Quid Is Involved in Oral Carcinogenesis: Mutual Interactions and Synergistic Effects with Other Carcinogens—a Review Article. Curr Oncol Rep 2019; 21:53. [DOI: 10.1007/s11912-019-0800-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|