1
|
Haruna T, Kudo M, Ishino K, Ueda J, Shintani-Domoto Y, Yoshimori D, Fuji T, Kawamoto Y, Teduka K, Kitamura T, Yoshida H, Ohashi R. Molecular biological role of epithelial splicing regulatory protein 1 in intrahepatic cholangiocarcinoma. Hepatol Res 2024. [PMID: 39037743 DOI: 10.1111/hepr.14096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
AIM Epithelial splicing regulatory protein 1 (ESRP1) regulates tumor progression and metastasis through the epithelial‒mesenchymal transition by interacting with zinc finger E-box binding 1 (ZEB1) and CD44 in cancers. However, the role of ESRP1 in intrahepatic cholangiocarcinoma (iCCA) remains unclear. METHODS Three iCCA cell lines (HuCCT-1, SSP-25, and KKU-100) were analyzed using small interfering RNA to investigate the molecular biological functions of ESRP1 and ZEB1. The association between clinicopathological features and the expression of ESRP1 and ZEB1 in iCCA tissues was analyzed immunohistochemically. Proteomic analysis was performed to identify molecules related to ESRP1 expression. RESULTS ESRP1 expression was upregulated in HuCCT-1 and SSP-25 cells. Cell migration and invasion were enhanced, and the expression of ZEB1 and CD44s (CD44 standard) isoforms were upregulated in the ESRP1 silencing cells. Moreover, ESRP1 silencing increased the expression of N-cadherin and vimentin, indicating the presence of mesenchymal properties. Conversely, ZEB1 silencing increased the expression of ESRP1 and CD44v (CD44 variant) isoforms. Immunohistochemical analysis revealed that a lower ESRP1-to-ZEB1 expression ratio was associated with poor recurrence-free survival in patients with iCCA. Flotillin 2, a lipid raft marker related to epithelial‒mesenchymal transition, was identified as a protein related to the interactive feedback loop in proteomic analysis. CONCLUSIONS ESRP1 suppresses tumor progression in iCCA by interacting with ZEB1 and CD44 to regulate epithelial‒mesenchymal transition.
Collapse
Affiliation(s)
- Takahiro Haruna
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
- Department of Gastrointestinal Hepato-Biliary-Pancreatic Surgery, Nippon Medical School Hospital, Tokyo, Japan
| | - Mitsuhiro Kudo
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
| | - Kousuke Ishino
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
| | - Junji Ueda
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
- Department of Gastrointestinal Hepato-Biliary-Pancreatic Surgery, Nippon Medical School Hospital, Tokyo, Japan
| | | | - Daigo Yoshimori
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
- Department of Gastrointestinal Hepato-Biliary-Pancreatic Surgery, Nippon Medical School Hospital, Tokyo, Japan
| | - Takenori Fuji
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
| | - Yoko Kawamoto
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
| | - Kiyoshi Teduka
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
| | - Taeko Kitamura
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
| | - Hiroshi Yoshida
- Department of Gastrointestinal Hepato-Biliary-Pancreatic Surgery, Nippon Medical School Hospital, Tokyo, Japan
| | - Ryuji Ohashi
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
2
|
Zhang D, Wu J, Zhang S, Wu J. Identification of Immune Infiltration-Related ceRNAs as Novel Biomarkers for Prognosis of Patients With Primary Open-Angle Glaucoma. Front Genet 2022; 13:838220. [PMID: 35692841 PMCID: PMC9184720 DOI: 10.3389/fgene.2022.838220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Glaucoma is the leading cause of irreversible blindness globally; hence, relevant clinical biomarkers are necessary to enable diagnosis, early detection, and development of novel therapies. The differentially expressed genes were annotated and visualized using Gene Ontology and Kyoto Encyclopedia. In addition, a competitive endogenous ribonucleic acids network was constructed using Cytoscape, which explained the regulation of gene expression in glaucoma. The CIBERSORT algorithm was employed to analyze the immune microenvironment. We validated that the core genes could predict glaucoma occurrence and development and identified potential molecular mechanism pathways, which were associated with immune infiltration and participated in endogenous regulation networks. Our data may partially explain the pathogenesis of glaucoma and they provide potential theoretical support for targeted therapy.
Collapse
Affiliation(s)
- Daowei Zhang
- Eye and ENT Hospital, College of Medicine, Eye Institute, Fudan University, Shanghai, China
| | - Jiawen Wu
- Eye and ENT Hospital, College of Medicine, Eye Institute, Fudan University, Shanghai, China
| | - Shenghai Zhang
- Eye and ENT Hospital, College of Medicine, Eye Institute, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, China
- *Correspondence: Shenghai Zhang, ; Jihong Wu,
| | - Jihong Wu
- Eye and ENT Hospital, College of Medicine, Eye Institute, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, China
- *Correspondence: Shenghai Zhang, ; Jihong Wu,
| |
Collapse
|
3
|
Effect of FLOT2 Gene Expression on Invasion and Metastasis of Colorectal Cancer and Its Molecular Mechanism under Nanotechnology and RNA Interference. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2897338. [PMID: 35419458 PMCID: PMC9001092 DOI: 10.1155/2022/2897338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 11/18/2022]
Abstract
The study is aimed at investigating the effect of the FLOT2 gene on invasion and metastasis of colorectal cancer (CRC) cells and the corresponding molecular mechanism by preparing polylysine-silicon nanoparticles. Specifically, polylysine was used to modify the silica nanoparticles prepared by the emulsification method to obtain polylysine-silicon nanoparticles. The characterization of polylysine-silicon nanoparticles was completed by nanoparticle size analyzer, laser particle size potentiometer, and transmission microscope. The influence of polylysine-silicon nanoparticles on the survival rate of CRC cell line HT-29 was detected using the method of 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT). The FLOT2-siRNA expression vector was constructed and transfected with HT-29. The HT-29 transfected with empty plasmid was used as the negative control (NC). Western Blot (WB) and reverse transcription-polymerase chain reaction (RT-PCR) were used to detect expression levels of FLOT2 gene and epithelial-mesenchymal transition- (EMT-) related genes. Transwell invasion assay, Transwell migration assay, and CCK8 assay were used to detect the cell invasion, migration, and proliferation. The results showed that the average particle size of polylysine-silicon nanoparticles was 30 nm, the potential was 19.65 mV, the particle size was 65.8 nm, and the dispersion coefficient was 0.103. At the same concentration, the toxicity of silicon nanoparticles to HT-29 was significantly lower than that of liposome reagent, and the transfection efficiency was 60%, higher than that of liposome reagent (40%). The mRNA level and protein expression of the FLOT2 gene in the FLOT2-siRNA group were significantly lower than those in the NC group (P < 0.01). The optical density (OD) value of the NC group and the blank control (CK) group were significantly higher than that of FLOT2-siRNA cells (P < 0.01). The OD value of FLOT2-siRNA cells was lower than that of NC cells at 48 h, 72 h, and 96 h (P < 0.01). The mRNA levels and protein expressions of MMP2 and vimentin in the FLOT2-siRNA group were significantly lower than those in the NC group and CK group (P < 0.01). The mRNA level and protein expression of the E-cadherin gene in the FLOT2-siRNA group were significantly higher than those in the NC group and CK group (P < 0.01). In conclusion, an RNA interference plasmid with high transfection efficiency and low cytotoxicity was established based on nanotechnology. siRNA-mediated FLOT2 protein inhibits the invasion, migration, and proliferation of CRC cells by regulating the expression changes of EMT-related genes, which provides a scientific basis for clinical treatment of CRC.
Collapse
|
4
|
Abstract
Flotillins 1 and 2 are two ubiquitous, highly conserved homologous proteins that assemble to form heterotetramers at the cytoplasmic face of the plasma membrane in cholesterol- and sphingolipid-enriched domains. Flotillin heterotetramers can assemble into large oligomers to form molecular scaffolds that regulate the clustering of at the plasma membrane and activity of several receptors. Moreover, flotillins are upregulated in many invasive carcinomas and also in sarcoma, and this is associated with poor prognosis and metastasis formation. When upregulated, flotillins promote plasma membrane invagination and induce an endocytic pathway that allows the targeting of cargo proteins in the late endosomal compartment in which flotillins accumulate. These late endosomes are not degradative, and participate in the recycling and secretion of protein cargos. The cargos of this Upregulated Flotillin–Induced Trafficking (UFIT) pathway include molecules involved in signaling, adhesion, and extracellular matrix remodeling, thus favoring the acquisition of an invasive cellular behavior leading to metastasis formation. Thus, flotillin presence from the plasma membrane to the late endosomal compartment influences the activity, and even modifies the trafficking and fate of key protein cargos, favoring the development of diseases, for instance tumors. This review summarizes the current knowledge on flotillins and their role in cancer development focusing on their function in cellular membrane remodeling and vesicular trafficking regulation.
Collapse
|
5
|
Xiao B, Zhang X, Li X, Zhao Z. Circ_001569 regulates FLOT2 expression to promote the proliferation, migration, invasion and EMT of osteosarcoma cells through sponging miR-185-5p. Open Life Sci 2020; 15:476-487. [PMID: 33817236 PMCID: PMC7874578 DOI: 10.1515/biol-2020-0050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/16/2020] [Accepted: 04/23/2020] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma (OS) is a common malignant tumor in the world. Circular RNAs are endogenous non-coding RNAs that have been linked to the development of cancer. However, the role of circ_001569 in OS progression is still unclear. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of circ_001569, microRNA-185-5p (miR-185-5p) and flotillin-2 (FLOT2). The abilities of cell proliferation, migration and invasion were evaluated by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and Transwell assays, respectively. Also, western blot analysis was performed to assess the levels of epithelial-mesenchymal transition (EMT)-related proteins and FLOT2 protein. Besides, the dual-luciferase reporter assay was used to verify the interactions among circ_001569, miR-185-5p and FLOT2. Circ_001569 expression was increased in OS tissues and cells, and its knockdown reduced the proliferation, migration, invasion and EMT of OS cells. MiR-185-5p could interact with circ_001569. Inhibition of miR-185-5p could recover the suppression effects of silenced-circ_001569 on the proliferation and metastasis of OS cells. Furthermore, FLOT2 was a target of miR-185-5p. Overexpressed FLOT2 could restore the inhibition effects of miR-185-5p mimic on the proliferation and metastasis of OS cells. Also, FLOT2 expression was regulated by circ_001569 and miR-185-5p. In addition, circ_001569 knockdown also reduced the OS tumor growth in vivo. Circ_001569 might act as an oncogene in OS progression by regulating the miR-185-5p/FLOT2 axis, which provided a reliable new approach for the treatment of OS patients.
Collapse
Affiliation(s)
- Bin Xiao
- Department of Orthopaedic, Second People’s Hospital of Gansu Province, No. 1 Hezheng West Street, Chengguan District, Lanzhou City, Gansu Province, 730000, China
| | - Xusheng Zhang
- Department of General Surgery, Second People’s Hospital of Gansu Province, 730000, Lanzhou, Gansu, China
| | - Xiaojuan Li
- Department of Endocrine, Second People’s Hospital of Gansu Province, 730000, Lanzhou, Gansu, China
| | - Zhipeng Zhao
- Department of Orthopaedic, Second People’s Hospital of Gansu Province, No. 1 Hezheng West Street, Chengguan District, Lanzhou City, Gansu Province, 730000, China
| |
Collapse
|
6
|
Xu Z, Wang T, Song H, Jiang X. Flotillin-2 predicts poor prognosis and promotes tumor invasion in intrahepatic cholangiocarcinoma. Oncol Lett 2020; 19:2243-2250. [PMID: 32194722 PMCID: PMC7039164 DOI: 10.3892/ol.2020.11349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a highly malignant neoplasm arising from the intrahepatic bile ducts. As a scaffold protein of lipid rafts, flotillin-2 is upregulated in several types of cancer and promotes tumor progression and metastasis. To the best of our knowledge, the present study was the first to detect the upregulation of flotillin-2 in iCCA tissues compared with matched adjacent non-tumor tissues. In addition, immunohistochemistry was used to investigate the expression of flotillin-2 in a microarray consisting of 92 iCCA tissues. A total of 59 samples (64.1%) exhibited high flotillin-2 expression, which was significantly related to lymph node metastasis (P=0.029) and tumor-node-metastasis stage (P=0.016). Further in vitro study demonstrated that knockdown of flotillin-2 inhibited the invasive capability of iCCA cell lines, further supporting the participation of flotillin-2 in cancer invasion and metastasis. Moreover, Kaplan-Meier analysis showed patients with high flotillin-2 expression had worse overall survival outcomes. The multivariate Cox proportional hazards model further revealed that high flotillin-2 expression was an independent indicator (P=0.005) of poor prognosis for patients with iCCA. Collectively, the present study revealed that as a promoter of invasion and an independent marker of poor prognosis, flotillin-2 may serve as a potential target for the development of novel therapeutic agents for iCCA.
Collapse
Affiliation(s)
- Zhiying Xu
- Department of Nuclear Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264001, P.R. China
| | - Tao Wang
- Department of Interventional Therapy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264001, P.R. China
| | - Haiyang Song
- Department of Interventional Therapy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264001, P.R. China
| | - Xuewen Jiang
- Department of Nuclear Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264001, P.R. China
| |
Collapse
|