1
|
Zhu S, Meng L, Wei P, Gu G, Duan K. Sinensetin suppresses breast cancer cell progression via Wnt/β-catenin pathway inhibition. Transl Cancer Res 2024; 13:348-362. [PMID: 38410229 PMCID: PMC10894327 DOI: 10.21037/tcr-23-1317] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/17/2023] [Indexed: 02/28/2024]
Abstract
Background Although there are many treatments for breast cancer, such as surgery, radiotherapy, chemotherapy, estrogen receptor antagonists, immune checkpoint inhibitors and so on. However, safer and more effective therapeutic drugs for breast cancer are needed. Sinensetin, a safer therapeutic drugs, come from citrus species and medicinal plants used in traditional medicine, while its role and underlying mechanism in breast cancer remain unclear. Our study aimed to investigate the role and mechanism of sinensetin in breast cancer. Methods Cell Counting Kit-8 (CCK-8) was used to determine the safe concentration of sinensetin in MCF-10A, MCF7 and MDA-MB-231 cells; 120 μM sinensetin was used in subsequent experiments. Real time polymerase chain reaction (RT-PCR), Western blotting, Terminal Deoxynucleotidyl Transferase mediated dUTP Nick-End Labeling (TUNEL) apoptosis assay, Transwell invasion assay and Clone formation assay were used in this study to determine cell viability, mRNA expression, protein levels, apoptosis, proliferation, invasion and so on. Results Herein, our results showed that 120 μM sinensetin suppressed the cell viability and promoted apoptosis of MCF7 and MDA-MB-231 cells. Treatment with 120 µM sinensetin for 24 h showed no significant toxicity to normal mammary cells; 120 μM sinensetin decreased cell proliferation, invasion, and epithelial-mesenchymal transition (EMT), and downregulated β-catenin, lymphatic enhancing factor 1 (LEF1), T-cell factor (TCF) 1/TCF7, and TCF3/TCF7L1 expression in MCF7 and MDA-MB-231 cells. The Wnt agonist SKL2001 reversed the inhibitory effect of sinensetin on cell survival, metastasis, and EMT. Sinensetin-induced downregulation of β-catenin, LEF1, and TCF1/TCF7 expression were upregulated by SKL2001 in MCF7 and MDA-MB-231 cells. Conclusions In summary, sinensetin suppressed the metastasis of breast cancer cell via inhibition of Wnt/β-catenin pathway and there were no adverse effects on normal breast cells. Our study confirmed the role of sinensetin in breast cancer cells and provided a better understanding of the underlying mechanism.
Collapse
Affiliation(s)
- Shengqian Zhu
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Lifei Meng
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Peng Wei
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Guowen Gu
- Department of Hepatobiliary Surgery, Ningbo First Hospital, Ningbo, China
| | - Keli Duan
- Department of Plastic and Reconstructive Surgery, The Third Hospital of Ninghai County, Ningbo, China
| |
Collapse
|
2
|
Shukla N, Kour B, Sharma D, Vijayvargiya M, Sadasukhi TC, Medicherla KM, Malik B, Bissa B, Vuree S, Lohiya NK, Suravajhala P. Towards Understanding the Key Signature Pathways Associated from Differentially Expressed Gene Analysis in an Indian Prostate Cancer Cohort. Diseases 2023; 11:diseases11020072. [PMID: 37218885 DOI: 10.3390/diseases11020072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent cancers among men in India. Although studies on PCa have dealt with genetics, genomics, and the environmental influence in the causality of PCa, not many studies employing the Next Generation Sequencing (NGS) approaches of PCa have been carried out. In our previous study, we identified some causal genes and mutations specific to Indian PCa using Whole Exome Sequencing (WES). In the recent past, with the help of different cancer consortiums such as The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC), along with differentially expressed genes (DEGs), many cancer-associated novel non-coding RNAs have been identified as biomarkers. In this work, we attempt to identify differentially expressed genes (DEGs) including long non-coding RNAs (lncRNAs) associated with signature pathways from an Indian PCa cohort using the RNA-sequencing (RNA-seq) approach. From a cohort of 60, we screened six patients who underwent prostatectomy; we performed whole transcriptome shotgun sequencing (WTSS)/RNA-sequencing to decipher the DEGs. We further normalized the read counts using fragments per kilobase of transcript per million mapped reads (FPKM) and analyzed the DEGs using a cohort of downstream regulatory tools, viz., GeneMANIA, Stringdb, Cytoscape-Cytohubba, and cbioportal, to map the inherent signatures associated with PCa. By comparing the RNA-seq data obtained from the pairs of normal and PCa tissue samples using our benchmarked in-house cuffdiff pipeline, we observed some important genes specific to PCa, such as STEAP2, APP, PMEPA1, PABPC1, NFE2L2, and HN1L, and some other important genes known to be involved in different cancer pathways, such as COL6A1, DOK5, STX6, BCAS1, BACE1, BACE2, LMOD1, SNX9, CTNND1, etc. We also identified a few novel lncRNAs such as LINC01440, SOX2OT, ENSG00000232855, ENSG00000287903, and ENST00000647843.1 that need to be characterized further. In comparison with publicly available datasets, we have identified characteristic DEGs and novel lncRNAs implicated in signature PCa pathways in an Indian PCa cohort which perhaps have not been reported. This has set a precedent for us to validate candidates further experimentally, and we firmly believe this will pave a way toward the discovery of biomarkers and the development of novel therapies.
Collapse
Affiliation(s)
- Nidhi Shukla
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research (BISR), Statue Circle, Jaipur 302001, India
- Department of Chemistry, School of Basic Sciences, Manipal University Jaipur, Jaipur 303007, India
| | - Bhumandeep Kour
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, India
| | - Devendra Sharma
- Department of Urology, Rukmani Birla Hospital, Jaipur 302018, India
| | - Maneesh Vijayvargiya
- Department of Pathology, Mahatma Gandhi University of Medical Sciences and Technology, Jaipur 302022, India
| | - T C Sadasukhi
- Department of Urology, Mahatma Gandhi University of Medical Sciences and Technology, Jaipur 302022, India
| | - Krishna Mohan Medicherla
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research (BISR), Statue Circle, Jaipur 302001, India
- Department of Bioengineering, Birla Institute of Technology, Mesra Jaipur Campus, 27-Malaviya Industrial Area, Jaipur 302017, India
| | - Babita Malik
- Department of Chemistry, School of Basic Sciences, Manipal University Jaipur, Jaipur 303007, India
| | - Bhawana Bissa
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India
| | - Sugunakar Vuree
- Bioclues.org, Hyderabad 500072, India
- MNR Foundation for Research & Innovation, MNR University, Sangareddy 502294, India
| | - Nirmal Kumar Lohiya
- Department of Zoology, Center for Advanced Studies, University of Rajasthan, Jaipur 302004, India
| | - Prashanth Suravajhala
- Bioclues.org, Hyderabad 500072, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India
| |
Collapse
|
3
|
Li Y, Wang X, Lin J, Wang R, Zhang B, Zhang X, He W, Gao F, Song D, Zhao K, Guan J. Natural flavonoid sinensetin inhibits cisplatin-induced pyroptosis and attenuates intestinal injury. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166637. [PMID: 36638874 DOI: 10.1016/j.bbadis.2023.166637] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/08/2022] [Accepted: 01/02/2023] [Indexed: 01/12/2023]
Abstract
The demand of exploring strategies to enhance chemotherapy drug efficacy and alleviate adverse effects by using natural compounds is increasing. Sinensetin (SIN) is a kind of natural flavonoids with anti-inflammatory activities. However, its protective impact on chemotherapy-induced adverse effects has not been well demonstrated. Here, we found that SIN could inhibit Cisplatin-induced release of proinflammatory cellular contents and inflammatory cell death-pyroptosis. In addition, Cisplatin-induced activation of gasdermin E (GSDME), a critical mediator of chemotherapy-induced tissue injury, could also be reversed by SIN. Furthermore, SIN impaired Cisplatin-induced intracellular damages, including ROS release and DNA damages. Importantly, SIN was able to alleviate intestinal injury in Cisplatin-challenged mice, which was accompanied by the decrease of lytic cell death and immune cell infiltration. Of note, SIN administration did not reverse Cisplatin-caused tumor suppression in vivo. In conclusion, our result provides a potential application of SIN to reduce Cisplatin-caused adverse effects, without impairing its anti-tumor capacity.
Collapse
Affiliation(s)
- Yue Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062 Changchun, China
| | - Xinyue Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062 Changchun, China
| | - Jing Lin
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062 Changchun, China
| | - Renling Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062 Changchun, China
| | - Bo Zhang
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130000, China
| | - Xiaohao Zhang
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Wenqi He
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062 Changchun, China
| | - Feng Gao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062 Changchun, China
| | - Deguang Song
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062 Changchun, China
| | - Kui Zhao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062 Changchun, China.
| | - Jiyu Guan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062 Changchun, China.
| |
Collapse
|
4
|
Li X, Li Y, Wang Y, Liu F, Liu Y, Liang J, Zhan R, Wu Y, Ren H, Zhang X, Liu J. Sinensetin suppresses angiogenesis in liver cancer by targeting the VEGF/VEGFR2/AKT signaling pathway. Exp Ther Med 2022; 23:360. [PMID: 35493423 PMCID: PMC9019764 DOI: 10.3892/etm.2022.11287] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/15/2022] [Indexed: 11/06/2022] Open
Abstract
Sinensetin (SIN) is a polymethoxy flavone primarily present in citrus fruits. This compound has demonstrated anticancer activity. However, the underlying mechanism of its action has not been fully understood. The present study investigated the impact of SIN on angiogenesis in a liver cancer model. In a murine xenograft tumor model, SIN inhibited the growth of HepG2/C3A human liver hepatoma cell-derived tumors and reduced the expression levels of platelet/endothelial cell adhesion molecule-1 and VEGF. In HepG2/C3A cells, SIN repressed VEGF expression by downregulating hypoxia-inducible factor expression. In cultured human umbilical vein endothelial cells, SIN increased apoptosis and repressed migration and tube formation. In addition, SIN decreased the phosphorylation of VEGFR2 and inhibited the AKT signaling pathway. Molecular docking demonstrated that the VEGFR2 core domain effectively combined with SIN at various important residues. Collectively, these data suggested that SIN inhibited liver cancer angiogenesis by regulating VEGF/VEGFR2/AKT signaling.
Collapse
Affiliation(s)
- Xiaο Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong 250355, P.R. China
| | - Yan Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong 250355, P.R. China
| | - Yuan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong 250355, P.R. China
| | - Fuhong Liu
- Laboratory of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Yanjun Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong 250355, P.R. China
| | - Jiangjiu Liang
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, P.R. China
| | - Rucai Zhan
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, P.R. China
| | - Yue Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong 250355, P.R. China
| | - He Ren
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong 250355, P.R. China
| | - Xiuyuan Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong 250355, P.R. China
| | - Ju Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong 250355, P.R. China
| |
Collapse
|