1
|
Fan L, Guo HL, Zhao YT, Li Y, Wang WJ, Huang J, Hu YH, Zou JJ, Chen F. Population pharmacokinetic study in children with vascular anomalies: body weight as a key variable in predicting the initial dose and dosing frequency of sirolimus. Front Pharmacol 2024; 15:1457614. [PMID: 39380905 PMCID: PMC11458483 DOI: 10.3389/fphar.2024.1457614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024] Open
Abstract
Background The main challenges faced when using sirolimus in children with vascular anomalies (VAs) still include significant pharmacokinetic (PK) variability, uncertainty in the target concentration range, as well as inconsistencies in initial dosing and dosing frequency. The aim of this study is to establish a new population pharmacokinetic (PPK) model for children with VAs to guide the individualized use of sirolimus. Methods A PPK study was performed using data from children with VAs who received sirolimus between July 2017 and April 2022. A nonlinear mixed-effect modeling with a one-compartment model structure was applied. Monte Carlo simulation was employed to propose specific dosing recommendations to achieve the target trough concentrations (C trough) of 5-15 ng/mL. Results In total, 134 blood concentrations from 49 pediatric patients were used to characterize the sirolimus pharmacokinetics. Covariate analysis identified body weight (BW) as a significant factor affecting clearance (CL) in the final PPK model. The typical clearance rate and distribution volume, standardized to a BW of 16 kg, were 4.06 L/h (4% relative standard error, RSE) and 155 L (26% RSE), respectively. Optimal dosing regimens were simulated for different BWs. For a twice-daily regimen, the recommended doses were 0.05, 0.06, 0.07, and 0.08 mg/kg/day for BW of <10, 10-20, 20-40, and ≥40 kg, respectively; for a once-daily regimen, the recommended doses were 0.06, 0.07, 0.08, and 0.09 mg/kg/day for BW of <10, 10-30, 30-50, and ≥50 kg, respectively. Notably, sirolimus C trough could be maintained between 5-15 ng/mL across various dosing frequencies based on the recommended dosing regimen. Conclusion We established a PPK model of sirolimus for children with VAs and proposed an initial dosing strategy. Integrating initial dose and medication frequency recommendations into sirolimus' guidelines will broaden its clinical options and simplify the clinical management for childhood VAs.
Collapse
Affiliation(s)
- Lin Fan
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Hong-Li Guo
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yue-Tao Zhao
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yue Li
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Wei-Jun Wang
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jian Huang
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Ya-Hui Hu
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Ji-Jun Zou
- Department of Burns and Plastic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Chen
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Li Y, Zhu X, Li L, Bao C, Liu Q, Zhang N, He Z, Ji Y, Bao J. Construction and applications of the EOMA spheroid model of Kaposiform hemangioendothelioma. J Biol Eng 2024; 18:21. [PMID: 38486263 PMCID: PMC10941415 DOI: 10.1186/s13036-024-00417-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/05/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Kaposiform hemangioendothelioma (KHE) is a rare intermediate vascular tumor with unclear pathogenesis. Recently, three dimensional (3D) cell spheroids and organoids have played an indispensable role in the study of many diseases, such as infantile hemangioma and non-involuting congenital hemangiomas. However, few research on KHE are based on the 3D model. This study aims to evaluate the 3D superiority, the similarity with KHE and the ability of drug evaluation of EOMA spheroids as an in vitro 3D KHE model. RESULTS After two days, relatively uniform morphology and high viability of EOMA spheroids were generated by the rotating cell culture system (RCCS). Through transcriptome analysis, compared with 2D EOMA cells, focal adhesion-related genes such as Itgb4, Flt1, VEGFC, TNXB, LAMA3, VWF, and VEGFD were upregulated in EOMA spheroids. Meanwhile, the EOMA spheroids injected into the subcutaneous showed more obvious KMP than 2D EOMA cells. Furthermore, EOMA spheroids possessed the similar characteristics to the KHE tissues and subcutaneous tumors, such as diagnostic markers (CD31 and LYVE-1), cell proliferation (Ki67), hypoxia (HIF-1α) and cell adhesion (E-cadherin and N-cadherin). Based on the EOMA spheroid model, we discovered that sirolimus, the first-line drug for treating KHE, could inhibit EOMA cell proliferation and downregulate the VEGFC expression. Through the extra addition of VEGFC, the effect of sirolimus on EOMA spheroid could be weakened. CONCLUSION With a high degree of similarity of the KHE, 3D EOMA spheroids generated by the RCCS can be used as a in vitro model for basic researches of KHE, generating subcutaneous tumors and drug screening.
Collapse
Affiliation(s)
- Yanan Li
- Department of Pediatric Surgery, Division of Oncology, West China Hospital of Sichuan University, 37# Guo-Xue-Xiang, Chengdu, 610041, China
- Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China
| | - Xinglong Zhu
- Department of Pathology, Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, 37# Guoxue Road, Chengdu, 610041, Sichuan Province, China
| | - Li Li
- Department of Pathology, Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, 37# Guoxue Road, Chengdu, 610041, Sichuan Province, China
| | - Chunjuan Bao
- Department of Pathology, Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, 37# Guoxue Road, Chengdu, 610041, Sichuan Province, China
| | - Qin Liu
- Department of Pathology, Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, 37# Guoxue Road, Chengdu, 610041, Sichuan Province, China
| | - Ning Zhang
- Department of Pediatric Surgery, Division of Oncology, West China Hospital of Sichuan University, 37# Guo-Xue-Xiang, Chengdu, 610041, China
| | - Ziyan He
- Department of Pediatric Surgery, Division of Oncology, West China Hospital of Sichuan University, 37# Guo-Xue-Xiang, Chengdu, 610041, China
- Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China
| | - Yi Ji
- Department of Pediatric Surgery, Division of Oncology, West China Hospital of Sichuan University, 37# Guo-Xue-Xiang, Chengdu, 610041, China.
- Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China.
| | - Ji Bao
- Department of Pathology, Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, 37# Guoxue Road, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
3
|
Uenishi GI, Repic M, Yam JY, Landuyt A, Saikumar-Lakshmi P, Guo T, Zarin P, Sassone-Corsi M, Chicoine A, Kellogg H, Hunt M, Drow T, Tewari R, Cook PJ, Yang SJ, Cerosaletti K, Schweinoch D, Guiastrennec B, James E, Patel C, Chen TF, Buckner JH, Rawlings DJ, Wickham TJ, Mueller KT. GNTI-122: an autologous antigen-specific engineered Treg cell therapy for type 1 diabetes. JCI Insight 2024; 9:e171844. [PMID: 38516892 PMCID: PMC11063937 DOI: 10.1172/jci.insight.171844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 02/02/2024] [Indexed: 03/23/2024] Open
Abstract
Tregs have the potential to establish long-term immune tolerance in patients recently diagnosed with type 1 diabetes (T1D) by preserving β cell function. Adoptive transfer of autologous thymic Tregs, although safe, exhibited limited efficacy in previous T1D clinical trials, likely reflecting a lack of tissue specificity, limited IL-2 signaling support, and in vivo plasticity of Tregs. Here, we report a cell engineering strategy using bulk CD4+ T cells to generate a Treg cell therapy (GNTI-122) that stably expresses FOXP3, targets the pancreas and draining lymph nodes, and incorporates a chemically inducible signaling complex (CISC). GNTI-122 cells maintained an expression profile consistent with Treg phenotype and function. Activation of CISC using rapamycin mediated concentration-dependent STAT5 phosphorylation and, in concert with T cell receptor engagement, promoted cell proliferation. In response to the cognate antigen, GNTI-122 exhibited direct and bystander suppression of polyclonal, islet-specific effector T cells from patients with T1D. In an adoptive transfer mouse model of T1D, a mouse engineered-Treg analog of GNTI-122 trafficked to the pancreas, decreased the severity of insulitis, and prevented progression to diabetes. Taken together, these findings demonstrate in vitro and in vivo activity and support further development of GNTI-122 as a potential treatment for T1D.
Collapse
Affiliation(s)
| | | | | | | | | | - Tingxi Guo
- GentiBio Inc, Cambridge, Massachusetts, USA
| | | | | | | | | | - Martina Hunt
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Travis Drow
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Ritika Tewari
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Peter J. Cook
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Soo Jung Yang
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Karen Cerosaletti
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | | | | | - Eddie James
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | | | | | - Jane H. Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
- Department of Medicine
- Department of Immunology, and
| | - David J. Rawlings
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Immunology, and
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | | | | |
Collapse
|
4
|
Yang Y, Jiang L, Zhu HR, Sun WX, Mao JY, Miao JW, Wang YC, He SM, Wang DD, Chen X. Remedial Dosing Recommendations for Sirolimus Delayed or Missed Dosages Caused by Poor Medication Compliance in Pediatric Tuberous Sclerosis Complex Patients. Curr Pharm Des 2024; 30:877-886. [PMID: 38454763 DOI: 10.2174/0113816128299479240213151714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Delayed or missed dosages caused by poor medication compliance significantly affected the treatment of diseases in children. AIMS The present study aimed to investigate the influence of delayed or missed dosages on sirolimus pharmacokinetics (PK) in pediatric tuberous sclerosis complex (TSC) patients and to recommend remedial dosages for nonadherent patients. METHODS A published sirolimus population PK model in pediatric TSC patients was used to assess the influence of different nonadherence scenarios and recommend optimally remedial dosages based on Monte Carlo simulation. Thirteen nonadherent scenarios were simulated in this study, including delayed 2h, 4 h, 6 h, 8 h, 10 h, 12 h, 14 h, 16 h, 18 h, 20 h, 22 h, 23.5 h, and missed one dosage. Remedial dosing strategies contained 10-200% of scheduled dosages. The optimal remedial dosage was that with the maximum probability of returning the individual therapeutic range. RESULTS For delayed or missed sirolimus dosages in pediatric TSC patients, when the delayed time was 0-8 h, 8-10 h, 10-18 h, 18-22.7 h, 22.7-24 h, 70%, 60%, 40%, 30%, 20% scheduled dosages were recommended to take immediately. When one dosage was missed, 120% of scheduled dosages were recommended at the next dose. CONCLUSION It was the first time to recommend remedial dosages for delayed or missed sirolimus therapy caused by poor medication compliance in pediatric TSC patients based on Monte Carlo simulation. Meanwhile, the present study provided a potential solution for delayed or missed dosages in clinical practice.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmacy, The Affiliated Changzhou Children's Hospital of Nantong University, Changzhou, Jiangsu 213003, China
| | - Lei Jiang
- Department of Pharmacy, Taixing People's Hospital, Taixing, Jiangsu 225400, China
| | - Hai-Rong Zhu
- School of Nursing, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Wen-Xin Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jing-Yu Mao
- School of Nursing, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jing-Wen Miao
- School of Nursing, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yi-Chen Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Su-Mei He
- Department of Pharmacy, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu 215153, China
| | - Dong-Dong Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiao Chen
- School of Nursing, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| |
Collapse
|
5
|
Serio J, Gattoline S, Collier H, Bustin A. Evaluation of Sirolimus Dosing in Neonates and Infants With Lymphatic Disorders: A Case Series. J Pediatr Pharmacol Ther 2022; 27:447-451. [PMID: 35845558 PMCID: PMC9268106 DOI: 10.5863/1551-6776-27.5.447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/09/2021] [Indexed: 12/09/2023]
Abstract
OBJECTIVE Literature in pediatric patients suggests dosing sirolimus 1.6 mg/m2/day divided twice daily for lymphatic disorders with limited evidence available for dosing in neonates and infants. The objective of this research was to determine the sirolimus dose required to achieve therapeutic trough concentrations in infants with lymphatic disorders at Children's Hospital of Philadelphia. METHODS This retrospective review included patients <1 year of age at Children's Hospital of Philadelphia who were initiated on sirolimus for lymphatic disorder. Patients were included if they received at least 5 days of consecutive sirolimus therapy prior to trough concentration monitoring. Measures of central tendency and variability were used for statistical analysis. RESULTS A total of 16 patients met criteria for inclusion. The median initial sirolimus dose was 1 mg/m2/day (IQR, 0.5-1.6 mg/m2/day). Fourteen patients (87.5%) achieved therapeutic trough concentrations on a median sirolimus dose of 0.5 mg/m2/day. Dosing frequency to achieve therapeutic trough concentrations included 1 patient (6.25%) on twice daily dosing, 12 patients (75%) on once daily dosing, and 1 patient (6.25%) requiring every 48-hour dosing. The median time to first therapeutic trough was 15.5 days (IQR, 5.5-18.5 days), and patients required a median of 1 dose adjustment. CONCLUSIONS A median sirolimus dose to achieve therapeutic sirolimus trough concentrations in infants with lymphatic disorders was 0.5 mg/m2/day with a median of 1 dose adjustment. Sirolimus was well tolerated in the study population.
Collapse
Affiliation(s)
- Jordan Serio
- Department of Pharmacy, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Sarah Gattoline
- Department of Pharmacy, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Hailey Collier
- Department of Pharmacy, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Anna Bustin
- Department of Pharmacy, Children's Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
6
|
Chen X, Wang DD, Xu H, Li ZP. Initial dose recommendation for sirolimus in paediatric kaposiform haemangioendothelioma patients based on population pharmacokinetics and pharmacogenomics. J Int Med Res 2021; 48:300060520947627. [PMID: 32815764 PMCID: PMC7444137 DOI: 10.1177/0300060520947627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Objective Sirolimus has been used to treat paediatric kaposiform haemangioendothelioma patients. However, there is considerable pharmacokinetic variability among individuals, and it is difficult to develop an initial dosing regimen. The goal of the present study is to recommend an initial sirolimus dose in paediatric kaposiform haemangioendothelioma patients based on population pharmacokinetics and pharmacogenomics. Methods This was a retrospective clinical study. A population pharmacokinetics model was established and population characteristics, laboratory test results, drug combinations, and pharmacogenomics were considered as potential covariates. The Monte Carlo method was used to simulate the optimal initial dosage. Results The final covariates that affect sirolimus clearance include weight and the CYP3A5 genotype. The initial dosage of sirolimus for individuals with CYP3A5*3/*3 was 0.20 mg/kg split into two doses for 5 to 60 kg body weight. For individuals with CYP3A5*1, the initial dose was 0.23 mg/kg split into two doses for 5 to 30 kg body weight and 0.20 mg/kg split into two doses for 30 to 60 kg body weight. Conclusion The recommendation for the initial sirolimus dose in paediatric kaposiform haemangioendothelioma patients was based on population pharmacokinetics and pharmacogenomics. This study may provide practical value for sirolimus clinical use in paediatric kaposiform haemangioendothelioma patients.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Pharmacy, Children's Hospital of Fudan University, Shanghai, China
| | - Dong-Dong Wang
- Department of Pharmacy, Children's Hospital of Fudan University, Shanghai, China
| | - Hong Xu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
| | - Zhi-Ping Li
- Department of Pharmacy, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
7
|
Wang DD, Chen X, Xu H, Li ZP. Initial Dosage Recommendation for Sirolimus in Children With Tuberous Sclerosis Complex. Front Pharmacol 2020; 11:890. [PMID: 32595509 PMCID: PMC7300220 DOI: 10.3389/fphar.2020.00890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
Sirolimus is already used in the treatment of tuberous sclerosis complex (TSC), however, with narrow therapeutic range and considerable inter- and intra-individual pharmacokinetic variability, making it hard to develop an appropriate sirolimus initial dosage regimen, especially in children with TSC. The aim of this study was to recommend the optimal sirolimus initial dosing regimen in pediatric patients with TSC. Underlying physiological and genetic factors were collected to explore the effects on clinical sirolimus concentrations by establishing a nonlinear mixed effect (NONMEM) model, and to further simulate the optimal sirolimus initial dosing regimen using Monte Carlo method in pediatric patients with TSC. The once-daily regimen and the twice-daily regimen were recommended, respectively. For once-daily regimen, the dosages of 0.10, 0.07, 0.05, 0.04, 0.03 mg/kg/day were recommended for children with weights of 5–10, 10–20, 20–30, 30–50, and 50–60 kg, respectively. For twice-daily regimen, the dosages of 0.04, 0.03, 0.02 mg/kg/day (the daily dose was divided evenly into two doses) were recommended for children with weights of 5–20, 20–40, 40–60 kg, respectively. The initial dosages of sirolimus in children with TSC were recommended for the first time.
Collapse
Affiliation(s)
- Dong-Dong Wang
- Department of Pharmacy, Children's Hospital of Fudan University, Shanghai, China
| | - Xiao Chen
- Department of Pharmacy, Children's Hospital of Fudan University, Shanghai, China
| | - Hong Xu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
| | - Zhi-Ping Li
- Department of Pharmacy, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
8
|
Wang D, Chen X, Xu H, Li Z. Population pharmacokinetics of tacrolimus in pediatric patients with systemic-onset juvenile idiopathic arthritis: Initial dosage recommendations. Exp Ther Med 2019; 18:4653-4660. [PMID: 31772640 PMCID: PMC6861867 DOI: 10.3892/etm.2019.8129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/04/2019] [Indexed: 12/28/2022] Open
Abstract
Pediatric patients with systemic-onset juvenile idiopathic arthritis (SOJIA) may be treated with tacrolimus. However, the therapeutic range for tacrolimus is narrow with considerable inter- and intra-individual variability, making it difficult to formulate an ideal dosage regimen for personalized treatment. The purpose of the present study was to set up a population pharmacokinetics (PPK) model of tacrolimus treatment for SOJIA to determine the optimal initial dosage. Patients with SOJIA were analyzed using non-linear mixed-effects modeling. Different regimens were analyzed using Monte Carlo simulation with concentration profiles. A first-order absorption and elimination one-compartment model was selected as the most appropriate model for SOJIA. Based on initial dosage recommendations, the regimen of 0.5 mg every 24 h (q24h) appeared to be most suitable for subjects with a body weight of 5 kg, while the 0.5 mg q12h regimen was most suitable for subjects with a body weight of 15–25 kg, the 1/0.5 mg q24h regimen was appropriate for the 26–35 kg group and the 1 mg q12h regimen was suitable for the subjects with a body weight of 36–50 kg. To the best of our knowledge, the present study established the first PPK model of tacrolimus treatment that may be used for the selection of the initial dose based on body weight of pediatric patients with SOJIA.
Collapse
Affiliation(s)
- Dongdong Wang
- Department of Pharmacy, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Xiao Chen
- Department of Pharmacy, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Hong Xu
- Department of Nephrology and Rheumatology, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Zhiping Li
- Department of Pharmacy, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| |
Collapse
|
9
|
Wang D, Chen X, Fu M, Xu H, Li Z. Tacrolimus increases the expression level of the chemokine receptor CXCR2 to promote renal fibrosis progression. Int J Mol Med 2019; 44:2181-2188. [PMID: 31638188 PMCID: PMC6844638 DOI: 10.3892/ijmm.2019.4368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/24/2019] [Indexed: 12/31/2022] Open
Abstract
Tacrolimus is one of the most used and effective immunosuppressive agents currently available in the clinic; however, its use is limited by nephrotoxicity, which is the main secondary effect of this drug. The mechanisms underlying tacrolimus-induced nephrotoxicity remain unknown. The present study aimed to investigate the mechanism underlying tacrolimus-induced nephrotoxicity and to identify novel potential targets. Masson staining, Sirius red staining and periodic acid-silver methenamine staining were used to observe kidney pathological changes. Immunohistochemical and immunofluorescent analyses were performed to examine the expression levels of vimentin, E-cadherin and α-smooth muscle actin (α-SMA). Transcriptomics and bioinformatics analyses were performed to investigate the nephrotoxicity mechanism induced by tacrolimus using RNA-sequencing, differentially expressed genes identification and annotation, and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. The present results demonstrated that compared with the normal control group, the tacrolimus nephrotoxicity group exhibited severe renal fibrosis (P<0.05), upregulated vimentin (P<0.01), downregulated E-cadherin (P<0.05) and upregulated α-SMA (P<0.01). Transcriptomics and bioinformatics analyses identified the pathway 'cytokine-cytokine receptor interaction' as the most significantly enriched (P<0.05). Moreover, KEGG pathway enrichment analysis identified that tacrolimus increased the expression levels of chemokine (C-X-C) motif ligand (CXCL)1, CXCL2 and CXCL3 and the chemokine receptor C-X-C chemokine receptor type 2 (CXCR2). Collectively, the present study suggested that tacrolimus increases the level of chemokine receptor CXCR2 to promote renal fibrosis progression, which is one of the potential mechanisms underlying tacrolimus-induced nephrotoxicity.
Collapse
Affiliation(s)
- Dongdong Wang
- Department of Pharmacy, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Xiao Chen
- Department of Pharmacy, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Meng Fu
- Department of Pharmacy, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Hong Xu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Zhiping Li
- Department of Pharmacy, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| |
Collapse
|