1
|
Long BY, Wang Y, Hao SH, Shi G. Molecular significance of circRNAs in malignant lymphoproliferative disorders: pathogenesis and novel biomarkers or therapeutic targets. Am J Cancer Res 2024; 14:4633-4651. [PMID: 39417189 PMCID: PMC11477815 DOI: 10.62347/kmwb5164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/22/2024] [Indexed: 10/19/2024] Open
Abstract
Recent studies have shown that circular RNAs (CircRNAs) have the novel functions and molecular mechanisms in the pathogenesis of malignant diseases. CircRNAs have been found to be associated with the occurrence and development of lymphoproliferative diseases, impacting on lymphocyte proliferation. This article provides a review of the pathogenesis of circRNAs in malignant lymphoproliferative disorders, focusing on conditions such as acute lymphocytic leukemia (ALL), chronic lymphocytic leukemia (CLL), and lymphoma. Additionally, it discusses the potential value of circRNAs as novel biomarkers or therapeutic targets in these disorders.
Collapse
Affiliation(s)
- Bo-Yang Long
- Department of Oncology and Hematology, The Second Hospital of Jilin UniversityChangchun, Jilin, China
| | - Yan Wang
- Department of Hematology, The Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantai, Shandong, China
| | - Shu-Hong Hao
- Department of Oncology and Hematology, The Second Hospital of Jilin UniversityChangchun, Jilin, China
| | - Guang Shi
- Department of Oncology and Hematology, The Second Hospital of Jilin UniversityChangchun, Jilin, China
| |
Collapse
|
2
|
Su X, Sun T, Li M, Xia Y, Li M, Wang D, Lu F, Ye J, Ji C. Lkb1 aggravates diffuse large B-cell lymphoma by promoting the function of Treg cells and immune escape. Lab Invest 2022; 20:378. [PMID: 35986288 PMCID: PMC9392310 DOI: 10.1186/s12967-022-03588-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/12/2022] [Indexed: 12/03/2022]
Abstract
Background Regulatory T cells (Tregs) induce immune responses and may contribute to immune escape in tumors. Accumulation of Tregs in tumors represents a critical barrier to anti-tumor immunity and immunotherapy. However, conflicting results describing the role of Tregs in lymphoma warrant further investigation. The precise features and mechanisms underlying the alteration in Tregs in diffuse large B-cell lymphoma (DLBCL) are not well understood yet. In this study, we analyzed the mechanism underlying the observed alterations in Tregs in DLBCL and examined the effect of Lkb1 expression on the immunosuppressive function of human Tregs. Methods Flow cytometry and immunofluorescence were used to analyze the proportion of Tregs and effector Tregs in the peripheral blood and lymph nodes of patients with DLBCL and control group. In vitro culture assays were used to analyze the immunosuppressive function of Tregs in the two groups. Transcriptome sequencing was performed to analyze the differentially expressed genes in the two groups, and the transcription level and protein expression of Lkb1 in the two groups were detected using RT-PCR and WES microprotein technology. Lentiviral vectors were constructed to explore the functional changes of Tregs with stable upregulation and downregulation of Lkb1. Finally, a humanized murine lymphoma model was established to study the function of Lkb1 in Tregs in the pathogenesis of DLBCL. Results The number of Tregs was found to be dramatically increased in peripheral blood and tumor tissue in DLBCL patients compared with that in healthy controls, and decreased after treatment. Tregs from DLBCL patients exhibited multiple enhanced functions, including increased inhibition of CD8+cytotoxic T cells (CTL) against tumor cells, enhanced suppression of CD8+CTL secretion of granular enzyme, and suppression of CD8+CTL degranulation. Lkb1 was found to be upregulated in Tregs of DLBCL patients. Furthermore, Lkb1 contributes to Treg immunosuppressive function in DLBCL by regulating the mevalonate pathway. Finally, deletion of Lkb1 in Tregs suppressed tumor growth and promoted anti-tumor immunity in a DLBCL murine model. Conclusions These findings confirmed that Lkb1-regulated Tregs are critical for immune escape in DLBCL, which emphasizes that Lkb1 is a potential target for the immunotherapy of DLBCL. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03588-0.
Collapse
|
3
|
Identification of Aging-Related Genes Associated with Prognostic Value and Immune Microenvironment Characteristics in Diffuse Large B-Cell Lymphoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3334522. [PMID: 35069971 PMCID: PMC8777392 DOI: 10.1155/2022/3334522] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/11/2021] [Accepted: 12/24/2021] [Indexed: 12/11/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a complex invasive tumour that occurs mainly among the elderly. Therefore, we analysed the relationship between ageing-related genes (AG) and DLBCL prognosis. Datasets related to DLBCL and human AGs were downloaded and screened from the Gene Expression Omnibus (GEO) database and HAGR website, respectively. LASSO and Cox regression were used to analyse AGs in the dataset and construct an AG predictive model related to DLBCL prognosis. Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes enrichment were used to analyse the function of the AG predictive model. The immune microenvironment and immune cell infiltration in DLBCL and their relationship with the AG prediction model were also analysed. After the analysis, 118 AGs were identified as genes related to DLBCL prognosis. Using the LASSO and Cox regression analyses, 9 AGs (PLAU, IL7R, MYC, S100B, IGFBP3, NR3C1, PTK2, TBP, and CLOCK) were used to construct an AG prognostic model. In the training and verification sets, this model exhibited excellent predictive ability for the prognosis of patients with DLBCL who have different clinical characteristics. Further analysis revealed that the high- and low-risk groups of the AG prognostic model were significantly correlated with immune cell infiltration and tumour microenvironment in DLBCL. Functional enrichment analysis also showed that the genes in the AG model were associated with immune-related functions and pathways. In conclusion, we constructed an AG model with a strong predictive function in DLBCL, with the ability to predict the prognosis of patients with different clinical features. This model provides new ideas and potential therapeutic targets for the study of the pathogenesis of DLBCL.
Collapse
|
4
|
Liu W, Lei L, Liu X, Ye S. CircRNA_OTUD7A upregulates FOXP1 expression to facilitate the progression of diffuse large B-cell lymphoma via acting as a sponge of miR-431-5p. Genes Genomics 2021; 43:653-667. [PMID: 33830472 DOI: 10.1007/s13258-021-01094-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/26/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND A growing number of studies have shown that circular RNA (circRNA) is an important regulator molecule in cancer progression, but it has been poorly studied in diffuse large b-cell lymphoma (DLBCL). OBJECTIVE This study aimed to explore the role of circ_OTUD7A in DLBCL. METHODS Relative expression levels of circ_OTUD7A, microRNA (miR)-431-5p and forkhead box P1 (FOXP1) were determined by quantitative real-time PCR (qRT-PCR). The proliferation of cells was elevated by colony formation assay and MTT assay. Western blot (WB) analysis was employed to measure the protein levels of proliferation marker, epithelial-mesenchymal transition (EMT) markers, cyclin marker, apoptosis markers and FOXP1. Moreover, the apoptosis, cell cycle process, migration and invasion of cells were detected using flow cytometry and transwell assay, respectively. In addition, the interaction between miR-431-5p and circ_OTUD7A or FOXP1 was confirmed by dual-luciferase reporter assay. RESULTS Circ_OTUD7A was highly expressed in DLBCL, and its knockdown could inhibit DLBCL cell proliferation and metastasis, while promote cell cycle arrest and apoptosis. Similarly, FOXP1 also was upregulated in DLBCL, and its silencing could restrain the progression of DLBCL cells. Further experiments revealed that circ_OTUD7A could sponge miR-431-5p and miR-431-5p could target FOXP1. MiR-431-5p inhibitor could reverse the suppressive effect of circ_OTUD7A silencing on DLBCL progression, and FOXP1 overexpression also could reverse the inhibitory effect of miR-431-5p mimic on DLBCL progression. CONCLUSION Circ_OTUD7A promoted the progression of DLBCL by regulating the miR-431-5p/FOXP1 axis, which suggested that circ_OTUD7A might function as an oncogene in DLBCL.
Collapse
Affiliation(s)
- Wei Liu
- Department of Hematology, The First Hospital of Yulin, Yulin, Shaanxi, China
| | - Lei Lei
- Clinical Laboratory, The First Hospital of Yulin, No. 59 Yuxi Avenue, Yulin, 719000, Shaanxi, China
| | - Xiaoying Liu
- Clinical Laboratory, The First Hospital of Yulin, No. 59 Yuxi Avenue, Yulin, 719000, Shaanxi, China
| | - Suiyan Ye
- Clinical Laboratory, The First Hospital of Yulin, No. 59 Yuxi Avenue, Yulin, 719000, Shaanxi, China.
| |
Collapse
|
5
|
Huang F, Peng Y, Ye Q, Chen J, Li Y, Liu S, Xu Y, Huang L. CILP2 overexpression correlates with tumor progression and poor prognosis in patients with colorectal cancer in The Cancer Genome Atlas (TCGA) study. World J Surg Oncol 2020; 18:274. [PMID: 33099318 PMCID: PMC7585680 DOI: 10.1186/s12957-020-02049-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/14/2020] [Indexed: 12/30/2022] Open
Abstract
Background Genetic alterations play an important role in the progression of colorectal cancer (CRC). Identifying new biomarkers to assess the prognosis of patients with CRC is critical. Cartilage intermediate layer protein 2 (CILP2) gene, screened from TCGA database by bioinformatics, may be closely related to the progression of CRC. CILP2 was barely reported with clinical features of tumors. Materials and methods Clinical information and RNA-seq data were derived from TCGA colorectal carcinoma cohort. CILP2 expression at mRNA level was estimated by bioinformatical analysis of TCGA cases. Tissue microarray (TMA) was constructed containing paraffin-embedded 64 pairs of CRC and matched adjacent normal tissues. The expression at the protein level was detected in 64 pairs of CRC and matched adjacent normal tissues by immunohistochemical analysis. CILP2 expression level and its clinical value were estimated by bioinformatical analysis with linear and logistic regression. Survival analysis was performed between high and low groups of CILP2 expression by Cox regression analysis, and the P value was calculated by the log-rank test. The Kaplan-Meier curves were tested by the log-rank test. Results CILP2 was statistically significantly higher expressed in the CRC tissues when compared with paired adjacent normal tissues in TCGA cohort (P < 0.001) and in the TMA cohort (P = 0.001). Also, CILP2 high expression was strongly correlated with T3/4 stage (P = 0.001), N1/2/3 stage (P = 0.005), M1 stage (P = 0.048), and higher clinical stage (UICC 2010 stage) (P < 0.001) in TCGA cohort, and also positively associated with T3/4 stage (P = 0.022) and higher clinical stage (UICC 2010 stage) (P = 0.03) in TMA cohort. Furthermore, CILP2 overexpression predicted poor prognosis and could be an independent prognostic factor (P = 0.003). Conclusion We revealed that CILP2 is associated with advanced stages and could play a role as an independent predictor of poor survival in CRC.
Collapse
Affiliation(s)
- Feng Huang
- Department of Gastrointestinal Tumor Surgery, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fujian Province Key Laboratory of Tumor Biotherapy, No. 420 Fuma Road, Fuzhou, ,350014, Fujian Province, People's Republic of China
| | - Yuanfei Peng
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, 200032, People's Republic of China
| | - Qing Ye
- Department of Gastrointestinal Tumor Surgery, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fujian Province Key Laboratory of Tumor Biotherapy, No. 420 Fuma Road, Fuzhou, ,350014, Fujian Province, People's Republic of China.
| | - Jinhu Chen
- Department of Gastrointestinal Tumor Surgery, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fujian Province Key Laboratory of Tumor Biotherapy, No. 420 Fuma Road, Fuzhou, ,350014, Fujian Province, People's Republic of China
| | - Yangming Li
- Department of Gastrointestinal Tumor Surgery, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fujian Province Key Laboratory of Tumor Biotherapy, No. 420 Fuma Road, Fuzhou, ,350014, Fujian Province, People's Republic of China
| | - Shengyuan Liu
- Department of Gastrointestinal Tumor Surgery, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fujian Province Key Laboratory of Tumor Biotherapy, No. 420 Fuma Road, Fuzhou, ,350014, Fujian Province, People's Republic of China
| | - Yangmei Xu
- Department of Gastrointestinal Tumor Surgery, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fujian Province Key Laboratory of Tumor Biotherapy, No. 420 Fuma Road, Fuzhou, ,350014, Fujian Province, People's Republic of China
| | - Lijie Huang
- Department of Gastrointestinal Tumor Surgery, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fujian Province Key Laboratory of Tumor Biotherapy, No. 420 Fuma Road, Fuzhou, ,350014, Fujian Province, People's Republic of China
| |
Collapse
|