1
|
Taha SR, Karimi M, Mahdavi B, Yousefi Tehrani M, Bemani A, Kabirian S, Mohammadi J, Jabbari S, Hushmand M, Mokhtar A, Pourhanifeh MH. Crosstalk between non-coding RNAs and programmed cell death in colorectal cancer: implications for targeted therapy. Epigenetics Chromatin 2025; 18:3. [PMID: 39810224 PMCID: PMC11734566 DOI: 10.1186/s13072-024-00560-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/13/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) remains one of the most common causes of cancer-related mortality worldwide. Its progression is influenced by complex interactions involving genetic, epigenetic, and environmental factors. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have been identified as key regulators of gene expression, affecting diverse biological processes, notably programmed cell death (PCD). OBJECTIVE This review aims to explore the relationship between ncRNAs and PCD in CRC, focusing on how ncRNAs influence cancer cell survival, proliferation, and treatment resistance. METHODS A comprehensive literature analysis was conducted to examine recent findings on the role of ncRNAs in modulating various PCD mechanisms, including apoptosis, autophagy, necroptosis, and pyroptosis, and their impact on CRC development and therapeutic response. RESULTS ncRNAs were found to significantly regulate PCD pathways, impacting tumor growth, metastasis, and treatment sensitivity in CRC. Their influence on these pathways highlights the potential of ncRNAs as biomarkers for early CRC detection and as targets for innovative therapeutic interventions. CONCLUSION Understanding the involvement of ncRNAs in PCD regulation offers new insights into CRC biology. The targeted modulation of ncRNA-PCD interactions presents promising avenues for personalized cancer treatment, which may improve patient outcomes by enhancing therapeutic effectiveness and reducing resistance.
Collapse
Affiliation(s)
- Seyed Reza Taha
- Department of Pathology and Immunology, Washington University School of Medicine, St. LouisWashington, MO, USA
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Karimi
- Faculty of Medicine, Bogomolets National Medical University (NMU), Kiev, Ukraine.
| | - Bahar Mahdavi
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | | | - Ali Bemani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Shahriar Kabirian
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Javad Mohammadi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sina Jabbari
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Meysam Hushmand
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Mokhtar
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
- PAKAN Institute, Tehran, Iran.
| |
Collapse
|
2
|
Kumar A, Yap KCH, BharathwajChetty B, Lyu J, Hegde M, Abbas M, Alqahtani MS, Khadlikar S, Zarrabi A, Khosravi A, Kumar AP, Kunnumakkara AB. Regulating the regulators: long non-coding RNAs as autophagic controllers in chronic disease management. J Biomed Sci 2024; 31:105. [PMID: 39716252 DOI: 10.1186/s12929-024-01092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/23/2024] [Indexed: 12/25/2024] Open
Abstract
The increasing prevalence of chronic diseases and their associated morbidities demands a deeper understanding of underlying mechanism and causative factors, with the hope of developing novel therapeutic strategies. Autophagy, a conserved biological process, involves the degradation of damaged organelles or protein aggregates to maintain cellular homeostasis. Disruption of this crucial process leads to increased genomic instability, accumulation of reactive oxygen species (ROS), decreased mitochondrial functions, and suppression of ubiquitination, leading to overall decline in quality of intracellular components. Such deregulation has been implicated in a wide range of pathological conditions such as cancer, cardiovascular, inflammatory, and neurological disorders. This review explores the role of long non-coding RNAs (lncRNAs) as modulators of transcriptional and post-transcriptional gene expression, regulating diverse physiological process like proliferation, development, immunity, and metabolism. Moreover, lncRNAs are known to sequester autophagy related microRNAs by functioning as competing endogenous RNAs (ceRNAs), thereby regulating this vital process. In the present review, we delineate the multitiered regulation of lncRNAs in the autophagic dysfunction of various pathological diseases. Moreover, by highlighting recent findings on the modulation of lncRNAs in different stages of autophagy, and the emerging clinical landscape that recognizes lncRNAs in disease diagnosis and therapy, this review highlights the potential of lncRNAs as biomarkers and therapeutic targets in clinical settings of different stages of autophagic process by regulating ATG and its target genes. This focus on lncRNAs could lead to breakthroughs in personalized medicine, offering new avenues for diagnosis and treatment of complex diseases.
Collapse
Affiliation(s)
- Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Kenneth Chun-Hong Yap
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Juncheng Lyu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Soham Khadlikar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering & Natural Sciences, Istinye University, 34396, Istanbul, Türkiye
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, 320315, Taiwan
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, 34959, Istanbul, Türkiye
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India.
| |
Collapse
|
3
|
Dong Y, He Y, Geng Y, Wei M, Zhou X, Lian J, Hallajzadeh J. Autophagy-related lncRNAs and exosomal lncRNAs in colorectal cancer: focusing on lncRNA-targeted strategies. Cancer Cell Int 2024; 24:328. [PMID: 39342235 PMCID: PMC11439232 DOI: 10.1186/s12935-024-03503-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024] Open
Abstract
Autophagy is a cellular process that involves the degradation and recycling of cellular components, including damaged proteins and organelles. It is an important mechanism for maintaining cellular homeostasis and has been implicated in various diseases, including cancer. Long non-coding RNAs (lncRNAs) are a class of RNA molecules that do not code for proteins but instead play regulatory roles in gene expression. Emerging evidence suggests that lncRNAs can influence autophagy and contribute to the development and progression of colorectal cancer (CRC). Several lncRNAs have been identified as key players in modulating autophagy in CRC. The dysregulation of autophagy and non-coding RNAs (ncRNAs) in CRC suggests a complex interplay between these two factors in the pathogenesis of the disease. Modulating autophagy may sensitize cancer cells to existing therapies or improve the efficacy of new treatment approaches. Additionally, targeting specific lncRNAs involved in autophagy regulation could potentially be used as a therapeutic intervention to inhibit tumor growth, metastasis, and overcome drug resistance in CRC. In this review, a thorough overview is presented, encompassing the functions and underlying mechanisms of autophagy-related lncRNAs in a range of critical areas within tumor biology. These include cell proliferation, apoptosis, migration, invasion, drug resistance, angiogenesis, and radiation resistance.
Collapse
Affiliation(s)
- Yan Dong
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Yiwei He
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Yanna Geng
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Meimei Wei
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Xiaomei Zhou
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Jianlun Lian
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China.
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran.
| |
Collapse
|
4
|
Liu M, Jiang H, Momeni MR. Epigenetic regulation of autophagy by non-coding RNAs and exosomal non-coding RNAs in colorectal cancer: A narrative review. Int J Biol Macromol 2024; 273:132732. [PMID: 38823748 DOI: 10.1016/j.ijbiomac.2024.132732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/03/2024]
Abstract
One of the major diseases affecting people globally is colorectal cancer (CRC), which is primarily caused by a lack of effective medical treatment and a limited understanding of its underlying mechanisms. Cellular autophagy functions to break down and eliminate superfluous proteins and substances, thereby facilitating the continual replacement of cellular elements and generating vital energy for cell processes. Non-coding RNAs and exosomal ncRNAs have a crucial impact on regulating gene expression and essential cellular functions such as autophagy, metastasis, and treatment resistance. The latest research has indicated that specific ncRNAs and exosomal ncRNA to influence the process of autophagy in CRC cells, which could have significant consequences for the advancement and treatment of this disease. It has been determined that a variety of ncRNAs have a vital function in regulating the genes essential for the formation and maturation of autophagosomes. Furthermore, it has been confirmed that ncRNAs have a considerable influence on the signaling pathways associated with autophagy, such as those involving AMPK, AKT, and mTOR. Additionally, numerous ncRNAs have the potential to affect specific genes involved in autophagy. This study delves into the control mechanisms of ncRNAs and exosomal ncRNAs and examines how they simultaneously influence autophagy in CRC.
Collapse
Affiliation(s)
- Minghua Liu
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China
| | - Hongfang Jiang
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China.
| | - Mohammad Reza Momeni
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
5
|
Lee YJ, Kim WR, Park EG, Lee DH, Kim JM, Shin HJ, Jeong HS, Roh HY, Kim HS. Exploring the Key Signaling Pathways and ncRNAs in Colorectal Cancer. Int J Mol Sci 2024; 25:4548. [PMID: 38674135 PMCID: PMC11050203 DOI: 10.3390/ijms25084548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer to be diagnosed, and it has a substantial mortality rate. Despite numerous studies being conducted on CRC, it remains a significant health concern. The disease-free survival rates notably decrease as CRC progresses, emphasizing the urgency for effective diagnostic and therapeutic approaches. CRC development is caused by environmental factors, which mostly lead to the disruption of signaling pathways. Among these pathways, the Wingless/Integrated (Wnt) signaling pathway, Phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway, Mitogen-Activated Protein Kinase (MAPK) signaling pathway, Transforming Growth Factor-β (TGF-β) signaling pathway, and p53 signaling pathway are considered to be important. These signaling pathways are also regulated by non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). They have emerged as crucial regulators of gene expression in CRC by changing their expression levels. The altered expression patterns of these ncRNAs have been implicated in CRC progression and development, suggesting their potential as diagnostic and therapeutic targets. This review provides an overview of the five key signaling pathways and regulation of ncRNAs involved in CRC pathogenesis that are studied to identify promising avenues for diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Jung-min Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hae Jin Shin
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hyeon-su Jeong
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hyun-Young Roh
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
6
|
Saeinasab M, Atlasi Y, M Matin M. Functional role of lncRNAs in gastrointestinal malignancies: the peculiar case of small nucleolar RNA host gene family. FEBS J 2024; 291:1353-1385. [PMID: 36282516 DOI: 10.1111/febs.16668] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/18/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Long noncoding RNAs (lncRNAs) play crucial roles in normal physiology and are often de-regulated in disease states such as cancer. Recently, a class of lncRNAs referred to as the small nucleolar RNA host gene (SNHG) family have emerged as important players in tumourigenesis. Here, we discuss new findings describing the role of SNHGs in gastrointestinal tumours and summarize the three main functions by which these lncRNAs promote carcinogenesis, namely: competing with endogenous RNAs, modulating protein function, and regulating epigenetic marking. Furthermore, we discuss how SNHGs participate in different hallmarks of cancer, and how this class of lncRNAs may serve as potential biomarkers in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Morvarid Saeinasab
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran
| | - Yaser Atlasi
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Iran
| |
Collapse
|
7
|
Liu J, Xiao Y, Cao L, Lu S, Zhang S, Yang R, Wang Y, Zhang N, Yu Y, Wang X, Guo W, Wang Z, Xu H, Xing C, Song X, Cao L. Insights on E1-like enzyme ATG7: functional regulation and relationships with aging-related diseases. Commun Biol 2024; 7:382. [PMID: 38553562 PMCID: PMC10980737 DOI: 10.1038/s42003-024-06080-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Autophagy is a dynamic self-renovation biological process that maintains cell homeostasis and is responsible for the quality control of proteins, organelles, and energy metabolism. The E1-like ubiquitin-activating enzyme autophagy-related gene 7 (ATG7) is a critical factor that initiates classic autophagy reactions by promoting the formation and extension of autophagosome membranes. Recent studies have identified the key functions of ATG7 in regulating the cell cycle, apoptosis, and metabolism associated with the occurrence and development of multiple diseases. This review summarizes how ATG7 is precisely programmed by genetic, transcriptional, and epigenetic modifications in cells and the relationship between ATG7 and aging-related diseases.
Collapse
Affiliation(s)
- Jingwei Liu
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
- Department of Anus and Intestine Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yutong Xiao
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Liangzi Cao
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Songming Lu
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Siyi Zhang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Ruohan Yang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Yubang Wang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Naijin Zhang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Department of Cardiology, First Hospital of China Medical University, Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China
| | - Yang Yu
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Xiwen Wang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wendong Guo
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Zhuo Wang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Hongde Xu
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China.
| | - Chengzhong Xing
- Department of Anus and Intestine Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Xiaoyu Song
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China.
| | - Liu Cao
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
8
|
Zhang X, Shao R. LncRNA SNHG8 upregulates MUC5B to induce idiopathic pulmonary fibrosis progression by targeting miR-4701-5p. Heliyon 2024; 10:e23233. [PMID: 38163156 PMCID: PMC10756985 DOI: 10.1016/j.heliyon.2023.e23233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) play a critical role in idiopathic pulmonary fibrosis (IPF); however, the underlying molecular mechanisms are unclear. Our study demonstrated that lncRNA small nucleolar RNA host gene 8 (SNHG8) was increased in bleomycin (BLM)-induced A549 cells. LncRNA SNHG8 overexpression further elevated fibrosis-related factors monocyte chemotactic protein 1 (MCP1), CC motif chemokine ligand 18 (CCL18), and α-smooth muscle actin (α-SMA), as well as increased collagen type I alpha-1 chain (COL1A1) and collagen type III alpha-1 chain (COL3A1). Meanwhile, lncRNA SNHG8 knockdown exhibited an opposite role in reducing BLM-induced pulmonary fibrosis. With regard to the mechanism, SNHG8 was then revealed to act as a competing endogenous RNA (ceRNA) for microRNA (miR)-4701-5p in regulating Mucin 5B (MUC5B) expression. Furthermore, the interactions between SNHG8 and miR-4701-5p, between miR-4701-5p and MUC5B, and between SNHG8 and MUC5B on the influence of fibrosis-related indicators were confirmed, respectively. In addition, SNHG8 overexpression enhanced the levels of transforming growth factor (TGF)-β1 and phosphorylation Smad2/3 (p-Smad2/3), which was suppressed by SNHG8 knockdown in BLM-induced A549 cells. Moreover, miR-4701-5p inhibitor-induced elevation of TGF-β1 and p-Smad2/3 was significantly suppressed by SNHG8 knockdown. In conclusion, SNHG8 knockdown attenuated pulmonary fibrosis progression by regulating miR-4701-5p/MUC5B axis, which might be associated with the modulation of TGF-β1/Smad2/3 signaling. These findings reveal that lncRNA SNHG8 may become a potential target for the treatment of IPF.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, China
| | - Runxia Shao
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, China
| |
Collapse
|
9
|
Zhang Y, Tang J, Wang C, Zhang Q, Zeng A, Song L. Autophagy-related lncRNAs in tumor progression and drug resistance: A double-edged sword. Genes Dis 2024; 11:367-381. [PMID: 37588204 PMCID: PMC10425854 DOI: 10.1016/j.gendis.2023.04.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 08/18/2023] Open
Abstract
The incidence and mortality rates of cancer are increasing every year worldwide but the survival rate of cancer patients is still unsatisfactory. Therefore, it is necessary to further elucidate the molecular mechanisms involved in tumor development and drug resistance to improve cancer cure or survival rates. In recent years, autophagy has become a hot topic in the field of oncology research, which plays a double-edged role in tumorigenesis, progression, and drug resistance. Meanwhile, long non-coding RNA (lncRNA) has also been shown to regulate autophagy, and the two-sided nature of autophagy determines the dual regulatory role of autophagy-related lncRNAs (ARlncRNAs). Therefore, ARlncRNAs can be effective therapeutic targets for various cancers. Furthermore, the high abundance and stability of ARlncRNAs in tumor tissues make them promising biomarkers. In this review, we summarized the roles and mechanisms of ARlncRNAs in tumor cell proliferation, apoptosis, migration, invasion, drug resistance, angiogenesis, radiation resistance, and immune regulation. In addition, we described the clinical significance of these ARlncRNAs, including as biomarkers/therapeutic targets and their association with clinical drugs.
Collapse
Affiliation(s)
- Yunchao Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Jiayu Tang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Cheng Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Qinxiu Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Anqi Zeng
- Institute of Translational Pharmacology and Clinical Application, Sichuan Academy of Chinese Medical Science, Chengdu, Sichuan 610041, China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| |
Collapse
|
10
|
Herrera-Orozco H, García-Castillo V, López-Urrutia E, Martinez-Gutierrez AD, Pérez-Yepez E, Millán-Catalán O, Cantú de León D, López-Camarillo C, Jacobo-Herrera NJ, Rodríguez-Dorantes M, Ramos-Payán R, Pérez-Plasencia C. Somatic Copy Number Alterations in Colorectal Cancer Lead to a Differentially Expressed ceRNA Network (ceRNet). Curr Issues Mol Biol 2023; 45:9549-9565. [PMID: 38132443 PMCID: PMC10742218 DOI: 10.3390/cimb45120597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Colorectal cancer (CRC) represents the second deadliest malignancy worldwide. Around 75% of CRC patients exhibit high levels of chromosome instability that result in the accumulation of somatic copy number alterations. These alterations are associated with the amplification of oncogenes and deletion of tumor-ppressor genes and contribute to the tumoral phenotype in different malignancies. Even though this relationship is well known, much remains to be investigated regarding the effect of said alterations in long non-coding RNAs (lncRNAs) and, in turn, the impact these alterations have on the tumor phenotype. The present study aimed to evaluate the role of differentially expressed lncRNAs coded in regions with copy number alterations in colorectal cancer patient samples. We downloaded RNA-seq files of the Colorectal Adenocarcinoma Project from the The Cancer Genome Atlas (TCGA) repository (285 sequenced tumor tissues and 41 non-tumor tissues), evaluated differential expression, and mapped them over genome sequencing data with regions presenting copy number alterations. We obtained 78 differentially expressed (LFC > 1|< -1, padj < 0.05) lncRNAs, 410 miRNAs, and 5028 mRNAs and constructed a competing endogenous RNA (ceRNA) network, predicting significant lncRNA-miRNA-mRNA interactions. Said network consisted of 30 lncRNAs, 19 miRNAs, and 77 mRNAs. To understand the role that our ceRNA network played, we performed KEGG and GO analysis and found several oncogenic and anti-oncogenic processes enriched by the molecular players in our network. Finally, to evaluate the clinical relevance of the lncRNA expression, we performed survival analysis and found that C5orf64, HOTAIR, and RRN3P3 correlated with overall patient survival. Our results showed that lncRNAs coded in regions affected by SCNAs form a complex gene regulatory network in CCR.
Collapse
Affiliation(s)
- Héctor Herrera-Orozco
- Laboratorio de Genómica, FES-Iztacala, Universidad Nacional Autónoma de México. Av. De los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico; (H.H.-O.); (V.G.-C.); (E.L.-U.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Edificio D. Circuito de Posgrados, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - Verónica García-Castillo
- Laboratorio de Genómica, FES-Iztacala, Universidad Nacional Autónoma de México. Av. De los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico; (H.H.-O.); (V.G.-C.); (E.L.-U.)
| | - Eduardo López-Urrutia
- Laboratorio de Genómica, FES-Iztacala, Universidad Nacional Autónoma de México. Av. De los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico; (H.H.-O.); (V.G.-C.); (E.L.-U.)
| | - Antonio Daniel Martinez-Gutierrez
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Tlalpan, Mexico City 14080, Mexico; (A.D.M.-G.); (E.P.-Y.); (O.M.-C.); (D.C.d.L.)
| | - Eloy Pérez-Yepez
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Tlalpan, Mexico City 14080, Mexico; (A.D.M.-G.); (E.P.-Y.); (O.M.-C.); (D.C.d.L.)
| | - Oliver Millán-Catalán
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Tlalpan, Mexico City 14080, Mexico; (A.D.M.-G.); (E.P.-Y.); (O.M.-C.); (D.C.d.L.)
| | - David Cantú de León
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Tlalpan, Mexico City 14080, Mexico; (A.D.M.-G.); (E.P.-Y.); (O.M.-C.); (D.C.d.L.)
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Calle Dr. García Diego 168, Cuauhtémoc, Mexico City 06720, Mexico;
| | - Nadia J. Jacobo-Herrera
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga 15, Tlalpan, Mexico City 14080, Mexico;
| | | | - Rosalío Ramos-Payán
- Faculty of Chemical and Biological Sciences, Autonomous University of Sinaloa, Culiacan 80030, Mexico;
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica, FES-Iztacala, Universidad Nacional Autónoma de México. Av. De los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico; (H.H.-O.); (V.G.-C.); (E.L.-U.)
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Tlalpan, Mexico City 14080, Mexico; (A.D.M.-G.); (E.P.-Y.); (O.M.-C.); (D.C.d.L.)
| |
Collapse
|
11
|
Wang Y, Fu Y, Lu Y, Chen S, Zhang J, Liu B, Yuan Y. Unravelling the complexity of lncRNAs in autophagy to improve potential cancer therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:188932. [PMID: 37329993 DOI: 10.1016/j.bbcan.2023.188932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/30/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023]
Abstract
Autophagy is well-known as an internal catabolic process that is evolutionarily conserved and performs the key biological function in maintaining cellular homeostasis. It is tightly controlled by several autophagy-related (ATG) proteins, which are closely associated with many types of human cancers. However, what has remained controversial is the janus roles of autophagy in cancer progression. Interestingly, the biological function of long non-coding RNAs (lncRNAs) in autophagy has been gradually understood in different types of human cancers. More recently, numerous studies have demonstrated that several lncRNAs may regulate some ATG proteins and autophagy-related signaling pathways to either activate or inhibit the autophagic process in cancer. Thus, in this review, we summarize the latest advance in the knowledge of the complicated relationships between lncRNAs and autophagy in cancer. Also, the in-depth dissection of the lncRNAs-autophagy-cancers axis involved in this review would shed new light on discovery of more potential cancer biomarkers and therapeutic targets in the future.
Collapse
Affiliation(s)
- Yi Wang
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuqi Fu
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yingying Lu
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Siwei Chen
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Bo Liu
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yong Yuan
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
12
|
Jin C, Wang T, Yang Y, Zhou P, Li J, Wu W, Lv X, Ma G, Wang A. Rational targeting of autophagy in colorectal cancer therapy: From molecular interactions to pharmacological compounds. ENVIRONMENTAL RESEARCH 2023; 227:115721. [PMID: 36965788 DOI: 10.1016/j.envres.2023.115721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 05/08/2023]
Abstract
The abnormal progression of tumors has been a problem for treatment of cancer and therapeutic should be directed towards targeting main mechanisms involved in tumorigenesis in tumors. The genomic mutations can result in changes in biological mechanisms in human cancers. Colorectal cancer is one of the most malignant tumors of gastrointestinal tract and its treatment has been faced some difficulties due to development of resistance in tumor cells and also, their malignant behavior. Hence, new therapeutic modalities for colorectal cancer are being investigated. Autophagy is a "self-digestion" mechanism that is responsible for homeostasis preserving in cells and its aberrant activation/inhibition can lead to tumorigenesis. The current review focuses on the role of autophagy mechanism in colorectal cancer. Autophagy may be associated with increase/decrease in progression of colorectal cancer due to mutual function of this molecular mechanism. Pro-survival autophagy inhibits apoptosis to increase proliferation and survival rate of colorectal tumor cells and it is also involved in cancer metastasis maybe due to EMT induction. In contrast, pro-death autophagy decreases growth and invasion of colorectal tumor cells. The status of autophagy (upregulation and down-regulation) is a determining factor for therapy response in colorectal tumor cells. Therefore, targeting autophagy can increase sensitivity of colorectal tumor cells to chemotherapy and radiotherapy. Interestingly, nanoparticles can be employed for targeting autophagy in cancer therapy and they can both induce/suppress autophagy in tumor cells. Furthermore, autophagy modulators can be embedded in nanostructures in improving tumor suppression and providing cancer immunotherapy.
Collapse
Affiliation(s)
- Canhui Jin
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Tianbao Wang
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Yanhui Yang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471003, China
| | - Pin Zhou
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Juncheng Li
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Wenhao Wu
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Xin Lv
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Guoqing Ma
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Aihong Wang
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China.
| |
Collapse
|
13
|
Su X, Wang B, Zhang B, Pan S. MiR-588 acts as an oncogene in ovarian cancer and increases the radioresistance of ovarian cancer cells. JOURNAL OF RADIATION RESEARCH 2023:7153711. [PMID: 37154623 DOI: 10.1093/jrr/rrad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/05/2023] [Indexed: 05/10/2023]
Abstract
The therapeutic outcomes of ovarian cancer (OVCA) patients are majorly limited by the development of acquired chemo/radioresistance and the lack of targeted therapies. Accumulating studies demonstrate that microRNAs are involved in tumorigenesis and radioresistance. This study aims to illustrate the role of miR-588 in the radioresistance of OVCA cells. The levels of miR-588 and mRNAs were detected by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). OVCA cell viability, proliferative, migratory and invasive capacities were evaluated by the cell counting kit-8 (CCK-8) assay, colony formation assay, wound healing assay and transwell assay, respectively. The luciferase activities of plasmids containing wild -type and mutant serine/arginine-rich splicing factor 6 (SRSF6) 3'-untranslated region in miR-588 silenced OVCA cells were detected by a luciferase reporter assay. We found that miR-588 was overexpressed in OVCA tissues and cells. Knockdown of miR-588 exerted an inhibitory effect on the proliferation, migration and invasion and strengthened the radiosensitivity of OVCA cells, whereas overexpression of miR-588 increased the radioresistance of OVCA cells. SRSF6 was verified to be targeted by miR-588 in OVCA cells. In addition, the expression level of miR-588 was negatively correlated with that of SRSF6 in OVCA clinical samples. Rescue assays indicated that SRSF6 knockdown reversed the effect of miR-588 inhibition of OVCA cells under radiation. Overall, miR-588 acts as an oncogene in OVCA and increases the radioresistance of OVCA cells by targeting SRSF6.
Collapse
Affiliation(s)
- Xiaojuan Su
- Department of Radiology, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Gusu District, Suzhou, Jiangsu 215004, China
| | - Binbin Wang
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Gusu District, Suzhou, Jiangsu 215004, China
| | - Bo Zhang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Gusu District, Suzhou, Jiangsu 215004, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Shiwen Pan
- Department of Radiology, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Gusu District, Suzhou, Jiangsu 215004, China
| |
Collapse
|
14
|
Kumar A, Girisa S, Alqahtani MS, Abbas M, Hegde M, Sethi G, Kunnumakkara AB. Targeting Autophagy Using Long Non-Coding RNAs (LncRNAs): New Landscapes in the Arena of Cancer Therapeutics. Cells 2023; 12:cells12050810. [PMID: 36899946 PMCID: PMC10000689 DOI: 10.3390/cells12050810] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/04/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Cancer has become a global health hazard accounting for 10 million deaths in the year 2020. Although different treatment approaches have increased patient overall survival, treatment for advanced stages still suffers from poor clinical outcomes. The ever-increasing prevalence of cancer has led to a reanalysis of cellular and molecular events in the hope to identify and develop a cure for this multigenic disease. Autophagy, an evolutionary conserved catabolic process, eliminates protein aggregates and damaged organelles to maintain cellular homeostasis. Accumulating evidence has implicated the deregulation of autophagic pathways to be associated with various hallmarks of cancer. Autophagy exhibits both tumor-promoting and suppressive effects based on the tumor stage and grades. Majorly, it maintains the cancer microenvironment homeostasis by promoting viability and nutrient recycling under hypoxic and nutrient-deprived conditions. Recent investigations have discovered long non-coding RNAs (lncRNAs) as master regulators of autophagic gene expression. lncRNAs, by sequestering autophagy-related microRNAs, have been known to modulate various hallmarks of cancer, such as survival, proliferation, EMT, migration, invasion, angiogenesis, and metastasis. This review delineates the mechanistic role of various lncRNAs involved in modulating autophagy and their related proteins in different cancers.
Collapse
Affiliation(s)
- Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Correspondence: (G.S.); (A.B.K.); Tel.: +91-789-600-5326 (G.S.); +91-361-258-2231 (A.B.K.)
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
- Correspondence: (G.S.); (A.B.K.); Tel.: +91-789-600-5326 (G.S.); +91-361-258-2231 (A.B.K.)
| |
Collapse
|
15
|
Islam Khan MZ, Law HKW. Suppression of small nucleolar RNA host gene 8 (SNHG8) inhibits the progression of colorectal cancer cells. Noncoding RNA Res 2023; 8:224-232. [PMID: 36860208 PMCID: PMC9969251 DOI: 10.1016/j.ncrna.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common gastrointestinal malignancies around the world with high mortality. Accumulating evidences demonstrate that long non-coding RNAs (lncRNAs) play critical roles in CRC tumorigenesis by regulating different pathways of carcinogenesis. SNHG8 (small nucleolar RNA host gene 8), a lncRNA, is highly expressed in several cancers and acts as an oncogene that promotes cancer progression. However, the oncogenic role of SNHG8 in CRC carcinogenesis and the underlying molecular mechanisms remain unknown. In this study, we explored the role of SNHG8 in CRC cell lines by performing a series of functional experiments. Similar to the data reported in the Encyclopedia of RNA Interactome, our RT-qPCR results showed that SNHG8 expression was significantly upregulated in CRC cell lines (DLD-1, HT-29, HCT-116, and SW480) compared to the normal colon cell line (CCD-112CoN). We performed dicer-substrate siRNA transfection to knockdown the expression of SNHG8 in HCT-116 and SW480 cell lines which were expressing high levels of SNHG8. SNHG8 knockdown significantly reduced CRC cell growth and proliferation by inducing autophagy and apoptosis pathways through the AKT/AMPK/mTOR axis. We performed wound healing migration assay and demonstrated that SNHG8 knockdown significantly increased migration index in both cell lines, indicating reduced migration abilities of cells. Further investigation showed that SNHG8 knockdown suppresses epithelial to mesenchymal transition and reduces cellular migratory properties of CRC cells. Taken together, our study suggests that SNHG8 acts as an oncogene in CRC through the mTOR-dependent autophagy, apoptosis, and EMT pathways. Our study provides a better understanding the role of SNHG8 in CRC at molecular level and SNHG8 might be used as novel therapeutic target for CRC management.
Collapse
|
16
|
lncRNA HCG11 Promotes Colorectal Cancer Cell Malignant Behaviors via Sponging miR-26b-5p. J Immunol Res 2023; 2023:9011232. [PMID: 36874625 PMCID: PMC9981294 DOI: 10.1155/2023/9011232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/27/2022] [Accepted: 01/20/2023] [Indexed: 02/25/2023] Open
Abstract
Colorectal cancer (CRC) is a type of gastrointestinal cancer with an increasing incidence. Long noncoding RNAs (lncRNAs) have raised great concern because of wide participation in human diseases, including cancers. However, whether lncRNA HLA complex group 11 (HCG11) played a functional role in CRC remained to be elucidated. Herein, we utilized qRT-PCR to analyze the expression of HCG11 and found that HCG11 was highly expressed in CRC cells. Besides, HCG11 knockdown suppressed cell proliferation, migration, and invasion but facilitated cell apoptosis. Furthermore, supported by bioinformatics analyses and mechanism assays, HCG11, mainly located in cell cytoplasm, was confirmed to competitively bind to miR-26b-5p to modulate the expression of the target messenger RNA (mRNA), namely, cAMP-regulated phosphoprotein 19 (ARPP19). ARPP19 was detected to be upregulated in CRC cells, and ARPP19 silence was verified to inhibit the malignant behaviors of CRC cells. Rescue experiments validated that miR-26b-5p inhibition or ARPP19 overexpression could countervail the inhibitory influences of HCG11 silence on CRC cell biological behaviors in vitro. To conclude, HCG11, upregulated in CRC cells, could promote cell proliferation, migration, and invasion and inhibit cell apoptosis via targeting miR-26b-5p/ARPP19 axis.
Collapse
|
17
|
Zandieh MA, Farahani MH, Rajabi R, Avval ST, Karimi K, Rahmanian P, Razzazan M, Javanshir S, Mirzaei S, Paskeh MDA, Salimimoghadam S, Hushmandi K, Taheriazam A, Pandey V, Hashemi M. Epigenetic regulation of autophagy by non-coding RNAs in gastrointestinal tumors: Biological functions and therapeutic perspectives. Pharmacol Res 2023; 187:106582. [PMID: 36436707 DOI: 10.1016/j.phrs.2022.106582] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022]
Abstract
Cancer is the manifestation of changes and mutations in genetic and epigenetic levels. Non-coding RNAs (ncRNAs) are commonly dysregulated in disease pathogenesis, and their role in cancer has been well-documented. The ncRNAs regulate various molecular pathways and mechanisms in cancer that can lead to induction/inhibition of carcinogenesis. Autophagy is a molecular "self-digestion" mechanism its function can be pro-survival or pro-death in tumor cells. The aim of the present review is to evaluate the role of ncRNAs in regulating autophagy in gastrointestinal tumors. The role of the ncRNA/autophagy axis in affecting the progression of gastric, liver, colorectal, pancreatic, esophageal, and gallbladder cancers is investigated. Both ncRNAs and autophagy mechanisms can function as oncogenic or onco-suppressor and this interaction can determine the growth, invasion, and therapy response of gastrointestinal tumors. ncRNA/autophagy axis can reduce/increase the proliferation of gastrointestinal tumors via the glycolysis mechanism. Furthermore, related molecular pathways of metastasis, such as EMT and MMPs, are affected by the ncRNA/autophagy axis. The response of gastrointestinal tumors to chemotherapy and radiotherapy can be suppressed by pro-survival autophagy, and ncRNAs are essential regulators of this mechanism. miRNAs can regulate related genes and proteins of autophagy, such as ATGs and Beclin-1. Furthermore, lncRNAs and circRNAs down-regulate miRNA expression via sponging to modulate the autophagy mechanism. Moreover, anti-cancer agents can affect the expression level of ncRNAs regulating autophagy in gastrointestinal tumors. Therefore, translating these findings into clinics can improve the prognosis of patients.
Collapse
Affiliation(s)
- Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Melika Heydari Farahani
- Faculty of Veterinary Medicine, Islamic Azad University, Shahr-e kord Branch, Chaharmahal and Bakhtiari, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Kimia Karimi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mehrnaz Razzazan
- Medical Student, Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Salar Javanshir
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Vijay Pandey
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, Guangdong, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
18
|
Zhang H, Pan E, Zhang Y, Zhao C, Liu Q, Pu Y, Yin L. LncRNA RPL34-AS1 suppresses the proliferation, migration and invasion of esophageal squamous cell carcinoma via targeting miR-575/ACAA2 axis. BMC Cancer 2022; 22:1017. [PMID: 36162992 PMCID: PMC9511711 DOI: 10.1186/s12885-022-10104-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/19/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are abnormally expressed in a broad type of cancers and play significant roles that regulate tumor development and metastasis. However, the pathological roles of lncRNAs in esophageal squamous cell carcinoma (ESCC) remain largely unknown. Here we aimed to investigate the role and regulatory mechanism of the novel lncRNA RPL34-AS1 in the development and progression of ESCC. METHODS The expression level of RPL34-AS1 in ESCC tissues and cell lines was determined by RT-qPCR. Functional experiments in vitro and in vivo were employed to explore the effects of RPL34-AS1 on tumor growth in ESCC cells. Mechanistically, fluorescence in situ hybridization (FISH), bioinformatics analyses, luciferase reporter assay, RNA immunoprecipitation (RIP) assay and western blot assays were used to detect the regulatory relationship between RPL34-AS1, miR-575 and ACAA2. RESULTS RPL34-AS1 was significantly down-regulated in ESCC tissues and cells, which was negatively correlated with overall survival in ESCC patients. Functionally, upregulation of RPL34-AS1 dramatically suppressed ESCC cell proliferation, colony formation, invasion and migration in vitro, whereas knockdown of RPL34-AS1 elicited the opposite function. Consistently, overexpression of RPL34-AS1 inhibited tumor growth in vivo. Mechanistically, RPL34-AS1 acted as a competing endogenous RNA (ceRNA) of miR-575 to relieve the repressive effect of miR-575 on its target ACAA2, then suppressed the tumorigenesis of ESCC. CONCLUSIONS Our results reveal a role for RPL34-AS1 in ESCC tumorigenesis and may provide a strategy for using RPL34-AS1 as a potential biomarker and an effect target for patients with ESCC.
Collapse
Affiliation(s)
- Hu Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao Street, Nanjing, 210009, People's Republic of China
| | - Enchun Pan
- Huaian Center for Disease Control and Prevention, Huaian, 223001, People's Republic of China
| | - Ying Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao Street, Nanjing, 210009, People's Republic of China
| | - Chao Zhao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao Street, Nanjing, 210009, People's Republic of China
| | - Qiwei Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao Street, Nanjing, 210009, People's Republic of China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao Street, Nanjing, 210009, People's Republic of China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao Street, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
19
|
Wu Y, Liang Y, Li M, Zhang H. Knockdown of long non-coding RNA SNHG8 suppresses the progression of esophageal cancer by regulating miR-1270/BACH1 axis. Bioengineered 2022; 13:3384-3394. [PMID: 35067159 PMCID: PMC8974072 DOI: 10.1080/21655979.2021.2021064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The emerging evidence showed that lncRNAs (long non-coding RNAs) could regulate the progression and affect the malignant behaviors of cancers. LncRNA SNHG8 (small nucleolar RNA host gene 8) has been reported to participate in most cancers development. Here in this study, the role of lncRNA SNHG8 in esophageal cancer was uncovered by a series of functional experiments. The expression pattern of SNHG8 in tumor tissues or cells was first detected by qRT-PCR. Using a lentivirus knockdown shRNA is to repress the expression of SNHG8. Subsequently, the in vitro and in vivo experiments were utilized to evaluate whether the malignant behaviors of esophageal cancer were influenced by knockdown SNHG8. The results indicated that lncRNA SNHG8 should be a cancer-promoting factor with a relatively high expression level in esophageal cancer. Moreover, knockdown SNHG8 inhibited the cell viability and induced cell apoptosis in KYSE30 and TE-1 cells. In addition, based on the results of the binding site analysis and the luciferase reporter system, SNHG8 functions by the miR-1270/BACH1 axis. The follow-up experiments verified that lncRNA SNHG8 could down-regulate the expression of miR-1270 to increase the BACH1 expression. Finally, we confirmed that knockdown SNHG8 retarded the progression of esophageal cancer with a xenograft model. To sum up, our findings suggested that lncRNA SNHG8 is a cancer-promoting factor in esophageal cancer. Knockdown SNHG8 could suppress the progression of esophageal cancer, which implies SNHG8 could be used as a therapeutic target in esophageal cancer.
Collapse
Affiliation(s)
- Yonghong Wu
- Department of Medical Insurance and Price, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Yan Liang
- Hematology Department, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Min Li
- Gastroenterology Department, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Haidong Zhang
- Oncology Department, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| |
Collapse
|
20
|
Ganini C, Amelio I, Bertolo R, Candi E, Cappello A, Cipriani C, Mauriello A, Marani C, Melino G, Montanaro M, Natale ME, Tisone G, Shi Y, Wang Y, Bove P. Serine and one-carbon metabolisms bring new therapeutic venues in prostate cancer. Discov Oncol 2021; 12:45. [PMID: 35201488 PMCID: PMC8777499 DOI: 10.1007/s12672-021-00440-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
Serine and one-carbon unit metabolisms are essential biochemical pathways implicated in fundamental cellular functions such as proliferation, biosynthesis of important anabolic precursors and in general for the availability of methyl groups. These two distinct but interacting pathways are now becoming crucial in cancer, the de novo cytosolic serine pathway and the mitochondrial one-carbon metabolism. Apart from their role in physiological conditions, such as epithelial proliferation, the serine metabolism alterations are associated to several highly neoplastic proliferative pathologies. Accordingly, prostate cancer shows a deep rearrangement of its metabolism, driven by the dependency from the androgenic stimulus. Several new experimental evidence describes the role of a few of the enzymes involved in the serine metabolism in prostate cancer pathogenesis. The aim of this study is to analyze gene and protein expression data publicly available from large cancer specimens dataset, in order to further dissect the potential role of the abovementioned metabolism in the complex reshaping of the anabolic environment in this kind of neoplasm. The data suggest a potential role as biomarkers as well as in cancer therapy for the genes (and enzymes) belonging to the one-carbon metabolism in the context of prostatic cancer.
Collapse
Affiliation(s)
- Carlo Ganini
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- IDI-IRCCS, Rome, Italy
| | - Ivano Amelio
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
| | - Riccardo Bertolo
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- San Carlo di Nancy Hospital, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- IDI-IRCCS, Rome, Italy
| | - Angela Cappello
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- IDI-IRCCS, Rome, Italy
| | - Chiara Cipriani
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- San Carlo di Nancy Hospital, Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
| | - Carla Marani
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- San Carlo di Nancy Hospital, Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
| | - Manuela Montanaro
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
| | - Maria Emanuela Natale
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- San Carlo di Nancy Hospital, Rome, Italy
| | - Giuseppe Tisone
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
| | - Yufang Shi
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
- The First Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, 199 Renai Road, Suzhou, 215123 Jiangsu China
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Pierluigi Bove
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- San Carlo di Nancy Hospital, Rome, Italy
| |
Collapse
|