1
|
Sajjad F, Jalal A, Jalal A, Gul Z, Mubeen H, Rizvi SZ, Un-Nisa EA, Asghar A, Butool F. Multi-omic analysis of dysregulated pathways in triple negative breast cancer. Asia Pac J Clin Oncol 2024. [PMID: 38899578 DOI: 10.1111/ajco.14095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/18/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
The aggressive characteristics of triple-negative breast cancer (TNBC) and the absence of targeted medicines make TNBC a challenging clinical case. The molecular landscape of TNBC has been well-understood thanks to recent developments in multi-omic analysis, which have also revealed dysregulated pathways and possible treatment targets. This review summarizes the utilization of multi-omic approaches in elucidating TNBC's complex biology and therapeutic avenues. Dysregulated pathways including cell cycle progression, immunological modulation, and DNA damage response have been uncovered in TNBC by multi-omic investigations that integrate genomes, transcriptomics, proteomics, and metabolomics data. Methods like this pave the door for the discovery of new therapeutic targets, such as the EGFR, PARP, and mTOR pathways, which in turn direct the creation of more precise treatments. Recent developments in TNBC treatment strategies, including immunotherapy, PARP inhibitors, and antibody-drug conjugates, show promise in clinical trials. Emerging biomarkers like MUC1, YB-1, and immune-related markers offer insights into personalized treatment approaches and prognosis prediction. Despite the strengths of multi-omic analysis in offering a more comprehensive view and personalized treatment strategies, challenges exist. Large sample sizes and ensuring high-quality data remain crucial for reliable findings. Multi-omic analysis has revolutionized TNBC research, shedding light on dysregulated pathways, potential targets, and emerging biomarkers. Continued research efforts are imperative to translate these insights into improved outcomes for TNBC patients.
Collapse
Affiliation(s)
- Fatima Sajjad
- School of Interdisciplinary Engineering and Sciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Ahmer Jalal
- Faculty of Sciences and Technology, University of Central Punjab, Lahore, Pakistan
| | - Amir Jalal
- Department of Biochemistry, Sahara Medical College, Narowal, Pakistan
| | - Zulekha Gul
- Environmental and Biological Science, Nanjing University of Science and Technology, Nanjing, China
| | - Hira Mubeen
- Faculty of Sciences and Technology, University of Central Punjab, Lahore, Pakistan
| | - Seemal Zahra Rizvi
- Faculty of Sciences and Technology, University of Central Punjab, Lahore, Pakistan
| | - Ex Alim Un-Nisa
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research, Lahore, Pakistan
| | - Andleeb Asghar
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences Lahore, Lahore, Pakistan
| | - Farah Butool
- Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University Lahore, Lahore, Pakistan
| |
Collapse
|
2
|
Huang X, Li J, Pang X, Zhu J, Pan J, Li Y, Tang J. Gene polymorphism and prediction of toxicity to platinum-based chemotherapy in patients with gynecologic cancer. Clin Transl Sci 2023; 16:2519-2529. [PMID: 38013655 PMCID: PMC10719482 DOI: 10.1111/cts.13642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 11/29/2023] Open
Abstract
The relationship between single nucleotide polymorphisms (SNPs) at various loci and adverse drug reactions (ADRs) in patients with gynecologic cancer receiving platinum-based chemotherapy (PPCT) remains unexplored. This research aimed to investigate the correlation between SNPs at several loci (e.g., GSTP1 rs1695, MTHFR rs1801133, XPC rs2228001, TP53 rs1042522, and ERCC1 rs3212986) and ADRs in patients with gynecologic cancer receiving PPCT. A total of 244 patients with gynecologic cancer who received first-line PPCT were included in this retrospective study. Blood fluorescence quantitative polymerase chain reaction was used to detect genotypes. Logistic regression, Pearson's Chi-square test, and Fisher's exact test were used to explore the correlations between these SNPs and the occurrence of ADRs. The logistic regression results showed that different genotypes of the five genes had no statistical significance in the overall grade greater than or equal to 3 ADRs. The results of Pearson's Chi-square test showed the same results. On specific adverse reactions, we found that the rs1042522 GG genotype significantly increased the risk of grade greater than or equal to 3 leucopenia compared with the CG and the CC genotypes (p = 0.002). The rs1695 AG genotype showed higher correlation for grade greater than or equal to 3 neutropenia (p = 0.020). The rs2228001 CC genotype also had a higher risk for grade greater than or equal to 3 neutropenia (p = 0.003). This study found that whereas the overall grade greater than or equal to 3 adverse reactions in patients with gynecologic cancer receiving PPCT were not associated with SNPs, specific SNPs (rs1042522 GG, rs1695 AG, and rs2228001 CC) were linked to higher risks of leucopenia and neutropenia, indicating their potential as predictors of hematotoxicity in PPCT-treated patients with gynecologic cancer.
Collapse
Affiliation(s)
- Xuan Huang
- Department of PharmacyObstetrics & Gynecology Hospital of Fudan UniversityShanghaiChina
| | - Junmin Li
- Department of PharmacyObstetrics & Gynecology Hospital of Fudan UniversityShanghaiChina
| | - Xiaoying Pang
- Department of PharmacyObstetrics & Gynecology Hospital of Fudan UniversityShanghaiChina
| | - Jialei Zhu
- Department of PharmacyObstetrics & Gynecology Hospital of Fudan UniversityShanghaiChina
| | - Jiaqian Pan
- Department of PharmacyObstetrics & Gynecology Hospital of Fudan UniversityShanghaiChina
| | - Yueyan Li
- Department of PharmacyObstetrics & Gynecology Hospital of Fudan UniversityShanghaiChina
| | - Jing Tang
- Department of PharmacyObstetrics & Gynecology Hospital of Fudan UniversityShanghaiChina
| |
Collapse
|
3
|
Green-Tripp G, Nattress C, Halldén G. Targeting Triple Negative Breast Cancer With Oncolytic Adenoviruses. Front Mol Biosci 2022; 9:901392. [PMID: 35813830 PMCID: PMC9263221 DOI: 10.3389/fmolb.2022.901392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer (BC) is the most common cancer globally, accounting for 685,000 deaths in 2020. Triple-negative breast cancers (TNBC) lack oestrogen (ER) and progesterone (PR) hormone receptor expression and HER2 overexpression. TNBC represent 10–15% of all BC with high incidence in women under 50-years old that have BRCA mutations, and have a dismal prognosis. African American and Hispanic women are at higher risk partly due to the common occurrence of BRCA mutations. The standard treatment for TNBC includes surgery, radiotherapy, and chemotherapy although, resistance to all standard-of-care therapies eventually develops. It is crucial to identify and develop more efficacious therapeutics with different mechanisms of action to improve on survival in these women. Recent findings with oncolytic adenoviruses (OAds) may generate a new strategy to improve on the outcomes for women afflicted by TNBC and other types of BC. OAds are genetically engineered to selectively lyse, eliminate and recruit the host antitumour immune responses, leaving normal cells unharmed. The most common modifications are deletions in the early gene products including the E1B55 KDa protein, specific regions of the E1A protein, or insertion of tumour-specific promoters. Clinical trials using OAds for various adenocarcinomas have not yet been sufficiently evaluated in BC patients. Preclinical studies demonstrated efficacy in BC cell lines, including TNBC cells, with promising novel adenoviral mutants. Here we review the results reported for the most promising OAds in preclinical studies and clinical trials administered alone and in combination with current standard of care or with novel therapeutics. Combinations of OAds with small molecule drugs targeting the epidermal growth factor receptor (EGFR), androgen receptor (AR), and DNA damage repair by the novel PARP inhibitors are currently under investigation with reported enhanced efficacy. The combination of the PARP-inhibitor Olaparib with OAds showed an impressive anti-tumour effect. The most promising findings to date are with OAds in combination with antibodies towards the immune checkpoints or expression of cytokines from the viral backbone. Although safety and efficacy have been demonstrated in numerous clinical trials and preclinical studies with cancer-selective OAds, further developments are needed to eliminate metastatic lesions, increase immune activation and intratumoural viral spread. We discuss shortcomings of the OAds and potential solutions for improving on patient outcomes.
Collapse
Affiliation(s)
- Gabriela Green-Tripp
- Centre for Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Callum Nattress
- Centre for Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London, United Kingdom
| | - Gunnel Halldén
- Centre for Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
- *Correspondence: Gunnel Halldén,
| |
Collapse
|
4
|
Sun WY, Lee J, Kim BK, Kim JO, Park J. Distinct Somatic Alteration Features Identified by Gene Panel Sequencing in Korean Triple-Negative Breast Cancer with High Ki67 Expression. Diagnostics (Basel) 2021; 11:416. [PMID: 33804295 PMCID: PMC8000916 DOI: 10.3390/diagnostics11030416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/09/2022] Open
Abstract
This study aimed to clarify the genetic difference between Korean triple-negative breast cancer (TNBC) and other breast cancer (BC) subtypes. TNBC was defined as the absence of hormonal receptors and human epidermal growth factor receptor 2 (HER2) amplification. DNA panel of the Ion Torrent Oncomine Comprehensive Assay (OCA) v3 was performed to identify somatic alteration in 48 specimens. In a total of 102 alterations (37 nonsense, 35 missense, 8 frameshift and 22 amplifications), 30 nucleotide alterations (24 nonsense, 1 missense, and 5 frameshift) were newly identified. The eight most commonly altered genes were PIK3CA, TP53, ERBB2, BRCA2, FANCD2, AKT1, BRCA1, and FANCA. TNBC had significantly lower mutation frequency in PIK3CA (TNBC vs. hormone receptor-positive and HER2-negative BC [HRPBC], p = 0.009), but higher mutation frequency in TP53 (TNBC vs. HRPBC, p = 0.036; TNBC vs. hormone receptor-positive and HER2- positive BC [HHPBC], p = 0.004). TNBC showed frequently higher Ki-67 expression than any positive BC (p = 0.004) due to HRPBC (p < 0.001). TNBC with high Ki-67/unmutated PIK3CA/mutated TP53 appears at a younger age (52.2 ± 7.6 years), compared to other subtypes (63.7 ± 11.0 years). TNBC with high Ki-67/unmutated PIK3CA/mutated TP53 may be related to relatively early onset BCThese findings demonstrate the genomic heterogeneity between TNBC and other BC subtypes and could present a new approach for molecular targeted therapy in TNBC patients.
Collapse
Affiliation(s)
- Woo Young Sun
- Department of Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (W.Y.S.); (J.L.); (B.K.K.)
| | - Jina Lee
- Department of Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (W.Y.S.); (J.L.); (B.K.K.)
| | - Bong Kyun Kim
- Department of Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (W.Y.S.); (J.L.); (B.K.K.)
| | - Jong Ok Kim
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Joonhong Park
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Korea
- Clinical Medicine-Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea
| |
Collapse
|
5
|
Philipovskiy A, Dwivedi AK, Gamez R, McCallum R, Mukherjee D, Nahleh Z, Aguilera RJ, Gaur S. Association between tumor mutation profile and clinical outcomes among Hispanic Latina women with triple-negative breast cancer. PLoS One 2020; 15:e0238262. [PMID: 32886682 PMCID: PMC7473586 DOI: 10.1371/journal.pone.0238262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
Triple-negative breast cancer (TNBC) represents 15%-20% of all breast cancer types. It is more common among African American (AA) and Hispanic-Latina (HL) women. The biology of TNBC in HL women has been poorly characterized, but some data suggest that the molecular drivers of breast cancer might differ. There are no clinical tools to aid medical oncologists with decisions regarding appropriate individualized therapy, and no way to predict long-term outcomes. The aim of this study was to characterize individual patient gene mutation profiles and to identify the relationship with clinical outcomes. We collected formalin-fixed paraffin-embedded tumors (FFPE) from women with TNBC. We analyzed the gene mutation profiles of the collected tumors and compared the results with individual patient's clinical histories and outcomes. Of 25 patients with TNBC, 24 (96%) identified as HL. Twenty-one (84%) had stage III-IV disease. The most commonly mutated genes were TP53, NOTCH1, NOTCH2, NOTCH3, AKT, MEP3K, PIK3CA, and EGFR. Compared with other international cancer databases, our study demonstrated statistically significant higher frequencies of these genes among HL women. Additionally, a worse clinical course was observed among patients whose tumors had mutations in NOTCH genes and PIK3CA. This study is the first to identify the most common genetic alterations among HL women with TNBC. Our data strongly support the notion that molecular drivers of breast cancer could differ in HL women compared with other ethnic backgrounds. Therefore, a deeper understanding of the biological mechanisms behind NOTCH gene and PIK3CA mutations may lead to a new treatment approach.
Collapse
Affiliation(s)
- Alexander Philipovskiy
- Division of Hematology-Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas, United States of America
| | - Alok K. Dwivedi
- Division of Biostatistics & Epidemiology, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas, United States of America
| | - Roberto Gamez
- Department of Pathology, University Medical Center, Texas Tech University Health Sciences Center El Paso, El Paso, Texas, United States of America
| | - Richard McCallum
- Division of Gastroenterology, Department of Internal Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas, United States of America
| | - Debabrata Mukherjee
- Division of Cardiology, Department of Internal Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas, United States of America
| | - Zeina Nahleh
- Department of Hematology-Oncology, Maroone Cancer Center, Cleveland Clinic, Florida, Weston, Florida, United States of America
| | - Renato J. Aguilera
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas, United States of America
| | - Sumit Gaur
- Division of Hematology-Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas, United States of America
| |
Collapse
|
6
|
Nassar A, Abouelhoda M, Mansour O, Loutfy SA, Hafez MM, Gomaa M, Bahnassy A, El-Din Youssef AS, Lotfy MM, Ismail H, Ahmed OS, Abou-Bakr AAE, Zekri ARN. Targeted next generation sequencing identifies somatic mutations in a cohort of Egyptian breast cancer patients. J Adv Res 2020; 24:149-157. [PMID: 32322420 PMCID: PMC7167517 DOI: 10.1016/j.jare.2020.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/17/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BC) incidence is progressively increasing in Egypt. However, there is insufficient knowledge of the acquired somatic mutations in Egyptian BC patients which limit our understanding of its progression. To the best of our knowledge, this is the first Egyptian cohort to sequence a multiple-gene panel of cancer related genes on BC patients. Four hundred and nine cancer related genes were sequenced in 46 fresh breast tumors of Egyptian BC patients to identify somatic mutations and their frequencies. TP53 and PIK3CA were the most top two frequently mutated genes. We detected 15 different somatic mutations in TP53 and 8 different ones in PIK3CA, each in 27 samples (58.7%). According to Clinvar database; we found 19 pathogenic somatic mutations: 7 in Tp53, 5 in PIK3CA, and single variants of VHL, STK11, AKT1, KRAS, IDH2, PTEN and ERBB2. We also identified 5 variants with uncertain significance (4 in TP53 and 1 in CEBPA) and 4 variants with conflicting interpretations of pathogenicity (2 in TP53 and 1 in each of APC and JAK3). Moreover, one drug response variant (p.P72R) in TP53 was detected in 8 samples. Furthermore, four novel variants were identified in JAK2, MTOR, KIT and EPHB. Further analysis, by Ingenuity Variant Analysis software (IVA), showed that PI3K/AKT signaling is altered in greater than 50% of Egyptian BC patients which implicates PI3K/AKT signaling as a therapeutic target. In this cohort, we shed the light on the most frequently detected somatic mutations and the most altered pathway in Egyptian BC patients.
Collapse
Affiliation(s)
- Auhood Nassar
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | | | - Osman Mansour
- Medical Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Samah A. Loutfy
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mohamed M. Hafez
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - M. Gomaa
- Radiology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Abeer Bahnassy
- Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | | | - Mai M. Lotfy
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Hoda Ismail
- Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ola S. Ahmed
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | | | - Abdel-Rahman N. Zekri
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Elfgen C, Reeve K, Moskovszky L, Güth U, Bjelic-Radisic V, Fleisch M, Tausch C, Varga Z. Prognostic impact of PIK3CA protein expression in triple negative breast cancer and its subtypes. J Cancer Res Clin Oncol 2019; 145:2051-2059. [PMID: 31270600 DOI: 10.1007/s00432-019-02968-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/01/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND Triple negative breast cancer (TNBC) harbors a heterogeneous group of carcinomas with poor prognosis and high genetic variability. As a potential aim for targeted therapy, genetic mutations leading to an activation of the phosphoinositide 3-kinase pathway in a catalytic subunit (PIK3CA) in breast cancer have been analyzed currently. Little is known about the clinical impact and prognostic or predictive value of this marker in TNBC subtypes. METHODS Samples from 119 TNBC cases were submitted to immunohistochemical PIK3CA protein expression analysis and scored semi-quantitatively as negative, weak (1 +), or strongly expressed (2 +). Expression scores were correlated to patient's characteristics, imaging features, and TNBC subtypes. TNBC subtypes were categorized into four subtypes: basal like, mesenchymal like, luminal androgen receptor (LAR), and immunomodulatory. RESULTS We did not observe differences in clinical aspects and imaging features between TNBC with and without PIK3CA expression. PIK3CA expression was in general higher in the LAR subtype. The disease-free survival and overall survival were significantly better in TNBC with PIK3CA protein expression, independent of TNBC subtypes. CONCLUSION Despite conflicting results in the literature, our study clearly shows a better outcome of PIK3CA-expressing TNBC, independent of TNBC subtypes. PIK3CA expression in TNBC is not associated with specific clinical or diagnostic features. Further molecular studies and meta-analysis are warranted to clarify the prognostic and predictive role of PIK3CA protein expression.
Collapse
Affiliation(s)
- C Elfgen
- Breast Center Zurich, Seefeldstrasse 214, 8008, Zurich, Switzerland.
- Department for Gynecology and Obstetrics, Helios Hospital Wuppertal, University of Witten, Witten/Herdecke, Germany.
| | - K Reeve
- Epidemiology, Biostatistics and Prevention Institute, Biostatistics Department, University of Zurich, Zurich, Switzerland
| | - L Moskovszky
- Institute of Pathology and Molecular Pathology, University Hospital of Zurich, Zurich, Switzerland
| | - U Güth
- Breast Center Zurich, Seefeldstrasse 214, 8008, Zurich, Switzerland
| | - V Bjelic-Radisic
- Department for Gynecology and Obstetrics, Helios Hospital Wuppertal, University of Witten, Witten/Herdecke, Germany
| | - M Fleisch
- Department for Gynecology and Obstetrics, Helios Hospital Wuppertal, University of Witten, Witten/Herdecke, Germany
| | - C Tausch
- Breast Center Zurich, Seefeldstrasse 214, 8008, Zurich, Switzerland
| | - Z Varga
- Institute of Pathology and Molecular Pathology, University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Butt E, Alyami S, Nageeti T, Saeed M, AlQuthami K, Bouazzaoui A, Athar M, Abduljaleel Z, Al-Allaf F, Taher M. Mutation profiling of anaplastic ependymoma grade III by Ion Proton next generation DNA sequencing. F1000Res 2019; 8:613. [PMID: 32612806 PMCID: PMC7317822 DOI: 10.12688/f1000research.18721.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/15/2020] [Indexed: 12/31/2022] Open
Abstract
Background: Ependymomas are glial tumors derived from differentiated ependymal cells. In contrast to other types of brain tumors, histological grading is not a good prognostic marker for these tumors. In order to determine genomic changes in an anaplastic ependymoma, we analyzed its mutation patterns by next generation sequencing (NGS). Methods: Tumor DNA was sequenced using an Ion PI v3 chip on Ion Proton instrument and the data were analyzed by Ion Reporter 5.6. Results: NGS analysis identified 19 variants, of which four were previously reported missense variants; c.395G>A in IDH1, c.1173A>G in PIK3CA, c.1416A>T in KDR and c.215C>G in TP53. The frequencies of the three missense mutations ( PIK3CA c.1173A>G, KDR c.1416A>T, TP53, c.215C>G) were high, suggesting that these are germline variants, whereas the IDH1 variant frequency was low (4.81%). However, based on its FATHMM score of 0.94, only the IDH1 variant is pathogenic; other variants TP53, PIK3CA and KDR had FATHMM scores of 0.22, 0.56 and 0.07, respectively. Eight synonymous mutations were found in FGFR3, PDGFRA, EGFR, RET, HRAS, FLT3, APC and SMAD4 genes. The mutation in FLT3 p.(Val592Val) was the only novel variant found. Additionally, two known intronic variants in KDR were found and intronic variants were also found in ERBB4 and PIK3CA. A known splice site mutation at an acceptor site in FLT3, a 3'-UTR variant in the CSF1R gene and a 5'_UTR variant in the SMARCB1 gene were also identified. The p-values were below 0.00001 for all variants and the average coverage for all variants was around 2000x. Conclusions: In this grade III ependymoma, one novel synonymous mutation and one deleterious missense mutation is reported. Many of the variants reported here have not been detected in ependymal tumors by NGS analysis previously and we therefore report these variants in brain tissue for the first time.
Collapse
Affiliation(s)
- Ejaz Butt
- Histopathology Division, Al-Noor Specialty Hospital, Makkah, Makkah, Saudi Arabia
- Histopathology Department, Amna Inayat Medical College, Sheikhupura, Punjab, Pakistan
| | - Sabra Alyami
- Department of Medical Genetics, Umm-Al-Qura University, Makkah, Makkah, Saudi Arabia
| | - Tahani Nageeti
- Department of Radiation Oncology, King Abdullah Medical City, Makkah, Makkah, Saudi Arabia
| | - Muhammad Saeed
- Faculty of Medicine, Umm-Al-Qura University and Al-Noor Specialty Hospital, Makkah, Makkah, Saudi Arabia
| | - Khalid AlQuthami
- Department of Laboratory Medicine and Blood Bank, Al-Noor Specialty Hospital, Makkah, Makkah, Saudi Arabia
| | - Abdellatif Bouazzaoui
- Department of Medical Genetics and Science and Technology Unit, Umm-Al-Qura University, Makkah, Makkah, Saudi Arabia
| | - Mohammad Athar
- Department of Medical Genetics and Science and Technology Unit, Umm-Al-Qura University, Makkah, Makkah, Saudi Arabia
| | - Zainularifeen Abduljaleel
- Department of Medical Genetics and Science and Technology Unit, Umm-Al-Qura University, Makkah, Makkah, Saudi Arabia
| | - Faisal Al-Allaf
- Department of Medical Genetics and Science and Technology Unit, Umm-Al-Qura University, Makkah, Makkah, Saudi Arabia
| | - Mohiuddin Taher
- Department of Medical Genetics and Science and Technology Unit, Umm-Al-Qura University, Makkah, Makkah, Saudi Arabia
| |
Collapse
|