1
|
Zabeti Touchaei A, Norollahi SE, Najafizadeh A, Babaei K, Bakhshalipour E, Vahidi S, Samadani AA. Therapeutic combinations of exosomes alongside cancer stem cells (CSCs) and of CSC-derived exosomes (CSCEXs) in cancer therapy. Cancer Cell Int 2024; 24:334. [PMID: 39369258 PMCID: PMC11453077 DOI: 10.1186/s12935-024-03514-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/22/2024] [Indexed: 10/07/2024] Open
Abstract
Exosomes which are membrane vesicles released by cells have gained significant interest in the field of cancer therapy as a novel means of intercellular communication. Their role in immune activation and their pathophysiological functions in cancer therapy have been recognized. Exosomes carry diverse bioactive components including proteins, mRNA, microRNAs, and bioactive lipids. These molecules have therapeutic potential in promoting tissue regeneration, supporting stem cell activity, preventing cell death, modulating immune responses, and promoting the growth of new blood vessels. However, the precise roles of exosomes derived from mesenchymal stem cells (MSCs) in the treatment of various cancers are still not fully understood. Consequently, cancer stem cells (CSCs) can self-renew and differentiate into various cell types. Understanding the mechanisms that sustain their persistence is crucial for developing effective therapies. Exosomes have recently gained interest as vehicles for intercellular communication between CSCs and non-CSCs, influencing cancer progression and the microenvironment. Research is ongoing on the utilization of exosomes derived from cancer stem cells (CSC-Exosome) for cancer treatment. The composition of extracellular vesicles is influenced by the specific type and condition of the cells from which they are secreted. Circulating exosomes contain stable RNA molecules such as mRNAs, microRNAs, and long non-coding RNAs (lncRNAs). In this review, we will explore the significance of exosomes and their diverse cellular combinations in the context of cancer therapy.
Collapse
Affiliation(s)
| | - Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Najafizadeh
- School of Paramedicine Sciences, Guilan University of Medical Sciences, Langarud, Iran
| | - Kosar Babaei
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Elahe Bakhshalipour
- School of Paramedicine Sciences, Guilan University of Medical Sciences, Langarud, Iran
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Ali Akbar Samadani
- Neuroscience Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
2
|
Fan H, Zhou D, Zhang X, Jiang M, Kong X, Xue T, Gao L, Lu D, Tao C, Wang L. hsa_circRNA_BECN1 acts as a ceRNA to promote polycystic ovary syndrome progression by sponging the miR-619-5p/Rab5b axis. Mol Hum Reprod 2023; 29:gaad036. [PMID: 37882757 DOI: 10.1093/molehr/gaad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/30/2023] [Indexed: 10/27/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disease that affects women of reproductive age. It is also a significant cause of infertility. Circular RNAs have been found to have a crucial role in the development and progression of reproductive system diseases. In this study, we focused on circ_BECN1 and aimed to investigate its role and mechanism in PCOS, providing a foundation for early diagnosis and treatment of this condition. Our findings revealed an upregulation of circ_BECN1 expression in the ovarian granulosa cells (GCs) of PCOS patients. Additionally, the silencing of circ_BECN1 resulted in inhibited proliferation and enhanced apoptosis of the human ovarian granulosa-like tumor cell line (KGN), therefore implicating circ_BECN1 in the cell cycle process. Through a dual-luciferase reporting assay, we determined that circ_BECN1 acts as a sponge for miR-619-5p and that Rab5b is the target gene of miR-619-5p. Moreover, the expression of Rab5b was found to be upregulated in the ovarian tissue of PCOS patients. Knocking down circ_BECN1 resulted in decreased Rab5b expression, which was then restored by using a miR-619-5p inhibitor. Additionally, rescue experiments demonstrated that overexpressing Rab5b reversed the effects of circ_BECN1 knockdown on cell proliferation and apoptosis in KGN cells. In summary, our findings indicate that circ_BECN1 is upregulated in PCOS GCs and promotes cell growth and cell cycle progression, and reduces cell apoptosis by modulating the miR-619-5p/Rab5b axis. Therefore, circ_BECN1 may serve as a potential therapeutic target for PCOS treatment.
Collapse
Affiliation(s)
- Hairui Fan
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Dongjie Zhou
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Xiaomei Zhang
- California Excellent Fertility (CEF), Anaheim, CA, USA
| | - Min Jiang
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| | - Xiang Kong
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| | - Tongmin Xue
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| | - Lingling Gao
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| | - Dan Lu
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| | - Chenyue Tao
- School of Nursing School of Public Health, Yangzhou University, Yangzhou, China
| | - Liping Wang
- Department of Biobank, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Yu Y, Dong Y, Deng B, Yang T. IncRNA MIAT Accelerates Keloid Formation by miR-411-5p/JAG1 Axis. Crit Rev Eukaryot Gene Expr 2023; 33:81-92. [PMID: 36734859 DOI: 10.1615/critreveukaryotgeneexpr.2022044734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The long non-coding RNA (lncRNA) myocardial infarction-associated transcript (MIAT) regulates the biological functions of many kinds of cells. The aim of this study is to explore the mechanism of MIAT and how it affects keloid progression. The expressions of MIAT, JAG1, and miR-411-5p in keloid tissues and keloid fibroblasts (KEL FIBs) were quantified by conducting Western blot and quantitative reverse transcription polymerase chain reaction analyses. The influences of MIAT, JAG1, and miR-411-5p on the abilities of KEL FIBs to proliferate, migrate, and invade were assessed by means of the CCK-8, wound healing, and Transwell experiments. To determine the binding relationship among MIAT, JAG1, and miR-411-5p, we performed luciferase reporter and RIP experiments. In keloid tissues and KEL FIBs, MIAT and JAG1 were upregulated while miR-411-5p was downregulated. Knocking-down MIAT or JAG1 significantly inhibited proliferation, migration and invasion. On the contrary, suppressing miR-411-5p expression produced an opposite effect. With regard to mechanisms, MIAT sponged miR-411-5p, which targeted JAG1. MIAT accelerates keloid formation by modulating the miR-411-5p/JAG1 axis.
Collapse
Affiliation(s)
- Yingyan Yu
- Department of Dermatology, University of Electronic Science and Technology of China Hospital, Chengdu 611731, Sichuan, China
| | - Yujie Dong
- Department of Dermatology, Kun Ming Li Du Medical Beauty Hospital, Kunming 650000, Yunnan, China
| | - Benyuan Deng
- Department of General Surgery, West China Health Care Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Ting Yang
- Department of Plastic Surgery and Cosmetic Dermatology, West China School/Hospital of Stomatology Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
4
|
Wu QW, Cao RF, Xia JF, Ni JC, Zheng CH, Su YS. Extra Trees Method for Predicting LncRNA-Disease Association Based On Multi-Layer Graph Embedding Aggregation. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:3171-3178. [PMID: 34529571 DOI: 10.1109/tcbb.2021.3113122] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lots of experimental studies have revealed the significant associations between lncRNAs and diseases. Identifying accurate associations will provide a new perspective for disease therapy. Calculation-based methods have been developed to solve these problems, but these methods have some limitations. In this paper, we proposed an accurate method, named MLGCNET, to discover potential lncRNA-disease associations. Firstly, we reconstructed similarity networks for both lncRNAs and diseases using top k similar information, and constructed a lncRNA-disease heterogeneous network (LDN). Then, we applied Multi-Layer Graph Convolutional Network on LDN to obtain latent feature representations of nodes. Finally, the Extra Trees was used to calculate the probability of association between disease and lncRNA. The results of extensive 5-fold cross-validation experiments show that MLGCNET has superior prediction performance compared to the state-of-the-art methods. Case studies confirm the performance of our model on specific diseases. All the experiment results prove the effectiveness and practicality of MLGCNET in predicting potential lncRNA-disease associations.
Collapse
|
5
|
Feng YN, Li BY, Wang K, Li XX, Zhang L, Dong XZ. Epithelial-mesenchymal transition-related long noncoding RNAs in gastric carcinoma. Front Mol Biosci 2022; 9:977280. [PMCID: PMC9605205 DOI: 10.3389/fmolb.2022.977280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
As an evolutionarily phenotypic conversion program, the epithelial-mesenchymal transition (EMT) has been implicated in tumour deterioration and has facilitated the metastatic ability of cancer cells via enhancing migration and invasion. Gastric cancer (GC) remains a frequently diagnosed non-skin malignancy globally. Most GC-associated mortality can be attributed to metastasis. Recent studies have shown that EMT-related long non-coding RNAs (lncRNAs) play a critical role in GC progression and GC cell motility. In addition, lncRNAs are associated with EMT-related transcription factors and signalling pathways. In the present review, we comprehensively described the EMT-inducing lncRNA molecular mechanisms and functional perspectives of EMT-inducing lncRNAs in GC progression. Taken together, the statements of this review provided a clinical implementation in identifying lncRNAs as potential therapeutic targets for advanced GC.
Collapse
|
6
|
Silencing of Long Noncoding RNA MIAT Contributes to Relieving Sepsis-Induced Myocardial Depression via the NF-κB Axis. J Surg Res 2022; 278:282-292. [PMID: 35636204 DOI: 10.1016/j.jss.2022.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/22/2022] [Accepted: 03/29/2022] [Indexed: 11/24/2022]
|
7
|
Feng T, Song C, Wu Z, Zhao K, Ye S. Role of lncRNA MIAT/miR-361-3p/CCAR2 in prostate cancer cells. Open Med (Wars) 2022; 17:1528-1537. [PMID: 36245704 PMCID: PMC9520331 DOI: 10.1515/med-2021-0380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/14/2021] [Accepted: 10/05/2021] [Indexed: 11/15/2022] Open
Abstract
The study was aimed to investigate the role and mechanism of long non-coding RNAs (lncRNA) myocardial infarction-associated transcript (MIAT) in prostate cancer. The relationships between lncRNA MIAT and miR-361-3p, miR-361-3p and cell cycle and apoptosis regulator 2 (CCAR2) were predicted by StarBase and TargetScan, and verified by dual-luciferase reporter assay and RNA pull-down assay. Quantitative real-time PCR assay was performed to detect the mRNA expression of lncRNA MIAT, miR-361-3p, CCAR2, Bax, and Bcl-2 in the prostate cancer tissues or cells. The protein levels of CCAR2, Bax, and Bcl-2 were detected by Western blot analysis. The cell viability and apoptosis were detected by MTT assay and Flow cytometry analysis, respectively. lncRNA MIAT was upregulated, while miR-361 was downregulated in the prostate cancer tissues and Du145 cells. lncRNA MIAT negatively regulated miR-361-3p expression in Du145 cells. Downregulating lncRNA MIAT decreased the cell viability, induced the cell apoptosis, increased Bax expression, and decreased Bcl-2 expression in Du145 cells, while the effects were reversed by downregulating miR-361-3p or CCAR2 upregulation. Moreover, CCAR2 upregulation reversed the effects of miR-361-3p upregulation on Du145 cell viability and apoptosis. In conclusion, lncRNA MIAT participated in prostate cancer by regulating cell proliferation and apoptosis via miR-361-3p/CCAR2 axis.
Collapse
Affiliation(s)
- Tao Feng
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Chunyu Song
- Department of Endocrine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Zhiyong Wu
- Department of Nail and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Ke Zhao
- Department of Thoracic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Wuhan, 430014, China
| | - Shenglan Ye
- Department of Respiratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Wuhan, 430014, China
| |
Collapse
|
8
|
Ashrafizadeh M, Rabiee N, Kumar AP, Sethi G, Zarrabi A, Wang Y. Long noncoding RNAs (lncRNAs) in pancreatic cancer progression. Drug Discov Today 2022; 27:2181-2198. [PMID: 35589014 DOI: 10.1016/j.drudis.2022.05.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/18/2022] [Accepted: 05/12/2022] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) are RNA molecules involved in gene regulation at transcriptional, post-transcriptional, and epigenetic levels. LncRNAs participate in regulating apoptosis and autophagy in pancreatic cancer (PCa) and can promote and/or decrease the proliferation rate of tumor cells. The metastasis of PCa cells is tightly regulated by lncRNAs and they can affect the mechanism of epithelial-mesenchymal transition (EMT) to modulate metastasis. The drug resistance of PCa cells, especially to gemcitabine, can be affected by lncRNAs. In addition, lncRNAs enriched in exosomes can be transferred among tumor cells to regulate their proliferation and metastasis. Antitumor compounds, such as curcumin and ginsenosides, can regulate lncRNA expression in PCa therapy. As we discuss here, the expression level of lncRNAs can be considered as both a diagnostic and prognostic tool in patients with PCa.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey.
| | - Navid Rabiee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea; School of Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer 34396, Istanbul, Turkey.
| | - Yuzhuo Wang
- Department of Urological Sciences, Vancouver, BC V6H3Z6, Canada; Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada.
| |
Collapse
|
9
|
Li M, Cai O, Yu Y, Tan S. Paeonol inhibits the malignancy of Apatinib-resistant gastric cancer cells via LINC00665/miR-665/MAPK1 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153903. [PMID: 35026514 DOI: 10.1016/j.phymed.2021.153903] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Paeonol is the extractive of Paeonia suffruticosa Andr and is reported to reverse the chemotherapy resistance of cancer cells. The present study explores the role of paeonol in inhibiting the malignant biological behaviors of Apatinib-resistant gastric cancer (GC) cells. METHODS The Traditional Chinese Medicine Systems Pharmacology (TCMSP) database was adopted to screen the target genes of paeonol, and the STRING database was employed to construct a protein-protein interaction (PPI) network. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the target genes was performed employing DAVID online database. The expressions of these target genes in GC tissues and para-cancerous tissues were analyzed with GEPIA database, and GEO datasets (GSE109476 and GSE93415) were utilized to analyze differentially expressed lncRNAs and miRNAs in GC tissues and para-cancerous tissues. The expressions of LINC00665, miR-665 and MAPK1 mRNA in Apatinib-resistant GC cells were detected through quantitative real-time polymerase chain reaction (qRT-PCR). Cell counting kit-8 (CCK-8) assay was conducted to detect cell proliferation; Transwell assays were employed to detect cell migration and invasion, and TdT-mediated dUTP nick end labeling (TUNEL) assay was utilized to detect cell apoptosis. Dual-luciferase reporter gene assay was performed to detect the binding relationships between miR-665 and LINC00665, as well as between miR-665 and MAPK1 mRNA. The expressions of MAPK1 protein and glycolysis-associated proteins (GLUT1, LDHB and HK2) were detected by Western blot. Additionally, a tumor xenograft mice model was constructed to evaluate the effects of paeonol on lung metastasis. RESULTS Paeonol could inhibit the proliferation, migration, invasion and glycolysis, and promote the apoptosis of Apatinib-resistant GC cells. TCMSP database suggested that Paeonol had 17 target genes, and 17 target genes were mainly enriched in signaling pathways related to apoptosis, glucose and lipid metabolism, etc.; GEPIA database suggests that MAPK1, among the 17 target genes, was markedly elevated in GC tissues. Paeonol could decrease LINC00665 and MAPK1 expressions in GC cells but increase the expression of miR-665. LINC00665 overexpression, MAPK1 overexpression or inhibition of miR-665 could abolish the inhibitive effects of paeonol on the malignant phenotypes of Apatinib-resistant GC cells. miR-665 is verified as an upstream regulator of MAPK1 and a target of LINC00665. Additionally, paeonol could significantly inhibit the lung metastasis in the tumor xenograft mice model. CONCLUSIONS Paeonol can inhibit the malignancy of Apatinib-resistant GC cells through LINC00665/miR-665/MAPK1 axis. For the first time, our study imply that paeonol may be a potential drug to reverse Apatinib-resistant of GC cells.
Collapse
Affiliation(s)
- Ming Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Zhangzhidong Road No.99, Wuchang District, Wuhan 430060, Hubei, China; Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Zhangzhidong Road No.99, Wuchang District, Wuhan 430060, Hubei, China
| | - Ou Cai
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Zhangzhidong Road No.99, Wuchang District, Wuhan 430060, Hubei, China; Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Zhangzhidong Road No.99, Wuchang District, Wuhan 430060, Hubei, China
| | - Yuanjie Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Zhangzhidong Road No.99, Wuchang District, Wuhan 430060, Hubei, China; Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Zhangzhidong Road No.99, Wuchang District, Wuhan 430060, Hubei, China.
| | - Shiyun Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Zhangzhidong Road No.99, Wuchang District, Wuhan 430060, Hubei, China; Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Zhangzhidong Road No.99, Wuchang District, Wuhan 430060, Hubei, China
| |
Collapse
|
10
|
Liu Y, Chen Q, Zhu Y, Wang T, Ye L, Han L, Yao Z, Yang Z. Non-coding RNAs in necroptosis, pyroptosis and ferroptosis in cancer metastasis. Cell Death Discov 2021; 7:210. [PMID: 34381023 PMCID: PMC8358062 DOI: 10.1038/s41420-021-00596-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/07/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Distant metastasis is the main cause of death for cancer patients. Recently, the newly discovered programmed cell death includes necroptosis, pyroptosis, and ferroptosis, which possesses an important role in the process of tumor metastasis. At the same time, it is widely reported that non-coding RNA precisely regulates programmed death and tumor metastasis. In the present review, we summarize the function and role of necroptosis, pyrolysis, and ferroptosis involving in cancer metastasis, as well as the regulatory factors, including non-coding RNAs, of necroptosis, pyroptosis, and ferroptosis in the process of tumor metastasis.
Collapse
Affiliation(s)
- Yan Liu
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Qiuyun Chen
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Yanan Zhu
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Tiying Wang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Lijuan Ye
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Lei Han
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Zhihong Yao
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Zuozhang Yang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China.
| |
Collapse
|
11
|
Rao J, Shao L, Lin M, Huang J, Fan L. LncRNA UCA1 Accelerates the Progression of Ulcerative Colitis via Mediating the miR-331-3p/BRD4 Axis. Int J Gen Med 2021; 14:2427-2435. [PMID: 34140798 PMCID: PMC8203302 DOI: 10.2147/ijgm.s304837] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/06/2021] [Indexed: 12/30/2022] Open
Abstract
Background Ulcerative colitis (UC) has become one of the fastest-growing severe diseases worldwide with high morbidity. This research aimed to explore the function of lncRNA UCA1 in UC progression. Methods RT-qPCR analysis was used to examine the expression of UCA1 level in colonic mucosa tissues of UC patients. Then, fetal human cells (FHCs) were stimulated by LPS to induce inflammatory injury. CCK-8, flow cytometry and ELISA were adopted to determine the influence of UCA1 depletion on cell viability, apoptosis and pro-inflammatory factors levels in LPS-induced FHCs. The interaction between UCA1 and miR-331-3p or BRD4 was confirmed by luciferase reporter assay. The expressions of key factors involved in NF-κB pathway were assessed by Western blotting. Results LncRNA UCA1 level was elevated in colonic mucosa tissues of UC patients. LPS stimulation restrained cell viability and promoted the apoptosis and inflammatory factors levels, thus inducing FHCs inflammatory injury, while these effects were partially abolished by UCA1 knockdown. Moreover, it was found that UCA1 silence improved LPS-triggered cell injury via miR-331-3p. In addition, BRD4 was directly targeted by miR-331-3p, and BRD4 deficiency neutralized the effects of miR-331-3p repression on LPS-triggered injury in LPS-treated FHCs. Conclusion Our data determined that UCA1 knockdown attenuated UC development via targeting the miR-331-3p/BRD4/NF-κB pathway.
Collapse
Affiliation(s)
- Jun Rao
- Department of Gastroenterology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, People's Republic of China
| | - Lihua Shao
- Department of Gastroenterology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, People's Republic of China
| | - Min Lin
- Department of Gastroenterology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, People's Republic of China
| | - Jin Huang
- Department of Gastroenterology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, People's Republic of China
| | - Li Fan
- Department of Gastroenterology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, People's Republic of China
| |
Collapse
|
12
|
He C, Fu Y, Chen Y, Li X. Long non-coding RNA SNHG8 promotes autophagy as a ceRNA to upregulate ATG7 by sponging microRNA-588 in colorectal cancer. Oncol Lett 2021; 22:577. [PMID: 34122628 DOI: 10.3892/ol.2021.12838] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/04/2021] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. Long non-coding RNA (lncRNA) small nucleolar RNA host gene 8 (SNHG8) acts as an oncogene in different types of cancer, including prostate, breast and ovarian cancer. SNHG8 promotes the tumorigenesis of CRC; however, its underlying molecular mechanism remains unclear. The present study aimed to explore the mechanism of SNHG8 on CRC development via various assays, including western blot, pull-down, PCR and immunofluorescence assays. The results of the present study demonstrated that SNHG8 expression was substantially upregulated in primary tumor tissues from The Cancer Genome Atlas dataset. Western blot and immunofluorescence analyses demonstrated that SNHG8 facilitated cell proliferation and autophagy in CRC cells. Notably, the function of SNHG8 in enhancing autophagy was dependent on autophagy-related gene 7 (ATG7). In addition, western blot analysis indicated that the effect of SNHG8 on autophagy in CRC cells was dependent on the miR-588/ATG7 axis. Taken together, the results of the present study suggest that SNHG8 promotes autophagy in CRC cells.
Collapse
Affiliation(s)
- Chi He
- Department of General Surgery, Shenyang Anorectal Hospital, Shenyang, Liaoning 110054, P.R. China
| | - Yi Fu
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Yan Chen
- Department of General Surgery, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163000, P.R. China
| | - Xiquan Li
- Department of General Surgery, Shenyang Anorectal Hospital, Shenyang, Liaoning 110054, P.R. China
| |
Collapse
|