1
|
Rong H, Hu Y, Wei W. Curcumol ameliorates diabetic retinopathy via modulating fat mass and obesity-associated protein-demethylated MAF transcription factor G antisense RNA 1. World J Diabetes 2025; 16:97201. [PMID: 40236860 PMCID: PMC11947913 DOI: 10.4239/wjd.v16.i4.97201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/28/2024] [Accepted: 01/06/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is a major microvascular complication of diabetes mellitus, leading to significant visual impairment and blindness among adults. Current treatment options are limited, making it essential to explore novel therapeutic strategies. Curcumol, a sesquiterpenoid derived from traditional Chinese medicine, has shown anti-inflammatory and anti-cancer properties, but its potential role in DR remains unclear. AIM To investigate the therapeutic effects of curcumol on the progression of DR and to elucidate the underlying molecular mechanisms, particularly its impact on the fat mass and obesity-associated (FTO) protein and the long non-coding RNA (lncRNA) MAF transcription factor G antisense RNA 1 (MAFG-AS1). METHODS A streptozotocin-induced mouse model of DR was established, followed by treatment with curcumol. Retinal damage and inflammation were evaluated through histological analysis and molecular assays. Human retinal vascular endothelial cells were exposed to high glucose conditions to simulate diabetic environments in vitro. Cell proliferation, migration, and inflammation markers were assessed in curcumol-treated cells. LncRNA microarray analysis identified key molecules regulated by curcumol, and further experiments were conducted to confirm the involvement of FTO and MAFG-AS1 in the progression of DR. RESULTS Curcumol treatment significantly reduced blood glucose levels and alleviated retinal damage in streptozotocin-induced DR mouse models. In high-glucose-treated human retinal vascular endothelial cells, curcumol inhibited cell proliferation, migration, and inflammatory responses. LncRNA microarray analysis identified MAFG-AS1 as the most upregulated lncRNA following curcumol treatment. Mechanistically, FTO demethylated MAFG-AS1, stabilizing its expression. Rescue experiments demonstrated that the protective effects of curcumol against DR were mediated through the FTO/MAFG-AS1 signaling pathway. CONCLUSION Curcumol ameliorates the progression of DR by modulating the FTO/MAFG-AS1 axis, providing a novel therapeutic pathway for the treatment of DR. These findings suggest that curcumol-based therapies could offer a promising alternative for managing this debilitating complication of diabetes.
Collapse
Affiliation(s)
- Han Rong
- Department of Ophthalmology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- Department of Ophthalmology, Huai’an Maternal and Child Health Care Hospital Affiliated to Yangzhou University, Huai’an 223002, Jiangsu Province, China
| | - Yu Hu
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University, The Second People’s Hospital of Huai’an, Huai’an 223002, Jiangsu Province, China
- First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Wei Wei
- Department of Ophthalmology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
2
|
Wang X, Li J, Nong J, Deng X, Chen Y, Wu P, Huang X. Curcumol Attenuates Portal Hypertension and Collateral Shunting Via Inhibition of Extrahepatic Angiogenesis in Cirrhotic Rats. Biochem Genet 2025; 63:281-297. [PMID: 38438779 DOI: 10.1007/s10528-024-10684-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 01/03/2024] [Indexed: 03/06/2024]
Abstract
Liver cirrhosis can cause disturbances in blood circulation in the liver, resulting in impaired portal blood flow and ultimately increasing portal venous pressure. Portal hypertension induces portal-systemic collateral formation and fatal complications. Extrahepatic angiogenesis plays a crucial role in the development of portal hypertension. Curcumol is a sesquiterpenoid derived from the rhizome of Curcumae Rhizoma and has been confirmed to alleviate liver fibrosis by inhibiting angiogenesis. Therefore, our study was designed to explore the effects of curcumol on extrahepatic angiogenesis and portal hypertension. To induce cirrhosis, Sprague Dawley rats underwent bile duct ligation (BDL) surgery. Rats received oral administration with curcumol (30 mg/kg/d) or vehicle (distilled water) starting on day 15 following surgery, when BDL-induced liver fibrosis had developed. The effect of curcumol was assessed on day 28, which is the typical time of BDL-induced cirrhosis. The results showed that curcumol markedly reduced portal pressure in cirrhotic rats. Curcumol inhibited abnormal splanchnic inflow, mitigated liver injury, improved liver fibrosis, and attenuated portal-systemic collateral shunting in cirrhotic rats. These protective effects were partially attributed to the inhibition on mesenteric angiogenesis by curcumol. Mechanically, curcumol partially reversed the BDL-induced activation of the JAK2/STAT3 signaling pathway in cirrhotic rats. Collectively, curcumol attenuates portal hypertension in liver cirrhosis by suppressing extrahepatic angiogenesis through inhibiting the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Xinyuan Wang
- Development of Planning Division, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Juan Li
- Development of Pediatric, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Jiao Nong
- Development of Education, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Xin Deng
- Basic Medical College, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Yiping Chen
- Development of Emergency, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No.28 Wangyuan Road, Qingxiu District, Nanning, 530000, China
| | - Peibin Wu
- Achievement Transformation and Social Service Office, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Xiabing Huang
- Development of Emergency, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No.28 Wangyuan Road, Qingxiu District, Nanning, 530000, China.
| |
Collapse
|
3
|
Zhai S, Wang R, Wang J, Xu X, Niu L, Guo M, Zhang Y, Shi Y, Tang X. Curcumol: a review of its pharmacology, pharmacokinetics, drug delivery systems, structure-activity relationships, and potential applications. Inflammopharmacology 2024; 32:1659-1704. [PMID: 38520574 DOI: 10.1007/s10787-024-01447-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/16/2024] [Indexed: 03/25/2024]
Abstract
Curcumol (Cur), a guaiane-type sesquiterpenoid hemiketal, is an important and representative bioactive component extracted from the essential oil of the rhizomes of Curcumae rhizoma which is also known as "Ezhu" in traditional Chinese medicine. Recently, Cur has received considerable attention from the research community due to its favorable pharmacological activities, including anti-cancer, hepatoprotective, anti-inflammatory, anti-viral, anti-convulsant, and other activities, and has also exerted therapeutic effect on various cancers, liver diseases, inflammatory diseases, and infectious diseases. Pharmacokinetic studies have shown that Cur is rapidly distributed in almost all organs of rats after intragastric administration with high concentrations in the small intestine and colon. Several studies focusing on structure-activity relationship (SAR) of Cur have shown that some Cur derivatives, chemically modified at C-8 or C-14, exhibited more potent anti-cancer activity and lower toxicity than Cur itself. This review aims to comprehensively summarize the latest advances in the pharmacological and pharmacokinetic properties of Cur in the last decade with a focus on its anti-cancer and hepatoprotective potentials, as well as the research progress in drug delivery system and potential applications of Cur to date, to provide researchers with the latest information, to highlighted the limitations of relevant research at the current stage and the aspects that should be addressed in future research. Our results indicate that Cur and its derivatives could serve as potential novel agents for the treatment of a variety of diseases, particularly cancer and liver diseases.
Collapse
Affiliation(s)
- Sicheng Zhai
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Tongyi Avenue, Xi Xian New District, Xianyang City, 712046, Shaanxi Province, People's Republic of China
| | - Rui Wang
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Tongyi Avenue, Xi Xian New District, Xianyang City, 712046, Shaanxi Province, People's Republic of China
| | - Jingyuan Wang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, School of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Avenue, Xi Xian New District, Xianyang City, 712046, Shaanxi Province, People's Republic of China
| | - Xiangdong Xu
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Tongyi Avenue, Xi Xian New District, Xianyang City, 712046, Shaanxi Province, People's Republic of China
| | - Le Niu
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Tongyi Avenue, Xi Xian New District, Xianyang City, 712046, Shaanxi Province, People's Republic of China
| | - Min Guo
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Tongyi Avenue, Xi Xian New District, Xianyang City, 712046, Shaanxi Province, People's Republic of China
| | - Yongling Zhang
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Tongyi Avenue, Xi Xian New District, Xianyang City, 712046, Shaanxi Province, People's Republic of China
| | - Yajun Shi
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, School of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Avenue, Xi Xian New District, Xianyang City, 712046, Shaanxi Province, People's Republic of China.
| | - Xuexue Tang
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Tongyi Avenue, Xi Xian New District, Xianyang City, 712046, Shaanxi Province, People's Republic of China.
| |
Collapse
|
4
|
Wu Y, Tang H, Liao Q, Tu Y, Fang S, He J, Cui S. Curcumol Inhibits the Progression of Hepatocellular Carcinoma by Regulating the Expression of hsa_circ_0028861. Cancer Biother Radiopharm 2024; 39:203-210. [PMID: 38181186 DOI: 10.1089/cbr.2023.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024] Open
Abstract
Background: Hsa_circ_0028861, a newly discovered serum exosome circular RNA (circRNA), is greatly reduced in the serum of patients with hepatocellular carcinoma (HCC). However, the exact role of hsa_circ_0028861 in the progression of liver cancer is still unknown. Materials and Methods: Thirty patients with HCC were enrolled in this study. Hsa_circ_0028861 expression was explored via real-time polymerase chain reaction (PCR) assay. The influence of curcumol on HCC cells were tested using CCK-8 assay, 5-ethynyl-2'-deoxyuridine (EdU) staining, cell wound healing assay, and migration assay, respectively. The related mechanism was determined by Western blot. A xenograft tumor model was constructed, and mice were administrated with curcumol. Results: The expression of hsa_circ_0028861 in tumor tissues was elevated of patients with HCC and in HCC cells. Curcumol treatment decreased the expression of hsa_circ_0028861 in HCC cells. Curcumol treatment could largely suppress the viability, proliferation, and migration of HCC cells by reducing hsa_circ_0028861 expression and mediating the epithelial-mesenchymal transition (EMT) process. Curcumol also effectively restrained tumor growth in the HCC mice model. Conclusions: Curcumol exerted an inhibitory role in HCC progression by downregulating hsa_circ_0028861 expression and mediating the EMT process, which provides evidence for screening new therapeutic targets and drug therapies for HCC treatment.
Collapse
Affiliation(s)
- Yinbing Wu
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Huafei Tang
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Quanxing Liao
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yinuo Tu
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Shuxian Fang
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jinfu He
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Shuzhong Cui
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
5
|
Zhou Y, Moon JH, Kim JT, Qiu S, Lee SB, Park HJ, Son MJ, Lee GY, Kwon JW, Park SH, Auh JH, Lee HJ. Curcumol metabolized by rat liver S9 fraction and orally administered in mouse suppressed the proliferation of colon cancer in vitro and in vivo. Food Sci Biotechnol 2024; 33:171-180. [PMID: 38186621 PMCID: PMC10767046 DOI: 10.1007/s10068-023-01321-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 01/09/2024] Open
Abstract
Following 3R (reduction, refinement, and replacement) principles, we employed the rat liver S9 fraction to mimic liver metabolism of curcumol having high in vitro IC50 on cancer cells. In HCT116 and HT29 colon cancer cells, the metabolites of curcumol by S9 fraction exerted more enhanced activity in inducing cell cycle arrest and apoptosis via regulating the expression of cyclin D1, CDK1, p21, PARP and Bcl-2 than curcumol. In addition, oral administration of curcumol at 4 mg/kg BW significantly suppressed the development of colon tumor induced by azoxymethane/dextran sulfate sodium, and induced cell cycle arrest and apoptosis in tumor tissues. In mass analysis, curcumenol and curzerene were identified as the metabolites of curcumol by S9 fraction metabolism. Taken together, curcumol metabolites showed the enhanced suppressive effect on colon cancer, suggesting that S9 fraction can be considered as simple, fast, and bio-mimicking platform for the screening of chemical libraries on different chronic diseases.
Collapse
Affiliation(s)
- Yimeng Zhou
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 South Korea
| | - Ji Hyun Moon
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 South Korea
| | - Jin Tae Kim
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 South Korea
| | - Shuai Qiu
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 South Korea
| | - Seung Beom Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 South Korea
| | - Ho Jin Park
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 South Korea
| | - Moon Jeong Son
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 South Korea
| | - Ga Yeon Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 South Korea
| | - Jung Won Kwon
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 South Korea
| | - So-Hyeon Park
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 South Korea
| | - Joong-Hyuck Auh
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 South Korea
| | - Hong Jin Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 South Korea
| |
Collapse
|
6
|
孙 江, 邢 家, 谭 茹, 钱 颖, 田 男. [Curcumol reverses temozolomide resistance in glioma cells by regulating the UTX/MGMT axis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1697-1705. [PMID: 37933645 PMCID: PMC10630207 DOI: 10.12122/j.issn.1673-4254.2023.10.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Indexed: 11/08/2023]
Abstract
OBJECTIVE To explore the mechanism through which curcumol reverses primary drug resistance in glioma cells. METHODS The inhibitory effect of 10, 20, and 40 μg/mL curcumol were observed in human glioma cell lines A172 and U251. UTX-overexpressing glioma cells constructed by lentiviral transfection were treated with curcumol (40 μg/mL), temozolomide (TMZ; 10 μg/mL), or both, and the changes in cell viability, clone formation capacity and apoptosis were assessed using MTT assay, cell clone formation experiment, and flow cytometry; UTX activity in the cells was determined using a UTX detection kit, and the enrichment of UTX and H3K27me3 in the MGMT promoter region was detected with ChiP-qPCR. The protein expressions in glioma cells were detected using Western blotting and immunohistochemistry. In a nude mouse model bearing glioma xenografts, the effects of curcumol (20 mg/kg), TMZ (20 mg/kg) and their combination on tumor growth and expressions of UTX, H3K27me3 and MGMT were evaluated. RESULTS Curcumol significantly inhibited the proliferation (P<0.05) and promoted apoptosis of cultured glioma cells (P<0.01). Curcumol, but not TMZ, produced significant inhibitory effect on tumor growth in the tumor-bearing mice (P<0.01). Curcumol significantly inhibited UTX activity and increased the expression level of H3K27me3 protein in the glioma cells. UTX overexpression obviously decreased H3K27me3 protein expression and reversed the effects of curcumol on glioma cell proliferation and apoptosis (P<0.01). Curcumol reduced the enrichment of UTX and H3K27me3 in the MGMT promoter region (P<0.05) and decreased MGMT protein expression, which was reversed by UTX overexpression. In both the in vivo and in vitro experiments, curcumol combined with TMZ significantly increased H3K27me3 protein expression in the glioma cells, reduced the expression of its downstream target gene MGMT, and enhanced TMZ sensitivity of the glioma cells. CONCLUSION Curcumol can enhance glioma cell sensitivity to TMZ by regulating the UTX/MGMT axis.
Collapse
Affiliation(s)
- 江川 孙
- />浙江中医药大学生命科学学院,浙江 杭州 310053School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - 家恒 邢
- />浙江中医药大学生命科学学院,浙江 杭州 310053School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - 茹雪 谭
- />浙江中医药大学生命科学学院,浙江 杭州 310053School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - 颖 钱
- />浙江中医药大学生命科学学院,浙江 杭州 310053School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - 男 田
- />浙江中医药大学生命科学学院,浙江 杭州 310053School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
7
|
Zhu X, Quan YY, Yin ZJ, Li M, Wang T, Zheng LY, Feng SQ, Zhao JN, Li L. Sources, morphology, phytochemistry, pharmacology of Curcumae Longae Rhizoma, Curcumae Radix, and Curcumae Rhizoma: a review of the literature. Front Pharmacol 2023; 14:1229963. [PMID: 37719857 PMCID: PMC10500466 DOI: 10.3389/fphar.2023.1229963] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Curcumae Longae Rhizoma (turmeric), Curcumae Radix and Curcumae Rhizoma are derived from the Curcuma species, and have gradually become three of the most commonly used medicinal herbs in China due to their different origins, processing methods and medicinal part. These three herbs have certain similarities in morphology, chemical composition, and pharmacological effects. All three of these herbs contain curcuminoids and volatile oil compounds, which exhibit anti-inflammatory, anti-tumor, antioxidant, and neuroprotective properties, although modern clinical applications have their own requirements. At present, there is no systematic guidelines for the clinical application of these three of Curcuma species; consequently, there is a high risk of unwanted phenomena associated with the mixing and indiscriminate use of these herbs. In this review, we focus predominantly on morphology, chemical composition, and the pharmacological activity of these three Curcuma herbs and summarize the current status of research in this field. Our goal is to provide a better understanding of clinical value of these Curcuma species so that we can provide reference guidelines for their further development, utilization and rational clinical application.
Collapse
Affiliation(s)
- Xin Zhu
- Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Biological Assay Key Laboratory of State Administration of Traditional Chinese Medicine for Traditional Chinese Medicine Quality, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Engineering Research Center for Formation Principle and Quality Evaluation of Genuine Medicinal Materials in Sichuan Province, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu, China
| | - Yun-yun Quan
- Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Biological Assay Key Laboratory of State Administration of Traditional Chinese Medicine for Traditional Chinese Medicine Quality, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Engineering Research Center for Formation Principle and Quality Evaluation of Genuine Medicinal Materials in Sichuan Province, Chengdu, China
| | - Zhu-jun Yin
- Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Biological Assay Key Laboratory of State Administration of Traditional Chinese Medicine for Traditional Chinese Medicine Quality, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Engineering Research Center for Formation Principle and Quality Evaluation of Genuine Medicinal Materials in Sichuan Province, Chengdu, China
| | - Min Li
- Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu, China
| | - Ting Wang
- Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Biological Assay Key Laboratory of State Administration of Traditional Chinese Medicine for Traditional Chinese Medicine Quality, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Engineering Research Center for Formation Principle and Quality Evaluation of Genuine Medicinal Materials in Sichuan Province, Chengdu, China
| | - Lu-yao Zheng
- Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu, China
| | - Shi-qi Feng
- Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Biological Assay Key Laboratory of State Administration of Traditional Chinese Medicine for Traditional Chinese Medicine Quality, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Engineering Research Center for Formation Principle and Quality Evaluation of Genuine Medicinal Materials in Sichuan Province, Chengdu, China
| | - Jun-ning Zhao
- Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Biological Assay Key Laboratory of State Administration of Traditional Chinese Medicine for Traditional Chinese Medicine Quality, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Engineering Research Center for Formation Principle and Quality Evaluation of Genuine Medicinal Materials in Sichuan Province, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu, China
| | - Li Li
- Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Biological Assay Key Laboratory of State Administration of Traditional Chinese Medicine for Traditional Chinese Medicine Quality, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Engineering Research Center for Formation Principle and Quality Evaluation of Genuine Medicinal Materials in Sichuan Province, Chengdu, China
| |
Collapse
|
8
|
Yu YH, Zhang HJ, Yang F, Xu L, Liu H. Curcumol, a major terpenoid from Curcumae Rhizoma, attenuates human uterine leiomyoma cell development via the p38MAPK/NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116311. [PMID: 36894110 DOI: 10.1016/j.jep.2023.116311] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/19/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Uterine fibroids (UFs) are the most common benign tumors in women of reproductive age. Curcumae Rhizoma, the main essential oil component of which is curcumol, is widely used for the treatment of phymatosis in China due to its antitumor, anti-inflammatory, antithrombin, anti-tissue fibrosis and anti-oxygen pharmacological activities, but its potential for the treatment of UFs has not been evaluated. AIM OF THE STUDY This study aimed to investigate the effects and mechanisms of curcumol intervention in human uterine leiomyoma cells (UMCs). MATERIALS AND METHODS Putative targets of curcumol intervention in UFs were identified using network pharmacology strategies. Molecular docking was performed to assess the binding affinity of curcumol to core targets. A concentration gradient of curcumol (0, 50, 100, 200, 300, 400 and 500 μM) or RU-486 (mifepristone, 0, 10, 20, 40, 50, and 100 μM) was applied to UMCs, and cell viability was detected by the CCK-8 assay. Cell apoptosis and cell cycle were examined by flow cytometry, and cell migration was assessed by a wound-healing assay. Additionally, the mRNA and protein expression levels of critical pathway components were evaluated by RT‒PCR and western blotting. Finally, the actions of curcumol on different tumor cell lines were summarized. RESULTS Network pharmacology predicted 62 genes with roles in the treatment of UFs with curcumol, and MAPK14 (p38MAPK) displayed a higher interaction degree. GO enrichment and KEGG analyses revealed that the core genes were abundantly enriched in the MAPK signaling pathway. The molecular binding of curcumol to core targets was relatively stable. In UMCs, 200, 300 and 400 μM curcumol treatment for 24 h decreased cell viability compared with that in the control group, and the greatest effect was detected at 48 h and maintained until 72 h. Curcumol arrested cells in the G0/G1 phase and subsequently suppressed mitosis, promoted early apoptosis and reduced the degree of wound healing in a concentration-dependent manner in UMCs. Furthermore, 200 μM curcumol decreased the mRNA and protein expression of p38MAPK, the mRNA expression of NF-κB, and the protein expression of Ki-67 and increased the mRNA and protein expression of Caspase 9. Curcumol (300 and 400 μM) decreased the mRNA and protein expression of p38MAPK, NF-κB, and Ki-67 and increased the protein expression of Caspase 9 in UMCs. Curcumol was demonstrated to treat tumor cell lines, including breast cancer, ovarian cancer, lung cancer, gastric cancer, liver cancer and nasopharyngeal carcinoma, but its effects on benign tumors have not yet been reported. CONCLUSION Curcumol suppresses cell proliferation and cell migration while arresting the cell cycle in the G0/G1 phase and inducing cell apoptosis in UMCs via a mechanism related to p38MAPK/NF-κB pathway regulation. Curcumol may be a potential therapeutic and preventive agent in the treatment of benign tumors such as UFs.
Collapse
Affiliation(s)
- Yong-Hui Yu
- Gynecological Department of Traditional Chinese Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, 100029, China
| | - Hao-Jun Zhang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chaoyang District, Beijing, 100029, China
| | - Fang Yang
- Gynecological Department of Traditional Chinese Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, 100029, China
| | - Lin Xu
- Gynecological Department of Traditional Chinese Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, 100029, China
| | - Hong Liu
- Gynecological Department of Traditional Chinese Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
9
|
Zhao Y, Wang H, He T, Ma B, Chen G, Tzeng C. Knockdown of Yap attenuates TAA-induced hepatic fibrosis by interaction with hedgehog signals. J Cell Commun Signal 2023:10.1007/s12079-023-00775-6. [PMID: 37338798 DOI: 10.1007/s12079-023-00775-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 06/05/2023] [Indexed: 06/21/2023] Open
Abstract
Liver fibrosis is an aberrant wound healing response to tissue injury characterized by excessive extracellular matrix deposition and loss of normal liver architecture. Hepatic stellate cells (HSCs) activation is regards to be the major process in liver fibrogenesis which is dynamic and reversible. Both Hippo signaling core factor Yap and Hedgehog (Hh) signaling promote HSCs transdifferentiation thereby regulating the repair process of liver injury. However, the molecular function of YAP and the regulation between Yap and Hh during fibrogenesis remain uncertain. In this study, the essential roles of Yap in liver fibrosis were investigated. Yap was detected to be increased in liver fibrotic tissue by the thioacetamide (TAA)-induced zebrafish embryonic and adult models. Inhibition of Yap by both embryonic morpholino interference and adult's inhibitor treatment was proved to alleviate TAA-induced liver lesions by and histology and gene expression examination. Transcriptomic analysis and gene expression detection showed that Yap and Hh signaling pathway have a cross talking upon TAA-induced liver fibrosis. In addition, TAA induction promoted the nuclear colocalization of YAP and Hh signaling factor GLI2α. This study demonstrates that Yap and Hh play synergistic protective roles in liver fibrotic response and provides new theoretical insight concerning the mechanisms of fibrosis progression.
Collapse
Affiliation(s)
- Ye Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211800, China.
| | - Huiling Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211800, China
| | - Tianhua He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211800, China
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211800, China
| | - Guoguang Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211800, China
| | - Chimeng Tzeng
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361005, China.
- Translational Medicine Research Center-Key Laboratory for Cancer T-Cell Theragnostic and Clinical Translation, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China.
- Xiamen Chang Gung Hospital Medical Research Center, Xiamen, Fujian, China.
| |
Collapse
|
10
|
Li Y, Zhou Y, Xia S, Chen L, Yang T, Zhao D, Zhang Z, Shao J, Xu X, Zhang F, Zheng S. Blockade of KLF5/LDH-A feedback loop contributes to Curcumol inhibition of sinusoidal endothelial cell glycolysis and mitigation of liver fibrosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154759. [PMID: 37031640 DOI: 10.1016/j.phymed.2023.154759] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/14/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND LSECs (Liver sinusoidal endothelial cells) are the portal of liver, their pathological angiogenesis plays a constructive role in etiopathogenesis of liver fibrosis by affecting liver tissue repair and inflammatory drive. Although intervention in angiogenesis can effectively inhibit abnormal activation of LSEC, no effective drugs have been found to treat liver fibrosis. PURPOSE We investigated the effect of the natural compound Curcumol on LSEC angiogenesis and elucidated the novel underlying mechanism, expecting to provide a scientific basis for exploring potential therapeutic drugs for liver fibrosis. METHODS Various cellular and molecular assays, as well as genetic assays, were used to detect pathological angiogenesis and changes in glycolysis levels in cultured rat LSECs and mouse liver fibrosis models. RESULTS Transcription factor KLF5 is able to influence the angiogenic properties of LSEC by regulating the glycolytic process, and affect the expression of LDH-A by transcriptionally binding to its promoter. In our study, we were surprised to find that LDH-A (the final step of glycolysis) has a strong regulatory effect on the glycolytic process of LSEC. Through in-depth study, we found that LDH-A could affect the transcriptional activity of KLF5, thus forming a positive feedback loop. Curcumol could break this positive feedback loop and inhibit the glycolysis-dependent angiogenic nature of LSEC, thus alleviating liver fibrosis. Curcumol reduced extracellular matrix (ECM) deposition, attenuated pathological angiogenesis in LSEC, and decreased the level of CCl4-induced liver fibrosis in mice. CONCLUSION Our results demonstrated the great utilization potentiality of KLF5 in liver fibrosis, and the innovative discovery that LDH-A regulates the glycolytic process and forms a malignant feedback loop by exerting non-enzymatic effects. It also reveals the prospect of Curcumol-regulated KLF5/LDH-A feedback loop in the treatment of liver fibrosis, providing a new option for the future medicine of liver fibrosis.
Collapse
Affiliation(s)
- Yang Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuanyuan Zhou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Siwei Xia
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ting Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Danli Zhao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xuefen Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
11
|
Unraveling the function of epithelial-mesenchymal transition (EMT) in colorectal cancer: Metastasis, therapy response, and revisiting molecular pathways. Biomed Pharmacother 2023; 160:114395. [PMID: 36804124 DOI: 10.1016/j.biopha.2023.114395] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Colorectal cancer (CRC) is a dangerous form of cancer that affects the gastrointestinal tract. It is a major global health concern, and the aggressive behavior of tumor cells makes it difficult to treat, leading to poor survival rates for patients. One major challenge in treating CRC is the metastasis, or spread, of the cancer, which is a major cause of death. In order to improve the prognosis for patients with CRC, it is necessary to focus on ways to inhibit the cancer's ability to invade and spread. Epithelial-mesenchymal transition (EMT) is a process that is linked to the spread of cancer cells, also known as metastasis. The process transforms epithelial cells into mesenchymal ones, increasing their mobility and ability to invade other tissues. This has been shown to be a key mechanism in the progression of colorectal cancer (CRC), a particularly aggressive form of gastrointestinal cancer. The activation of EMT leads to increases in the spread of CRC cells, and during this process, levels of the protein E-cadherin decrease while levels of N-cadherin and vimentin increase. EMT also contributes to the development of resistance to chemotherapy and radiation therapy in CRC. Non-coding RNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), play a role in regulating EMT in CRC, often through their ability to "sponge" microRNAs. Anti-cancer agents have been shown to suppress EMT and reduce the progression and spread of CRC cells. These findings suggest that targeting EMT or related mechanisms may be a promising approach for treating CRC patients in the clinic.
Collapse
|
12
|
Li Z, Hao E, Cao R, Lin S, Zou L, Huang T, Du Z, Hou X, Deng J. Analysis on internal mechanism of zedoary turmeric in treatment of liver cancer based on pharmacodynamic substances and pharmacodynamic groups. CHINESE HERBAL MEDICINES 2022; 14:479-493. [PMID: 36405057 PMCID: PMC9669400 DOI: 10.1016/j.chmed.2022.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 03/04/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
Zedoary tumeric (Curcumae Rhizoma, Ezhu in Chinese) has a long history of application and has great potential in the treatment of liver cancer. The antiliver cancer effect of zedoary tumeric depends on the combined action of multiple pharmacodynamic substances. In order to clarify the specific mechanism of zedoary tumeric against liver cancer, this paper first analyzes the mechanism of its single pharmacodynamic substance against liver cancer, and then verifies the joint anti liver cancer mechanism of its "pharmacodynamic group". By searching the research on the antihepatoma effect of active components of zedoary tumeric in recent years, we found that pharmacodynamic substances, including curcumol, zedoarondiol, curcumenol, curzerenone, curdione, curcumin, germacrone, β-elemene, can act on multi-target and multi-channel to play an antihepatoma role. For example, curcumin can regulate miR, GLO1, CD133, VEGF, YAP, LIN28B, GPR81, HCAR-1, P53 and PI3K/Akt/mTOR, HSP70/TLR4 and NF-κB. Wnt/TGF/EMT, Nrf2/Keap1, JAK/STAT and other pathways play an antihepatoma role. Network pharmacological analysis showed that the core targets of the "pharmacodynamic group" for anti-life cancer are AKT1, EGFR, MAPK8, etc, and the core pathways are neuroactive live receiver interaction, nitrogen metabolism, HIF-1 signaling pathway, etc. At the same time, by comparing and analyzing the relationship between the specific mechanisms of pharmacodynamic substance and "pharmacodynamic group", it is found that they have great reference significance in target, pathway, biological function, determination of core pharmacodynamic components, formation of core target protein interaction, in-depth research of single pharmacodynamic substance, increasing curative effect and so on. By analyzing the internal mechanism of zedoary tumeric pharmacodynamic substance and "pharmacodynamic group" in the treatment of liver cancer, this paper intends to provide some ideas and references for the deeper pharmacological research of zedoary tumeric and the relationship between pharmacodynamic substance and "pharmacodynamic group".
Collapse
Affiliation(s)
- Zeyu Li
- China ASEAN Joint Laboratory for International Cooperation in Traditional Medicine Research, Nanning 530200, China
- Guangxi Scientific Experiment Center of Traditional Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of Pharmacodynamics of Traditional Chinese Medicine, Nanning 530000, China
| | - Erwei Hao
- China ASEAN Joint Laboratory for International Cooperation in Traditional Medicine Research, Nanning 530200, China
- Guangxi Scientific Experiment Center of Traditional Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of Pharmacodynamics of Traditional Chinese Medicine, Nanning 530000, China
| | - Rui Cao
- China ASEAN Joint Laboratory for International Cooperation in Traditional Medicine Research, Nanning 530200, China
- Guangxi Scientific Experiment Center of Traditional Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of Pharmacodynamics of Traditional Chinese Medicine, Nanning 530000, China
| | - Si Lin
- China ASEAN Joint Laboratory for International Cooperation in Traditional Medicine Research, Nanning 530200, China
- Guangxi Scientific Experiment Center of Traditional Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of Pharmacodynamics of Traditional Chinese Medicine, Nanning 530000, China
| | - Linghui Zou
- China ASEAN Joint Laboratory for International Cooperation in Traditional Medicine Research, Nanning 530200, China
- Guangxi Scientific Experiment Center of Traditional Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of Pharmacodynamics of Traditional Chinese Medicine, Nanning 530000, China
| | - Tianyan Huang
- China ASEAN Joint Laboratory for International Cooperation in Traditional Medicine Research, Nanning 530200, China
- Guangxi Scientific Experiment Center of Traditional Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of Pharmacodynamics of Traditional Chinese Medicine, Nanning 530000, China
| | - Zhengcai Du
- China ASEAN Joint Laboratory for International Cooperation in Traditional Medicine Research, Nanning 530200, China
- Guangxi Scientific Experiment Center of Traditional Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of Pharmacodynamics of Traditional Chinese Medicine, Nanning 530000, China
| | - Xiaotao Hou
- China ASEAN Joint Laboratory for International Cooperation in Traditional Medicine Research, Nanning 530200, China
- Guangxi Scientific Experiment Center of Traditional Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of Pharmacodynamics of Traditional Chinese Medicine, Nanning 530000, China
| | - Jiagang Deng
- China ASEAN Joint Laboratory for International Cooperation in Traditional Medicine Research, Nanning 530200, China
- Guangxi Scientific Experiment Center of Traditional Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of Pharmacodynamics of Traditional Chinese Medicine, Nanning 530000, China
| |
Collapse
|
13
|
Kulkarni A, Gayathrinathan S, Nair S, Basu A, Al-Hilal TA, Roy S. Regulatory Roles of Noncoding RNAs in the Progression of Gastrointestinal Cancers and Health Disparities. Cells 2022; 11:2448. [PMID: 35954293 PMCID: PMC9367924 DOI: 10.3390/cells11152448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 01/17/2023] Open
Abstract
Annually, more than a million individuals are diagnosed with gastrointestinal (GI) cancers worldwide. With the advancements in radio- and chemotherapy and surgery, the survival rates for GI cancer patients have improved in recent years. However, the prognosis for advanced-stage GI cancers remains poor. Site-specific GI cancers share a few common risk factors; however, they are largely distinct in their etiologies and descriptive epidemiologic profiles. A large number of mutations or copy number changes associated with carcinogenesis are commonly found in noncoding DNA regions, which transcribe several noncoding RNAs (ncRNAs) that are implicated to regulate cancer initiation, metastasis, and drug resistance. In this review, we summarize the regulatory functions of ncRNAs in GI cancer development, progression, chemoresistance, and health disparities. We also highlight the potential roles of ncRNAs as therapeutic targets and biomarkers, mainly focusing on their ethnicity-/race-specific prognostic value, and discuss the prospects of genome-wide association studies (GWAS) to investigate the contribution of ncRNAs in GI tumorigenesis.
Collapse
Affiliation(s)
- Aditi Kulkarni
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sharan Gayathrinathan
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Soumya Nair
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Anamika Basu
- Copper Mountain College, Joshua Tree, CA 92252, USA
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Taslim A. Al-Hilal
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sourav Roy
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
14
|
Fan CW, Tang J, Jiang JC, Zhou MM, Li MS, Wang HS. Pentagalloylglucose suppresses the growth and migration of human nasopharyngeal cancer cells via the GSK3β/β-catenin pathway in vitro and in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154192. [PMID: 35636179 DOI: 10.1016/j.phymed.2022.154192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a type of malignant squamous cell tumour originating from the nasopharynx epithelium. Pentagalloylglucose (PGG) is a natural polyphenolic compound that exerts anticancer effects in many types of tumours. However, the role and underlying mechanism of PGG in NPC cells have not been fully defined. PURPOSE This study aimed to investigate the anticancer activity of PGG as well as the potential mechanism in NPC cells. METHODS The effects of PGG on the proliferation, apoptosis and cell cycle distribution of CNE1 and CNE2 cells were assessed by MTT and flow cytometry assays. Cell migration was evaluated using wound healing and transwell assays. The expression of microtubule-associated protein 1 light chain 3 beta (LC3B) was observed by immunofluorescence staining. Western blotting was used to explore the levels of related proteins and signalling pathway components. Furthermore, the effects of PGG on NPC cell growth were analysed in a xenograft mouse model in vivo using cisplatin as a positive control. RESULTS PGG dose-dependently inhibited the proliferation of CNE1 and CNE2 cells. PGG regulated the cell cycle by altering p53, cyclin D1, CDK2, and cyclin E1 protein levels. PGG induced apoptosis and autophagy in NPC cells and elevated the Bax/Bcl-2 ratio and the protein levels of LC3B. Moreover, PGG decreased NPC cell migration by increasing E-cadherin and decreasing N-cadherin, vimentin and CD44 protein levels. Mechanistically, PGG treatment downregulated p-mTOR and β-catenin expression but upregulated p-p38 MAPK and p-GSK3β expression. In addition, PGG significantly inhibited NPC cell tumour growth and lung metastasis in vivo. CONCLUSION PGG may suppress cell proliferation, induce apoptosis and autophagy, and decrease the metastatic capacity of NPC cells through the p38 MAPK/mTOR and Wnt/β-catenin pathways. The present study provides evidence for PGG as a potential therapy for NPC.
Collapse
Affiliation(s)
- Cai-Wen Fan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China; Research Center for Science, Guilin Medical University, Guilin 541199, China
| | - Juan Tang
- Department of Pathology, the Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
| | - Jing-Chen Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Mei-Mei Zhou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Mei-Shan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China.
| | - Heng-Shan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
15
|
Nong BL, Meng XW, Wei YY, Zhao HJ, Zhang XX. Design, synthesis, and biological evaluation of C-8 modified curcumol derivatives against colorectal cancer cell lines. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 25:1-14. [PMID: 35499464 DOI: 10.1080/10286020.2022.2067533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
A series of structurally modified curcumol derivatives at C-8 position were designed and synthesized, whose structures were confirmed by 1H NMR,13C NMR, and HRMS analysis. The tested compounds were evaluated for in vitro antitumor activity against colorectal cancer cell lines SW620, HCT116, and CaCo2. Many of the tested candidates exhibited higher inhibition efficiency than curcumol. Among them, compound 3 l shows the best inhibitory effect on the viability of SW620 with IC50 value of 19.90 ± 0.64 µM. The structure-activity relationships of these derivatives were discussed, which showed that the introduction of amino or aryl groups tended to increase the anti-cancer activity. In addition, compound 3 l may inhibit cancer cell proliferation through triggering cell apoptosis.
Collapse
Affiliation(s)
- Bin-Lu Nong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiang-Wei Meng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ying-Ying Wei
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Hua-Jun Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Xing-Xian Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
16
|
Yang Y, Zhang S, Guo L. Characterization of Cell Cycle-Related Competing Endogenous RNAs Using Robust Rank Aggregation as Prognostic Biomarker in Lung Adenocarcinoma. Front Oncol 2022; 12:807367. [PMID: 35186743 PMCID: PMC8853726 DOI: 10.3389/fonc.2022.807367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Lung adenocarcinoma (LUAD), one of the most common pathological subtypes in lung cancer, has been of concern because it is the leading cause of cancer-related deaths. Due to its poor prognosis, to identify a prognostic biomarker, this study performed an integrative analysis to screen curial RNAs and discuss their cross-talks. The messenger RNA (mRNA) profiles were primarily screened using robust rank aggregation (RRA) through several datasets, and these deregulated genes showed important roles in multiple biological pathways, especially for cell cycle and oocyte meiosis. Then, 31 candidate genes were obtained via integrating 12 algorithms, and 16 hub genes (containing homologous genes) were further screened according to the potential prognostic values. These hub genes were used to search their regulators and biological-related microRNAs (miRNAs). In this way, 10 miRNAs were identified as candidate small RNAs associated with LUAD, and then miRNA-related long non-coding RNAs (lncRNAs) were further obtained. In-depth analysis showed that 4 hub mRNAs, 2 miRNAs, and 2 lncRNAs were potential crucial RNAs in the occurrence and development of cancer, and a competing endogenous RNA (ceRNA) network was then constructed. Finally, we identified CCNA2/MKI67/KIF11:miR-30a-5p:VPS9D1-AS1 axis-related cell cycle as a prognostic biomarker, which provided RNA cross-talks among mRNAs and non-coding RNAs (ncRNAs), especially at the multiple isomiR levels that further complicated the coding–non-coding RNA regulatory network. Our findings provide insight into complex cross-talks among diverse RNAs particularly involved in isomiRs, which will enrich our understanding of mRNA–ncRNA interactions in coding–non-coding RNA regulatory networks and their roles in tumorigenesis.
Collapse
Affiliation(s)
- Yifei Yang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, China
- Department of Biology, Brandeis University, Waltham, MA, United States
| | - Shiqi Zhang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, China
- Department of Biology, Brandeis University, Waltham, MA, United States
| | - Li Guo
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, China
- *Correspondence: Li Guo,
| |
Collapse
|
17
|
Hozaka Y, Kita Y, Yasudome R, Tanaka T, Wada M, Idichi T, Tanabe K, Asai S, Moriya S, Toda H, Mori S, Kurahara H, Ohtsuka T, Seki N. RNA-Sequencing Based microRNA Expression Signature of Colorectal Cancer: The Impact of Oncogenic Targets Regulated by miR-490-3p. Int J Mol Sci 2021; 22:ijms22189876. [PMID: 34576039 PMCID: PMC8469425 DOI: 10.3390/ijms22189876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022] Open
Abstract
To elucidate novel aspects of the molecular pathogenesis of colorectal cancer (CRC), we have created a new microRNA (miRNA) expression signature based on RNA-sequencing. Analysis of the signature showed that 84 miRNAs were upregulated, and 70 were downregulated in CRC tissues. Interestingly, our signature indicated that both guide and passenger strands of some miRNAs were significantly dysregulated in CRC tissues. These findings support our earlier data demonstrating the involvement of miRNA passenger strands in cancer pathogenesis. Our study focused on downregulated miR-490-3p and investigated its tumor-suppressive function in CRC cells. We successfully identified a total of 38 putative oncogenic targets regulated by miR-490-3p in CRC cells. Among these targets, the expression of three genes (IRAK1: p = 0.0427, FUT1: p = 0.0468, and GPRIN2: p = 0.0080) significantly predicted 5-year overall survival of CRC patients. Moreover, we analyzed the direct regulation of IRAK1 by miR-490-3p, and its resultant oncogenic function in CRC cells. Thus, we have clarified a part of the molecular pathway of CRC based on the action of tumor-suppressive miR-490-3p. This new miRNA expression signature of CRC will be a useful tool for elucidating new molecular pathogenesis in this disease.
Collapse
Affiliation(s)
- Yuto Hozaka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Yoshiaki Kita
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Ryutaro Yasudome
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Takako Tanaka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Masumi Wada
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Tetsuya Idichi
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Kan Tanabe
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Shunichi Asai
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Shogo Moriya
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Hiroko Toda
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Shinichiro Mori
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Hiroshi Kurahara
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Takao Ohtsuka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Naohiko Seki
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
- Correspondence: ; Tel.: +81-43-226-2971
| |
Collapse
|
18
|
Xu J, Chen Z, Fang Z, Chen S, Guo Y, Liu X, Chen K, Chen S. Long non-coding RNA OIP5-AS1 promotes the progression of esophageal cancer by regulating miR-30a/VOPP1 expression. Oncol Lett 2021; 22:651. [PMID: 34386073 PMCID: PMC8299025 DOI: 10.3892/ol.2021.12912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/16/2021] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) serve an important role in the development of esophageal cancer (EC), which is the eighth most common type of cancer worldwide. lncRNA opa-interacting protein 5 antisense transcript 1 (OIP5-AS1) is associated with human malignancy. However, the biological roles of OIP5-AS1 in the development of EC remain unclear. In the present study, transfection was conducted, and reverse transcription-quantitative PCR and western blot analysis were used for the detection of mRNA and protein expression, respectively. Furthermore, dual-luciferase reporter and RNA immunoprecipitation assays were used to study the interaction between miRNA and lncRNA or genes. The results revealed that OIP5-AS1 expression in EC tissues and cultured EC cells was upregulated, microRNA-30a (miR-30a) expression was downregulated. OIP5-AS1-knockdown suppressed the proliferation, migration and invasion of EC9706 and EC109 cells. miR-30a was confirmed to interact with OIP5-AS1, and miR-30a-mimics transfection ameliorated the effects of OIP5-AS1 in EC cells. Vesicular overexpressed in cancer prosurvival protein 1 (VOPP1) was verified as the direct target of miR-30a. VOPP1 expression was positively correlated with OIP5-AS1 expression in EC cells. Overexpression of VOPP1 ameliorated the negative effects of OIP5-AS1-knockdown on EC9706 and EC109 cells. In conclusion, OIP5-AS1 promoted the proliferation, migration and invasion of EC cells by increasing VOPP1 expression by sponging miR-30a.
Collapse
Affiliation(s)
- Jiajun Xu
- Department of Cardiothoracic Surgery, Affiliated Jiujiang Hospital of Nanchang University, Jiujiang, Jianxi 332000, P.R. China
| | - Zhixi Chen
- College of Pharmacy, Gannan Medical University, Ganzhou, Jianxi 341000, P.R. China
| | - Zheng Fang
- Department of Cardiothoracic Surgery, Affiliated Jiujiang Hospital of Nanchang University, Jiujiang, Jianxi 332000, P.R. China
| | - Shixiong Chen
- Department of Cardiothoracic Surgery, Affiliated Jiujiang Hospital of Nanchang University, Jiujiang, Jianxi 332000, P.R. China
| | - Ying Guo
- Department of Cardiothoracic Surgery, Affiliated Jiujiang Hospital of Nanchang University, Jiujiang, Jianxi 332000, P.R. China
| | - Xianfeng Liu
- Department of Cardiothoracic Surgery, Affiliated Jiujiang Hospital of Nanchang University, Jiujiang, Jianxi 332000, P.R. China
| | - Kai Chen
- Department of Cardiothoracic Surgery, Affiliated Jiujiang Hospital of Nanchang University, Jiujiang, Jianxi 332000, P.R. China
| | - Shengjia Chen
- Department of Cardiothoracic Surgery, Affiliated Jiujiang Hospital of Nanchang University, Jiujiang, Jianxi 332000, P.R. China
| |
Collapse
|