1
|
Rozenberg JM, Buzdin AA, Mohammad T, Rakitina OA, Didych DA, Pleshkan VV, Alekseenko IV. Molecules promoting circulating clusters of cancer cells suggest novel therapeutic targets for treatment of metastatic cancers. Front Immunol 2023; 14:1099921. [PMID: 37006265 PMCID: PMC10050392 DOI: 10.3389/fimmu.2023.1099921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Treatment of metastatic disease remains among the most challenging tasks in oncology. One of the early events that predicts a poor prognosis and precedes the development of metastasis is the occurrence of clusters of cancer cells in the blood flow. Moreover, the presence of heterogeneous clusters of cancerous and noncancerous cells in the circulation is even more dangerous. Review of pathological mechanisms and biological molecules directly involved in the formation and pathogenesis of the heterotypic circulating tumor cell (CTC) clusters revealed their common properties, which include increased adhesiveness, combined epithelial-mesenchymal phenotype, CTC-white blood cell interaction, and polyploidy. Several molecules involved in the heterotypic CTC interactions and their metastatic properties, including IL6R, CXCR4 and EPCAM, are targets of approved or experimental anticancer drugs. Accordingly, analysis of patient survival data from the published literature and public datasets revealed that the expression of several molecules affecting the formation of CTC clusters predicts patient survival in multiple cancer types. Thus, targeting of molecules involved in CTC heterotypic interactions might be a valuable strategy for the treatment of metastatic cancers.
Collapse
Affiliation(s)
- Julian M. Rozenberg
- Laboratory of Translational Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anton A. Buzdin
- Laboratory of Translational Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), Brussels, Belgium
- Group for Genomic Analysis of Cell Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Laboratory for Clinical Genomic Bioinformatics, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Tharaa Mohammad
- Laboratory of Translational Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Olga A. Rakitina
- Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Dmitry A. Didych
- Laboratory of human genes structure and functions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Victor V. Pleshkan
- Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Gene oncotherapy sector, Institute of Molecular Genetics of National Research Centre (Kurchatov Institute), Moscow, Russia
| | - Irina V. Alekseenko
- Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Gene oncotherapy sector, Institute of Molecular Genetics of National Research Centre (Kurchatov Institute), Moscow, Russia
- Laboratory of Epigenetics, Institute of Oncogynecology and Mammology, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov, Ministry of Healthcare of the Russian Federation, Moscow, Russia
| |
Collapse
|
2
|
Saha S, Sachdev M, Mitra SK. Recent advances in label-free optical, electrochemical, and electronic biosensors for glioma biomarkers. BIOMICROFLUIDICS 2023; 17:011502. [PMID: 36844882 PMCID: PMC9949901 DOI: 10.1063/5.0135525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Gliomas are the most commonly occurring primary brain tumor with poor prognosis and high mortality rate. Currently, the diagnostic and monitoring options for glioma mainly revolve around imaging techniques, which often provide limited information and require supervisory expertise. Liquid biopsy is a great alternative or complementary monitoring protocol that can be implemented along with other standard diagnosis protocols. However, standard detection schemes for sampling and monitoring biomarkers in different biological fluids lack the necessary sensitivity and ability for real-time analysis. Lately, biosensor-based diagnostic and monitoring technology has attracted significant attention due to several advantageous features, including high sensitivity and specificity, high-throughput analysis, minimally invasive, and multiplexing ability. In this review article, we have focused our attention on glioma and presented a literature survey summarizing the diagnostic, prognostic, and predictive biomarkers associated with glioma. Further, we discussed different biosensory approaches reported to date for the detection of specific glioma biomarkers. Current biosensors demonstrate high sensitivity and specificity, which can be used for point-of-care devices or liquid biopsies. However, for real clinical applications, these biosensors lack high-throughput and multiplexed analysis, which can be achieved via integration with microfluidic systems. We shared our perspective on the current state-of-the-art different biosensor-based diagnostic and monitoring technologies reported and the future research scopes. To the best of our knowledge, this is the first review focusing on biosensors for glioma detection, and it is anticipated that the review will offer a new pathway for the development of such biosensors and related diagnostic platforms.
Collapse
Affiliation(s)
| | - Manoj Sachdev
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Sushanta K. Mitra
- Micro and Nanoscale Transport Laboratory, Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
3
|
Laohavisudhi F, Chunchai T, Ketchaikosol N, Thosaporn W, Chattipakorn N, Chattipakorn SC. Evaluation of CD44s, CD44v6, CXCR2, CXCL1, and IL-1β in Benign and Malignant Tumors of Salivary Glands. Diagnostics (Basel) 2022; 12:1275. [PMID: 35626430 PMCID: PMC9141664 DOI: 10.3390/diagnostics12051275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/14/2022] [Accepted: 05/19/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Several studies have reported an association between high expression of CD44 in different types of cancer. However, no study has reported a link among CD44 expression, other biomarkers, and the aggressiveness of salivary gland tumors. METHODS A total of 38 specimens were obtained from non-tumorous salivary glands, benign and malignant tumors in salivary glands. Immunohistochemical analyses of CD44s, CD44v6, IL-1β, CXCL1, and CXCR2 were performed, and the area of positive cells was assessed. RESULTS We found that both CD44s and CXCR2 expression were increased in the benign and malignant groups. CD44v6 was also increased in both groups, but it had the highest level in the malignant group. IL-1β was the only biomarker that increased significantly in the malignant group in comparison to the other two groups. CONCLUSIONS CD44s, CD44v6, CXCR2, and IL-1β expressions were found to be higher in salivary gland tumors. However, IL-1β alone may play a crucial role in the aggressiveness of salivary gland tumors as this cytokine was expressed only in the malignant group with high expression associated with high-grade malignancy.
Collapse
Affiliation(s)
- Fonthip Laohavisudhi
- Department of Oral Biology and Oral Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (F.L.); (N.K.); (W.T.)
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.C.); (N.C.)
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Titikorn Chunchai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.C.); (N.C.)
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Natnicha Ketchaikosol
- Department of Oral Biology and Oral Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (F.L.); (N.K.); (W.T.)
| | - Wacharaporn Thosaporn
- Department of Oral Biology and Oral Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (F.L.); (N.K.); (W.T.)
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.C.); (N.C.)
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C. Chattipakorn
- Department of Oral Biology and Oral Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (F.L.); (N.K.); (W.T.)
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.C.); (N.C.)
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
4
|
Hassn Mesrati M, Syafruddin SE, Mohtar MA, Syahir A. CD44: A Multifunctional Mediator of Cancer Progression. Biomolecules 2021; 11:1850. [PMID: 34944493 PMCID: PMC8699317 DOI: 10.3390/biom11121850] [Citation(s) in RCA: 233] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/23/2021] [Accepted: 11/02/2021] [Indexed: 12/15/2022] Open
Abstract
CD44, a non-kinase cell surface transmembrane glycoprotein, has been widely implicated as a cancer stem cell (CSC) marker in several cancers. Cells overexpressing CD44 possess several CSC traits, such as self-renewal and epithelial-mesenchymal transition (EMT) capability, as well as a resistance to chemo- and radiotherapy. The CD44 gene regularly undergoes alternative splicing, resulting in the standard (CD44s) and variant (CD44v) isoforms. The interaction of such isoforms with ligands, particularly hyaluronic acid (HA), osteopontin (OPN) and matrix metalloproteinases (MMPs), drive numerous cancer-associated signalling. However, there are contradictory results regarding whether high or low CD44 expression is associated with worsening clinicopathological features, such as a higher tumour histological grade, advanced tumour stage and poorer survival rates. Nonetheless, high CD44 expression significantly contributes to enhanced tumourigenic mechanisms, such as cell proliferation, metastasis, invasion, migration and stemness; hence, CD44 is an important clinical target. This review summarises current research regarding the different CD44 isoform structures and their roles and functions in supporting tumourigenesis and discusses CD44 expression regulation, CD44-signalling pathways and interactions involved in cancer development. The clinical significance and prognostic value of CD44 and the potential of CD44 as a therapeutic target in cancer are also addressed.
Collapse
Affiliation(s)
- Malak Hassn Mesrati
- Nanobiotechnology Research Group, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| | - Saiful Effendi Syafruddin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (S.E.S.); (M.A.M.)
| | - M. Aiman Mohtar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (S.E.S.); (M.A.M.)
| | - Amir Syahir
- Nanobiotechnology Research Group, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
| |
Collapse
|
5
|
Wei G, Li S, Wang P, Wang S, Zhao Y. Altered Expression of miR-575 in Glioma is Related to Tumor Cell Proliferation, Migration, and Invasion. Neuromolecular Med 2021; 24:224-231. [PMID: 34272655 DOI: 10.1007/s12017-021-08679-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/10/2021] [Indexed: 11/26/2022]
Abstract
Glioma is a kind of brain tumor with low overall survival and treatment success rates in the advanced stage. Evidence has shown microRNA-575 (miR-575) plays an important role in the generation and development of various cancers. This study aimed to explore the function of miR-575 in the prognosis and cell biological behavior of glioma. qRT-PCR was used to evaluate the expression of miR-575 in glioma tissues and cells, Kaplan-Meier survival analysis and Cox regression analysis were used to evaluate the prognostic value. The proliferation ability of glioma cells was determined by MTT assay; the invasion and migration abilities were determined by transwell assays. Compared with normal brain tissues, the expression of miR-575 in glioma tissue cells was significantly up-regulated (P < 0.001). The survival rate of patients in the miR-575 high expression group was significantly lower than that in the low expression group (P = 0.020). In addition, the overexpression of miR-575 promoted the proliferation, migration, and invasion of glioma cells. The results of this study suggested that miR-575 may be a new biomarker for the prognosis of glioma.
Collapse
Affiliation(s)
- Guangxin Wei
- Department of Neurosurgery, Tumor Ward, Weifang People's Hospital Brain Hospital, 423 Dongfeng West Street, Weicheng District, Weifang, 261000, Shandong, China
| | - Shengjun Li
- Department of Neurosurgery, Tumor Ward, Weifang People's Hospital Brain Hospital, 423 Dongfeng West Street, Weicheng District, Weifang, 261000, Shandong, China
| | - Pengcheng Wang
- Department of Neurosurgery, Tumor Ward, Weifang People's Hospital Brain Hospital, 423 Dongfeng West Street, Weicheng District, Weifang, 261000, Shandong, China
| | - Shouxian Wang
- Department of Neurosurgery, Tumor Ward, Weifang People's Hospital Brain Hospital, 423 Dongfeng West Street, Weicheng District, Weifang, 261000, Shandong, China
| | - Yujing Zhao
- Department of Neurosurgery, Tumor Ward, Weifang People's Hospital Brain Hospital, 423 Dongfeng West Street, Weicheng District, Weifang, 261000, Shandong, China.
| |
Collapse
|
6
|
Expression of CD44 and the survival in glioma: a meta-analysis. Biosci Rep 2021; 40:222520. [PMID: 32232385 PMCID: PMC7160241 DOI: 10.1042/bsr20200520] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Higher tumor expression of CD44, a marker of cancer stem cells (CSCs), is associated with poor overall survival (OS) in various cancers. However, the association between CD44 and poor OS remains inconsistent in glioma. We aimed to evaluate the potential predictive role of CD44 for prognosis of glioma patients in a meta-analysis. Methods: Observational studies comparing OS of glioma patients according to the level of CD44 were identified through searching PubMed, Embase, and Cochrane’s Library databases. Meta-analyses were performed with a random- or fixed-effect model according to the heterogeneity. Subgroup analyses were performed to evaluate the influences of study characteristics. Results: Eleven retrospective cohort studies were included. Results showed that increased CD44 expression in tumor predicted poor OS in glioma patients (hazard ratio [HR]: 1.42, 95% confidence interval [CI]: 1.02–1.97, P=0.04). Subgroup analyses showed that higher tumor CD44 expression significantly predicted poor OS in patients with World Health Organization (WHO) stages II–III glioma (HR: 2.99, 95% CI: 1.53–5.89, P=0.002), but not in patients with glioblastoma (HR: 1.26, 95% CI: 0.76–2.08, P=0.47; P for subgroup difference = 0.03). Results were not statistically different between subgroups according to patient ethnicity, sample size, CD44 detection method, CD44 cutoff, HR estimation, univariate or multivariate analysis, or median follow-up durations (P-values for subgroup difference all >0.10). Conclusion: Higher tumor expression of CD44 may predict poor survival in patients with glioma, particularly in those with WHO stage II–III glioma.
Collapse
|
7
|
Comment on "Expression of CD44 and the survival in glioma: a meta-analysis". Biosci Rep 2020; 40:226608. [PMID: 33030522 PMCID: PMC7593535 DOI: 10.1042/bsr20202812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 12/27/2022] Open
Abstract
CD44 has been considered as a cancer stem cell marker in various tumors. With great enthusiasm, we read an article written by Wu et al. entitled "Expression of CD44 and the survival in glioma: a meta-analysis" published in Bioscience Reports. The authors performed meta-analyses to study the prognostic significance of CD44 in gliomas, and drew the conclusion that high expression of CD44 may predict poor survival in glioma, particularly in WHO grade II-III gliomas. However, two major defects exist in the present study, which made the meta-analysis on the prognostic significance of CD44 in all gliomas unreliable. In this commentary, we discussed the limitations and significance of the present study.
Collapse
|
8
|
Xiao Y, Cui G, Ren X, Hao J, Zhang Y, Yang X, Wang Z, Zhu X, Wang H, Hao C, Duan H. A Novel Four-Gene Signature Associated With Immune Checkpoint for Predicting Prognosis in Lower-Grade Glioma. Front Oncol 2020; 10:605737. [PMID: 33381460 PMCID: PMC7769121 DOI: 10.3389/fonc.2020.605737] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 10/08/2020] [Indexed: 01/28/2023] Open
Abstract
The overall survival of patients with lower grade glioma (LGG) varies greatly, but the current histopathological classification has limitations in predicting patients’ prognosis. Therefore, this study aims to find potential therapeutic target genes and establish a gene signature for predicting the prognosis of LGG. CD44 is a marker of tumor stem cells and has prognostic value in various tumors, but its role in LGG is unclear. By analyzing three glioma datasets from Gene Expression Omnibus (GEO) database, CD44 was upregulated in LGG. We screened 10 CD44-related genes via protein–protein interaction (PPI) network; function enrichment analysis demonstrated that these genes were associated with biological processes and signaling pathways of the tumor; survival analysis showed that four genes (CD44, HYAL2, SPP1, MMP2) were associated with the overall survival (OS) and disease-free survival (DFS)of LGG; a novel four-gene signature was constructed. The prediction model showed good predictive value over 2-, 5-, 8-, and 10-year survival probability in both the development and validation sets. The risk score effectively divided patients into high- and low- risk groups with a distinct outcome. Multivariate analysis confirmed that the risk score and status of IDH were independent prognostic predictors of LGG. Among three LGG subgroups based on the presence of molecular parameters, IDH-mutant gliomas have a favorable OS, especially if combined with 1p/19q codeletion, which further confirmed the distinct biological pattern between three LGG subgroups, and the gene signature is able to divide LGG patients with the same IDH status into high- and low- risk groups. The high-risk group possessed a higher expression of immune checkpoints and was related to the activation of immunosuppressive pathways. Finally, this study provided a convenient tool for predicting patient survival. In summary, the four prognostic genes may be therapeutic targets and prognostic predictors for LGG; this four-gene signature has good prognostic prediction ability and can effectively distinguish high- and low-risk patients. High-risk patients are associated with higher immune checkpoint expression and activation of the immunosuppressive pathway, providing help for screening immunotherapy-sensitive patients.
Collapse
Affiliation(s)
- Youchao Xiao
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Gang Cui
- Department of Neurosurgery, The Third Affiliated Hospital of Shandong First Medical University (Affiliated Hospital of Shandong Academy of Medical Sciences), Jinan, China
| | - Xingguang Ren
- Department of Neurosurgery, General Hospital of TISCO, Taiyuan, China
| | - Jiaqi Hao
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yu Zhang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xin Yang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhuangzhuang Wang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaolin Zhu
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Huan Wang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Chunyan Hao
- Department of Geriatrics, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hubin Duan
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Neurosurgery, Lvliang People's Hospital, Lvliang, China
| |
Collapse
|
9
|
Adato O, Orenstein Y, Kopolovic J, Juven-Gershon T, Unger R. Quantitative Analysis of Differential Expression of HOX Genes in Multiple Cancers. Cancers (Basel) 2020; 12:E1572. [PMID: 32545894 PMCID: PMC7352544 DOI: 10.3390/cancers12061572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/06/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
Transcription factors encoded by Homeobox (HOX) genes play numerous key functions during early embryonic development and differentiation. Multiple reports have shown that mis-regulation of HOX gene expression plays key roles in the development of cancers. Their expression levels in cancers tend to differ based on tissue and tumor type. Here, we performed a comprehensive analysis comparing HOX gene expression in different cancer types, obtained from The Cancer Genome Atlas (TCGA), with matched healthy tissues, obtained from Genotype-Tissue Expression (GTEx). We identified and quantified differential expression patterns that confirmed previously identified expression changes and highlighted new differential expression signatures. We discovered differential expression patterns that are in line with patient survival data. This comprehensive and quantitative analysis provides a global picture of HOX genes' differential expression patterns in different cancer types.
Collapse
Affiliation(s)
- Orit Adato
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel;
| | - Yaron Orenstein
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
| | - Juri Kopolovic
- Department of Pathology, Hadassah Medical Center, Jerusalem 9112102, Israel;
| | - Tamar Juven-Gershon
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel;
| | - Ron Unger
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel;
| |
Collapse
|
10
|
Thellung S, Corsaro A, Bosio AG, Zambito M, Barbieri F, Mazzanti M, Florio T. Emerging Role of Cellular Prion Protein in the Maintenance and Expansion of Glioma Stem Cells. Cells 2019; 8:cells8111458. [PMID: 31752162 PMCID: PMC6912268 DOI: 10.3390/cells8111458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
Cellular prion protein (PrPC) is a membrane-anchored glycoprotein representing the physiological counterpart of PrP scrapie (PrPSc), which plays a pathogenetic role in prion diseases. Relatively little information is however available about physiological role of PrPC. Although PrPC ablation in mice does not induce lethal phenotypes, impairment of neuronal and bone marrow plasticity was reported in embryos and adult animals. In neurons, PrPC stimulates neurite growth, prevents oxidative stress-dependent cell death, and favors antiapoptotic signaling. However, PrPC activity is not restricted to post-mitotic neurons, but promotes cell proliferation and migration during embryogenesis and tissue regeneration in adult. PrPC acts as scaffold to stabilize the binding between different membrane receptors, growth factors, and basement proteins, contributing to tumorigenesis. Indeed, ablation of PrPC expression reduces cancer cell proliferation and migration and restores cell sensitivity to chemotherapy. Conversely, PrPC overexpression in cancer stem cells (CSCs) from different tumors, including gliomas—the most malignant brain tumors—is predictive for poor prognosis, and correlates with relapses. The mechanisms of the PrPC role in tumorigenesis and its molecular partners in this activity are the topic of the present review, with a particular focus on PrPC contribution to glioma CSCs multipotency, invasiveness, and tumorigenicity.
Collapse
Affiliation(s)
- Stefano Thellung
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, Italy; (S.T.); (A.C.); (A.G.B.); (M.Z.); (F.B.)
| | - Alessandro Corsaro
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, Italy; (S.T.); (A.C.); (A.G.B.); (M.Z.); (F.B.)
| | - Alessia G. Bosio
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, Italy; (S.T.); (A.C.); (A.G.B.); (M.Z.); (F.B.)
| | - Martina Zambito
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, Italy; (S.T.); (A.C.); (A.G.B.); (M.Z.); (F.B.)
| | - Federica Barbieri
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, Italy; (S.T.); (A.C.); (A.G.B.); (M.Z.); (F.B.)
| | - Michele Mazzanti
- Dipartimento di Bioscienze, Università di Milano, 20133 Milano, Italy
- Correspondence: (T.F.); (M.M.); Tel.: +39-01-0353-8806 (T.F.); +39-02-5031-4958 (M.M.)
| | - Tullio Florio
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, Italy; (S.T.); (A.C.); (A.G.B.); (M.Z.); (F.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Correspondence: (T.F.); (M.M.); Tel.: +39-01-0353-8806 (T.F.); +39-02-5031-4958 (M.M.)
| |
Collapse
|