1
|
Yoon ML, Chun H, Lee H, Seo W, Lee JY, Yoon JH. Identification and Validation of Serum Biomarkers to Improve Colorectal Cancer Diagnosis. Cancer Med 2024; 13:e70460. [PMID: 39628390 PMCID: PMC11615507 DOI: 10.1002/cam4.70460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/16/2024] [Accepted: 11/16/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND The pressing need for reliable biomarkers in colorectal cancer (CRC) diagnosis and prognosis is a major global health concern. Current diagnostic methods rely heavily on invasive procedures like colonoscopy, and existing biomarkers such as Carbohydrate Antigen 19-9 (CA19-9) and Carcinoembryonic Antigen (CEA) exhibit limitations in accuracy and specificity. AIMS This study aims to identify and validate novel biomarkers that can enhance the early detection and diagnostic precision of CRC while overcoming the shortcomings of conventional biomarkers. MATERIALS AND METHODS Leveraging advancements in genomic and proteomic technologies, gene expression datasets were obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). We identified differentially expressed genes (DEGs) and conducted further analyses, including Gene Ontology (GO) enrichment and Protein-Protein Interaction (PPI) network construction. Five promising biomarkers-INHBA, MMP7, PSAT1, SLC7A5, and TGFBI-were selected based on their robust performance in Receiver Operating Characteristic (ROC) curve analysis. Serum concentrations of these biomarkers were measured in 200 CRC patients and 100 healthy controls. RESULTS The study revealed significantly elevated expression levels of the selected biomarkers in CRC tissues compared to normal tissues. Additionally, serum concentrations of INHBA, MMP7, PSAT1, SLC7A5, and TGFBI were notably higher in CRC patients than in healthy individuals, with Area Under the Curve (AUC) values ranging from 0.8361 to 0.9869 indicating high diagnostic accuracy. Optimal cutoff values for diagnosis ranged from 38.9 pg/mL to 280.7 pg/mL, yielding sensitivity and specificity values between 74.5% and 92.9%. DISCUSSION The findings underscore the potential of INHBA, MMP7, PSAT1, SLC7A5, and TGFBI as effective non-invasive biomarkers for CRC detection. Their elevated serum concentrations and robust discriminatory abilities highlight their promise in improving diagnostic accuracy and patient outcomes compared to traditional biomarkers. CONCLUSION The identification and validation of these novel biomarkers represent a significant advancement in CRC diagnosis and management. Further studies are required to validate their clinical applicability in larger cohorts and to elucidate their functional roles in CRC pathogenesis, ultimately enhancing diagnostic strategies and personalized treatment approaches.
Collapse
Affiliation(s)
- Minha Lea Yoon
- Clinical Trial CenterGangnam St. Peter's HospitalSeoulRepublic of Korea
| | - Hyelim Chun
- Clinical Trial CenterGangnam St. Peter's HospitalSeoulRepublic of Korea
| | - HyunJu Lee
- Clinical Trial CenterGangnam St. Peter's HospitalSeoulRepublic of Korea
| | - WooJeong Seo
- Clinical Trial CenterGangnam St. Peter's HospitalSeoulRepublic of Korea
| | - Jung Young Lee
- Clinical Trial CenterGangnam St. Peter's HospitalSeoulRepublic of Korea
| | - Jung Hwan Yoon
- Department of PathologyCollege of Medicine, The Catholic University of KoreaSeoulRepublic of Korea
| |
Collapse
|
2
|
Deng W, Zhong L, Ye S, Luo J, Ren G, Huang J, Zhuang X. Mir22hg facilitates ferritinophagy-mediated ferroptosis in sepsis by recruiting the m6A reader YTHDC1 and enhancing Angptl4 mRNA stability. J Bioenerg Biomembr 2024; 56:405-418. [PMID: 38842666 PMCID: PMC11217081 DOI: 10.1007/s10863-024-10022-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Ferritinophagy-mediated ferroptosis plays a crucial role in fighting pathogen aggression. The long non-coding RNA Mir22hg is involved in the regulation of ferroptosis and aberrantly overexpression in lipopolysaccharide (LPS)-induced sepsis mice, but whether it regulates sepsis through ferritinophagy-mediated ferroptosis is unclear. METHODS Mir22hg was screened by bioinformatics analysis. Ferroptosis was assessed by assaying malondialdehyde (MDA), reactive oxygen species (ROS), and Fe2+ levels, glutathione (GSH) activity, as well as ferroptosis-related proteins GPX4 and SLC3A2 by using matched kits and performing western blot. Ferritinophagy was assessed by Lyso tracker staining and FerroOrange staining, immunofluorescence analysis of Ferritin and LC-3, and western blot analysis of LC-3II/I, p62, FTH1, and NCOA4. The bind of YTH domain containing 1 (YTHDC1) to Mir22hg or angiopoietin-like-4 (Angptl4) was verified by RNA pull-down and/or immunoprecipitation (RIP) assays. RESULTS Mir22hg silencing lightened ferroptosis and ferritinophagy in LPS-induced MLE-12 cells and sepsis mouse models, as presented by the downregulated MDA, ROS, Fe2+, NCOA4, and SLC3A2 levels, upregulated GPX4, GSH, and FTH1 levels, along with a decrease in autophagy. Mir22hg could bind to the m6A reader YTHDC1 without affecting its expression. Mechanistically, Mir22hg enhanced Angptl4 mRNA stability through recruiting the m6A reader YTHDC1. Furthermore, Angptl4 overexpression partly overturned Mir22hg inhibition-mediated effects on ferroptosis and ferritinophagy in LPS-induced MLE-12 cells. CONCLUSION Mir22hg contributed to in ferritinophagy-mediated ferroptosis in sepsis via recruiting the m6A reader YTHDC1 and strengthening Angptl4 mRNA stability, highlighting that Mir22hg may be a potential target for sepsis treatment based on ferroptosis.
Collapse
Affiliation(s)
- Wenlong Deng
- Emergency of Department, SSL Central Hospital of Dongguan City, No.1 Xianglong Road, Shilong Town, Dongguan, 523326, China.
| | - Liang Zhong
- Emergency of Department, SSL Central Hospital of Dongguan City, No.1 Xianglong Road, Shilong Town, Dongguan, 523326, China
| | - Shupei Ye
- Emergency of Department, SSL Central Hospital of Dongguan City, No.1 Xianglong Road, Shilong Town, Dongguan, 523326, China
| | - Jiajing Luo
- Emergency of Department, SSL Central Hospital of Dongguan City, No.1 Xianglong Road, Shilong Town, Dongguan, 523326, China
| | - Guobin Ren
- Emergency of Department, SSL Central Hospital of Dongguan City, No.1 Xianglong Road, Shilong Town, Dongguan, 523326, China
| | - Junhao Huang
- Emergency of Department, SSL Central Hospital of Dongguan City, No.1 Xianglong Road, Shilong Town, Dongguan, 523326, China
| | - Xiaolei Zhuang
- Emergency of Department, SSL Central Hospital of Dongguan City, No.1 Xianglong Road, Shilong Town, Dongguan, 523326, China
| |
Collapse
|
3
|
Esmaeili N, Bakheet A, Tse W, Liu S, Han X. Interaction of the intestinal cytokines-JAKs-STAT3 and 5 axes with RNA N6-methyladenosine to promote chronic inflammation-induced colorectal cancer. Front Oncol 2024; 14:1352845. [PMID: 39136000 PMCID: PMC11317299 DOI: 10.3389/fonc.2024.1352845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 06/25/2024] [Indexed: 08/15/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers, with a high mortality rate worldwide. Mounting evidence indicates that mRNA modifications are crucial in RNA metabolism, transcription, processing, splicing, degradation, and translation. Studies show that N6-methyladenosine (m6A) is mammalians' most common epi-transcriptomic modification. It has been demonstrated that m6A is involved in cancer formation, progression, invasion, and metastasis, suggesting it could be a potential biomarker for CRC diagnosis and developing therapeutics. Cytokines, growth factors, and hormones function in JAK/STAT3/5 signaling pathway, and they could regulate the intestinal response to infection, inflammation, and tumorigenesis. Reports show that the JAK/STAT3/5 pathway is involved in CRC development. However, the underlying mechanism is still unclear. Signal Transducer and Activator of Transcription 3/5 (STAT3, STAT5) can act as oncogenes or tumor suppressors in the context of tissue types. Also, epigenetic modifications and mutations could alter the balance between pro-oncogenic and tumor suppressor activities of the STAT3/5 signaling pathway. Thus, exploring the interaction of cytokines-JAKs-STAT3 and/or STAT5 with mRNA m6A is of great interest. This review provides a comprehensive overview of the characteristics and functions of m6A and JAKs-STAT3/5 and their relationship with gastrointestinal (GI) cancers.
Collapse
Affiliation(s)
- Nardana Esmaeili
- Division of Hematology and Oncology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU) School of Medicine, Cleveland, OH, United States
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU) School of Medicine, Cleveland, OH, United States
| | - Ahmed Bakheet
- Division of Hematology and Oncology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU) School of Medicine, Cleveland, OH, United States
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU) School of Medicine, Cleveland, OH, United States
| | - William Tse
- Division of Hematology and Oncology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU) School of Medicine, Cleveland, OH, United States
| | - Shujun Liu
- Division of Hematology and Oncology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU) School of Medicine, Cleveland, OH, United States
| | - Xiaonan Han
- Division of Hematology and Oncology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU) School of Medicine, Cleveland, OH, United States
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU) School of Medicine, Cleveland, OH, United States
- Cancer Genomics and Epigenomics Program, Case Comprehensive Cancer Center, Case Western Reserve University (CWRU), Cleveland, OH, United States
| |
Collapse
|
4
|
Yang J, Liang F, Zhang F, Zhao H, Gong Q, Gao N. Recent advances in the reciprocal regulation of m 6A modification with non-coding RNAs and its therapeutic application in acute myeloid leukemia. Pharmacol Ther 2024; 259:108671. [PMID: 38830387 DOI: 10.1016/j.pharmthera.2024.108671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
N6-methyladenosine (m6A) is one of the most common modifications of RNA in eukaryotic cells and is involved in mRNA metabolism, including stability, translation, maturation, splicing, and export. m6A also participates in the modification of multiple types of non-coding RNAs, such as microRNAs, long non-coding RNAs, and circular RNAs, thereby affecting their metabolism and functions. Increasing evidence has revealed that m6A regulators, such as writers, erasers, and readers, perform m6A-dependent modification of ncRNAs, thus affecting cancer progression. Moreover, ncRNAs modulate m6A regulators to affect cancer development and progression. In this review, we summarize recent advances in understanding m6A modification and ncRNAs and provide insights into the interaction between m6A modification and ncRNAs in cancer. We also discuss the potential clinical applications of the mechanisms underlying the interplay between m6A modifications and ncRNAs in acute myeloid leukemia (AML). Therefore, clarifying the mutual regulation between m6A modifications and ncRNAs is of great significance to identify novel therapeutic targets for AML and has great clinical application prospects.
Collapse
Affiliation(s)
- Jiawang Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China; Chinese Phramcological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi 563000, Guizhou, China
| | - Feng Liang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China; Chinese Phramcological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi 563000, Guizhou, China
| | - Fenglin Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China; Chinese Phramcological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi 563000, Guizhou, China
| | - Hailong Zhao
- Department of Pathophysiology, Zunyi Medical University, Zunyi 563000, Guizhou, China.
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China; Chinese Phramcological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi 563000, Guizhou, China.
| | - Ning Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China; Chinese Phramcological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi 563000, Guizhou, China.
| |
Collapse
|
5
|
Wang B, Hou C, Yu X, Liu J, Wang J. The prognostic value of sialylation-related long non-coding RNAs in lung adenocarcinoma. Sci Rep 2024; 14:8879. [PMID: 38632255 PMCID: PMC11024174 DOI: 10.1038/s41598-024-59130-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
There has been increasing interest in the role of epigenetic modification in cancers recently. Among the various modifications, sialylation has emerged as a dominant subtype implicated in tumor progression, metastasis, immune evasion, and chemoresistance. The prognostic significance of sialylation-related molecules has been demonstrated in colorectal cancer. However, the potential roles and regulatory mechanisms of sialylation in lung adenocarcinoma (LUAD) have not been thoroughly investigated. Through Pearson correlation, univariate Cox hazards proportional regression, and random survival forest model analyses, we identified several prognostic long non-coding RNAs (lncRNAs) associated with aberrant sialylation and tumor progression, including LINC00857, LINC00968, LINC00663, and ITGA9-AS1. Based on the signatures of four lncRNAs, we classified patients into two clusters with different landscapes using a non-negative matrix factorization approach. Collectively, patients in Cluster 1 (C1) exhibited worse prognoses than those in Cluster 2 (C2), as well as heavier tumor mutation burden. Functional enrichment analysis showed the enrichment of several pro-tumor pathways in C1, differing from the upregulated Longevity and programmed cell death pathways in C2. Moreover, we profiled immune infiltration levels of important immune cell lineages in two subgroups using MCPcounter scores and single sample gene set enrichment analysis scores, revealing a relatively immunosuppressive microenvironment in C1. Risk analysis indicated that LINC00857 may serve as a pro-tumor regulator, while the other three lncRNAs may be protective contributors. Consistently, we observed upregulated LINC00857 in C1, whereas increased expressive levels of LINC00968, LINC00663, and ITGA9-AS1 were observed in C2. Finally, drug sensitivity analysis suggested that patients in the two groups may benefit from different therapeutic strategies, contributing to precise treatment in LUAD. By integrating multi-omics data, we identified four core sialylation-related lncRNAs and successfully established a prognostic model to distinguish patients with different characterizations. These findings may provide some insights into the underlying mechanism of sialylation, and offer a new stratification way as well as clinical guidance in LUAD.
Collapse
Grants
- 2022ZD08 National Traditional Chinese Medicine Inheritance and Innovation Center, the First Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, China
- 2022ZD08 National Traditional Chinese Medicine Inheritance and Innovation Center, the First Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, China
- 2022ZD08 National Traditional Chinese Medicine Inheritance and Innovation Center, the First Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, China
- 20241105 Administration of Traditional Chinese Medicine of Guangdong Province, China
- 20241105 Administration of Traditional Chinese Medicine of Guangdong Province, China
- 20221402 Science and Technology Planning Project of Guangdong Province, China
- 20221402 Science and Technology Planning Project of Guangdong Province, China
- 20221402 Science and Technology Planning Project of Guangdong Province, China
Collapse
Affiliation(s)
- Beiru Wang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Chengyu Hou
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Xiang Yu
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Jiaxin Liu
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Jiyong Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.
| |
Collapse
|
6
|
Zhang J, Liu X, Gao Y. FTO protein regulates the TGF-β signalling pathway through RNA N6-methyladenosine modification to induce unexplained recurrent spontaneous abortion. FEBS J 2024; 291:1545-1559. [PMID: 38245815 DOI: 10.1111/febs.17053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/26/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
Recent studies have revealed the involvement of RNA m6A modification in embryonic development; however, the relationship between aberrant RNA m6A modification and unexplained recurrent spontaneous abortion (URSA) remains unclear. In this study, we analysed the level of RNA m6A modification in trophoblasts using dot blot, RNA m6A quantification, and MeRIP assays. By integrating data from the GEO database, RNA-Seq, and MeRIP-Seq, we examined the aberrant expression of m6A methyltransferases and their downstream molecules in chorionic villus (placental) tissues. RNA pull-down, RIP, and electrophoretic mobility shift assay were used to analyse the binding relationship between the YTHDC1 protein and MEG3. Additionally, RNA stability and BrU immunoprecipitation chase assays were utilised to elucidate the regulation of MEG3 stability by YTHDC1. ChIP and DNA pull-down RNA experiments were performed to elucidate the mechanism by which MEG3 targets EZH2 to the TGF-β1 promoter. The results showed that the expression of the m6A demethylase FTO protein was significantly increased in URSA trophoblasts, leading to inhibition of the MEG3 m6A modification and weakening of the stabilising effect of the m6A binding protein YTHDC1 on MEG3. Furthermore, MEG3 was found to bind simultaneously with the EZH2 protein and the TGF-β1 gene promoter, enabling the localisation of EZH2 protein to the TGF-β1 gene promoter and subsequent inhibition of TGF-β1 gene expression. In summary, our findings elucidate the mechanism by which FTO protein regulates the MEG3-TGF-β signalling pathway, thereby suppressing trophoblast invasion and proliferation in URSA trophoblast cells. These findings provide new insights for the treatment of URSA.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Reproductive Medicine, Obstetrics and Gynecology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University), China
| | - Xinqiong Liu
- Department of Reproductive Medicine, Obstetrics and Gynecology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University), China
| | - Yali Gao
- Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University), China
| |
Collapse
|
7
|
Ramasamy D, Thippannah M, Maharajan HRP, Balaiah M, Seshadri RA, Kodous AS, Herceg Z, Mehta A, Rao AKDM, Mani S. Transcriptome-wide profiling identifies colon cancer-associated m6A transcripts and potential RNA methyl modifiers. Mol Biol Rep 2024; 51:299. [PMID: 38345740 DOI: 10.1007/s11033-024-09217-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/05/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND N6-methyladenosine (m6A) is a prevalent and crucial RNA methylation modification that plays a significant role in various biological and pathological processes. The dysregulation of m6A has been linked to the initiation, progression, and metastasis of several cancer types, including colon cancer. The transcriptome of colon cancer indeed provides insight into dysregulated coding and non-coding RNAs, but it does not reveal the mechanisms, such as m6A modifications, that determine post-transcriptional and pre-translational regulations. This study using MeRIP sequencing aims to explain the distribution of m6A modification across altered gene expression and its association with colon cancer. METHODS AND RESULTS The levels of m6A in different colon cancer cell lines were quantified and correlated with the expression of m6A modifiers such as writers, readers, and erasers. Our results showed that global m6A levels in colon cancer were associated with METTL14, YTHDF2, and YTHDC1. We performed Epi-transcriptome profiling of m6A in colon cancer cell lines using Methylated RNA Immunoprecipitation (MeRIP) sequencing. The differential methylation analysis revealed 7312 m6A regions among the colon cancer cell lines. Our findings indicated that the m6A RNA methylation modifications were mainly distributed in the last exonic and 3' untranslated regions. We also discovered that non-coding RNAs such as miRNA, lncRNA, and circRNA carry m6A marks. Gene set enrichment and motif analysis suggested a strong association of m6A with post-transcriptional events, particularly splicing control. Overall, our study sheds light on the potential role of m6A in colon cancer and highlights the importance of further investigation in this area. CONCLUSION This study reports m6A enrichment in the last exonic regions and 3' UTRs of mRNA transcripts in colon cancer. METTL14, YTHDF2, and YTHDC1 were the most significant modifiers in colon cancer cells. The functions of m6A-modified genes were found to be RNA methylation and RNA capping. Overall, the study illustrates the transcriptome-wide distribution of m6A and its eminent role in mRNA splicing and translation control of colon cancer.
Collapse
Affiliation(s)
- Deepa Ramasamy
- Department of Molecular Oncology, Cancer Institute (W.I.A), Chennai, Tamil Nadu, 600036, India
| | - Megha Thippannah
- Department of Molecular Oncology, Cancer Institute (W.I.A), Chennai, Tamil Nadu, 600036, India
| | | | - Meenakumari Balaiah
- Department of Molecular Oncology, Cancer Institute (W.I.A), Chennai, Tamil Nadu, 600036, India
| | | | - Ahmad S Kodous
- Department of Molecular Oncology, Cancer Institute (W.I.A), Chennai, Tamil Nadu, 600036, India
- Radiation Biology Department, National Centre for Radiation Research & Technology, Egyptian Atomic-Energy Authority, P.O. Box 8029, Cairo, Egypt
| | - Zdenko Herceg
- Epigenomics Group, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Anurag Mehta
- Department of Research, Rajiv Gandhi Cancer Institute and Research Centre, Sector 5, Rohini, Delhi, 110085, India
| | | | - Samson Mani
- Department of Molecular Oncology, Cancer Institute (W.I.A), Chennai, Tamil Nadu, 600036, India.
- Department of Research, Rajiv Gandhi Cancer Institute and Research Centre, Sector 5, Rohini, Delhi, 110085, India.
| |
Collapse
|
8
|
Han W, Xiong W, Sun W, Liu W, Zhang Y, Li C, Gu N, Shen Y, Qiu Z, Li C, Zhao Y, Zhao R. YTHDC1 Mitigates Apoptosis in Bone Marrow Mesenchymal Stem Cells by Inhibiting NfƙBiα and Augmenting Cardiac Function Following Myocardial Infarction. Cell Transplant 2024; 33:9636897241290910. [PMID: 39466658 PMCID: PMC11528794 DOI: 10.1177/09636897241290910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 10/30/2024] Open
Abstract
The therapeutic efficacy of bone marrow mesenchymal stem cells (BMSCs) in myocardial infarction (MI) is hindered by poor cell survival. This study explored the role of N6-methyladenosine (m6A) regulation, specifically YTHDC1, in improving BMSC transplantation for MI. By screening m6A-related regulators in hypoxia and serum deprivation (HSD)-induced BMSC apoptosis, YTHDC1 was found to be downregulated. Overexpression of Ythdc1 in BMSCs reduced apoptosis markers, reactive oxygen species (ROS) release, and improved cell survival under HSD conditions. Conversely, Ythdc1 knockdown enhanced apoptosis. In rat MI models, transplantation of Ythdc1-overexpressing BMSCs improved cardiac function and reduced myocardial fibrosis. Mechanistically, YTHDC1 interacts with nuclear factor kappa B (NF-κB) inhibitor-alpha mRNA, suggesting its involvement in BMSC survival pathways. This study identifies YTHDC1 as a potential target to enhance BMSC efficacy in MI therapy.
Collapse
Affiliation(s)
- Weiyu Han
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Weidong Xiong
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Weixing Sun
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Cardiology, People’s Hospital of Honghuagang District, Zunyi, China
| | - Weiwei Liu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yu Zhang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chaofu Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ning Gu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Youcheng Shen
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhimei Qiu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chaozhong Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ranzun Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
9
|
Wang J, Zhu L, Zhang Q, Xia T, Yao W, Wei L. LincRNA-P21 knockdown facilitates esophageal squamous cell carcinoma cell progression by upregulating cadherin 5 via YTH domain containing 1. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1797-1805. [PMID: 37766459 PMCID: PMC10686791 DOI: 10.3724/abbs.2023154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/19/2023] [Indexed: 09/29/2023] Open
Abstract
LincRNA-P21 is a tumor suppressor in esophageal squamous cell carcinoma (ESCC). Cell adhesion modules play vital roles in cell-cell and cell-extracellular matrix (ECM) interactions and malignant cancer progression. In this study, we investigate whether lincRNA-P21 exerts its functions by regulating the cell adhesion molecule cadherin 5 (CDH5) in ESCC. Moreover, the RNA binding protein (RBP) mediators of lincRNA-P21 and CDH5 are further examined. Cell viability, growth and migratory ability are assessed by calcein-AM/PI double staining, CCK-8, EdU, Transwell, and wound healing assays. The expression of collagen I and fibronectin is examined by immunofluorescence (IF). LincRNA-P21 and CDH5 are quantified by RT-qPCR and western blot analysis. Potential lincRNA-P21 targets are identified by RNA sequencing. RBPs that can interact with lincRNA-P21 and CDH5 are identified by RNA immunoprecipitation (RIP) assay. LincRNA-P21 knockdown increases cell viability, growth, cell migration, and collagen I and fibronectin expression in ESCC cells. LincRNA-P21 depletion induces the dysregulation of 316 genes, including CDH5, in TE-1 cells. CDH5 is identified as a downstream molecule of lincRNA-P21 given its close correlation with cell adhesion, ECM reconstruction, and cancer progression. LincRNA-P21 exerts its functions by negatively regulating CDH5 expression. YTH domain containing 1 (YTHDC1) mediates the regulatory effect of lincRNA-P21 on CDH5. LincRNA-P21 knockdown elevates cell viability and growth, promotes cell migration, and induces ECM reorganization by upregulating CDH5 via RBP YTHDC1 in ESCC.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Thoracic SurgeryHenan Provincial People’s HospitalPeople’s Hospital of Zhengzhou UniversitySchool of Clinical MedicineHenan UniversityZhengzhou450003China
| | - Li Zhu
- Department of Thoracic SurgeryZhengzhou University People’s HospitalHenan Provincial People’s HospitalZhengzhou450003China
| | - Quan Zhang
- Department of Thoracic SurgeryHenan Provincial People’s HospitalPeople’s Hospital of Zhengzhou UniversitySchool of Clinical MedicineHenan UniversityZhengzhou450003China
| | - Tian Xia
- Department of Thoracic SurgeryHenan Provincial People’s HospitalPeople’s Hospital of Zhengzhou UniversitySchool of Clinical MedicineHenan UniversityZhengzhou450003China
| | - Wenjian Yao
- Department of Thoracic SurgeryHenan Provincial People’s HospitalPeople’s Hospital of Zhengzhou UniversitySchool of Clinical MedicineHenan UniversityZhengzhou450003China
| | - Li Wei
- Department of Thoracic SurgeryHenan Provincial People’s HospitalPeople’s Hospital of Zhengzhou UniversitySchool of Clinical MedicineHenan UniversityZhengzhou450003China
| |
Collapse
|
10
|
Aldayyeni H, Hjazi A, Shahab S, Gupta J, Alsaab HO, Motea YH, Alazbjee AAA, Romero-Parra RM, Obaid RF, Hussien BM, Hosseini-Fard SR. Functions, mechanisms, and clinical applications of lncRNA LINC00857 in cancer pathogenesis. Hum Cell 2023; 36:1656-1671. [PMID: 37378889 DOI: 10.1007/s13577-023-00936-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Emerging data indicated that long noncoding RNAs (lncRNAs) are crucial players in the biological processes via regulating epigenetics, transcription, and protein translation. A novel lncRNA, LINC00857, was indicated to upregulate in several types of cancer. In addition, LINC00857 was functionally related to the modulation of the cancer-linked behaviors, including invasion, migration, proliferation, epithelial-mesenchymal transition (EMT), cell cycle, and apoptosis. The importance of LINC00857 in cancer onset and development proposed that LINC00857 has major importance in the cancer progression and may be considered as a novel prognostic/diagnostic biomarker as well as a treatment target. Here, we retrospectively investigate the available progress in biomedical research investigating the functions of LINC00857 in cancer, focusing on finding the molecular mechanisms affecting various cancer-related behaviors and exploring its clinical applications.
Collapse
Affiliation(s)
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Sana Shahab
- Department of Business Administration, College of Business Administration, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, 21944, Saudi Arabia
| | | | | | | | - Rasha Fadhel Obaid
- Department of Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Meng Q, Schatten H, Zhou Q, Chen J. Crosstalk between m6A and coding/non-coding RNA in cancer and detection methods of m6A modification residues. Aging (Albany NY) 2023; 15:6577-6619. [PMID: 37437245 PMCID: PMC10373953 DOI: 10.18632/aging.204836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/15/2023] [Indexed: 07/14/2023]
Abstract
N6-methyladenosine (m6A) is one of the most common and well-known internal RNA modifications that occur on mRNAs or ncRNAs. It affects various aspects of RNA metabolism, including splicing, stability, translocation, and translation. An abundance of evidence demonstrates that m6A plays a crucial role in various pathological and biological processes, especially in tumorigenesis and tumor progression. In this article, we introduce the potential functions of m6A regulators, including "writers" that install m6A marks, "erasers" that demethylate m6A, and "readers" that determine the fate of m6A-modified targets. We have conducted a review on the molecular functions of m6A, focusing on both coding and noncoding RNAs. Additionally, we have compiled an overview of the effects noncoding RNAs have on m6A regulators and explored the dual roles of m6A in the development and advancement of cancer. Our review also includes a detailed summary of the most advanced databases for m6A, state-of-the-art experimental and sequencing detection methods, and machine learning-based computational predictors for identifying m6A sites.
Collapse
Affiliation(s)
- Qingren Meng
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, The Second Hospital Affiliated with the Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Qian Zhou
- International Cancer Center, Shenzhen University Medical School, Shenzhen, Guangdong Province, China
| | - Jun Chen
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, The Second Hospital Affiliated with the Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| |
Collapse
|
12
|
Zhang N, Sun Y, Mei Z, He Z, Gu S. Novel insights into mutual regulation between N 6-methyladenosine modification and LncRNAs in tumors. Cancer Cell Int 2023; 23:127. [PMID: 37365581 DOI: 10.1186/s12935-023-02955-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
N6-methyladenosine (m6A), one of the most common RNA methylation modifications, has emerged in recent years as a new layer of the regulatory mechanism controlling gene expression in eukaryotes. As a reversible epigenetic modification, m6A not only occurs on mRNAs but also on Long non-coding RNAs (LncRNAs). As we all known, despite LncRNAs cannot encode proteins, they affect the expression of proteins by interacting with mRNAs or miRNAs, thus playing important roles in the occurrence and development of a variety of tumors. Up to now, it has been widely accepted that m6A modification on LncRNAs affects the fate of the corresponding LncRNAs. Interestingly, levels and functions of m6A modifications are also mediated by LncRNAs through affecting the m6A methyltransferases (METTL3, METTL14, WTAP, METTL16, etc.), demethylases (FTO, ALKBH5) and methyl-binding proteins (YTHDFs, YTHDCs, IGF2BPs, HNRNPs, etc.), which are collectively referred to as "m6A regulators". In this review, we summarized the mutual regulation mechanisms between N6-methyladenosine modification and LncRNAs in cancer progression, metastasis, invasion and drug resistance. In detail, we focus on the specific mechanisms of m6A modification, which is mediated by methyltransferases and demethylases, involves in the regulation of LncRNA levels and functions in the first part. And section two intensively displays the mediation roles of LncRNAs in m6A modification via changing the regulatory proteins. At last part, we described the interaction effects between LncRNAs and methyl-binding proteins of m6A modification during various tumor occurrence and development.
Collapse
Affiliation(s)
- Nan Zhang
- School of Public Health, Institute of Preventive Medicine, Dali University, No. 22, Wanhua Road, Dali, 671000, Yunnan, People's Republic of China
| | - Yifei Sun
- School of Public Health, Institute of Preventive Medicine, Dali University, No. 22, Wanhua Road, Dali, 671000, Yunnan, People's Republic of China
| | - Zongqin Mei
- School of Public Health, Institute of Preventive Medicine, Dali University, No. 22, Wanhua Road, Dali, 671000, Yunnan, People's Republic of China
| | - Zuoshun He
- School of Public Health, Institute of Preventive Medicine, Dali University, No. 22, Wanhua Road, Dali, 671000, Yunnan, People's Republic of China.
| | - Shiyan Gu
- School of Public Health, Institute of Preventive Medicine, Dali University, No. 22, Wanhua Road, Dali, 671000, Yunnan, People's Republic of China.
| |
Collapse
|
13
|
Yan B, Li X, Peng M, Zuo Y, Wang Y, Liu P, Ren W, Jin X. The YTHDC1/GLUT3/RNF183 axis forms a positive feedback loop that modulates glucose metabolism and bladder cancer progression. Exp Mol Med 2023; 55:1145-1158. [PMID: 37258572 PMCID: PMC10318083 DOI: 10.1038/s12276-023-00997-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 02/09/2023] [Accepted: 02/24/2023] [Indexed: 06/02/2023] Open
Abstract
Aberrant glucose metabolism is a characteristic of bladder cancer. Hyperglycemia contributes to the development and progression of bladder cancer. However, the underlying mechanism by which hyperglycemia promotes the aggressiveness of cancers, especially bladder cancer, is still incompletely understood. N6-methyladenosine (m6A) modification is a kind of methylation modification occurring at the N6 position of adenosine that is important for the pathogenesis of urological tumors. Recently, it was found that the m6A reader YTHDC1 is regulated by high-glucose conditions. In our study, we revealed that YTHDC1 is not only regulated by high-glucose conditions but is also downregulated in bladder cancer tissue and associated with the prognosis of cancer. We also showed that YTHDC1 suppresses the malignant progression of and the glycolytic process in bladder cancer cells in an m6A-dependent manner and determined that this effect is partially mediated by GLUT3. Moreover, GLUT3 was found to destabilize YTHDC1 by upregulating RNF183 expression. In summary, we identified a novel YTHDC1/GLUT3/RNF183 feedback loop that regulates disease progression and glucose metabolism in bladder cancer. Collectively, this study provides new insight regarding the pathogenesis of bladder cancer under hyperglycemic conditions and might reveal ideal candidates for the development of drugs for bladder cancer.
Collapse
Affiliation(s)
- Bin Yan
- Department of Urology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
- Uro-Oncology Institute of Central South University, 410011, Changsha, Hunan, China
| | - Xurui Li
- Department of Urology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
- Uro-Oncology Institute of Central South University, 410011, Changsha, Hunan, China
| | - Mou Peng
- Department of Urology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
- Uro-Oncology Institute of Central South University, 410011, Changsha, Hunan, China
| | - Yali Zuo
- Department of Urology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
| | - Pian Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| | - Weigang Ren
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, 410005, Changsha, Hunan, China.
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China.
- Uro-Oncology Institute of Central South University, 410011, Changsha, Hunan, China.
| |
Collapse
|
14
|
Song M, Liu J. Circ_0067717 promotes colorectal cancer cell growth, invasion and glutamine metabolism by serving as a miR-497-5p sponge to upregulate SLC7A5. Histol Histopathol 2023; 38:53-64. [PMID: 35818779 DOI: 10.14670/hh-18-494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) have been shown to exert vital functions in colorectal cancer (CRC) development. However, the role of circ_0067717 in CRC progression remains to be elucidated. METHODS The expression of circ_0067717, microRNA (miR)-497-5p and solute carrier family 7 member 5 (SLC7A5) was analyzed by quantitative real-time PCR. Cell proliferation, apoptosis and invasion were determined by cell counting kit 8 assay, EdU assay, flow cytometry and transwell assay. Protein expression was examined using western blot analysis. Glutamine metabolism was assessed by measuring glutamine consumption, α-ketoglutarate production and glutamate production. The interaction between miR-497-5p and circ_0067717 or SLC7A5 was identified by dual-luciferase reporter assay. Xenograft tumor models were constructed to confirm the role of circ_0067717 in CRC tumorigenesis in vivo. RESULTS Our data revealed that circ_0067717 was upregulated in CRC tissues and cells, and its knockdown restrained CRC cell proliferation, invasion, glutamine metabolism, and promoted apoptosis. MiR-497-5p was lowly expressed in CRC and it could be sponged by circ_0067717. MiR-497-5p inhibitor eliminated the regulation of circ_0067717 knockdown on CRC cell function. SLC7A5 was targeted by miR-497-5p and was positively regulated by circ_0067717. MiR-497-5p overexpression suppressed CRC cell growth, invasion and glutamine metabolism, and SLC7A5 was able to revoke this effect. Animal experiments showed that interference of circ_0067717 reduced CRC tumor growth. CONCLUSION Our research pointed out that circ_0067717 facilitated CRC development depending on the regulation of the miR-497-5p/SLC7A5 axis, providing a novel insight into CRC treatment.
Collapse
Affiliation(s)
- Mo Song
- Department of Anorectal Surgery, Hengshui People's Hospital, Hengshui, China.
| | - Jipan Liu
- Department of Anorectal Surgery, Hengshui People's Hospital, Hengshui, China
| |
Collapse
|
15
|
m 6A-modified circFNDC3B inhibits colorectal cancer stemness and metastasis via RNF41-dependent ASB6 degradation. Cell Death Dis 2022; 13:1008. [PMID: 36446779 PMCID: PMC9709059 DOI: 10.1038/s41419-022-05451-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/30/2022]
Abstract
Colorectal cancer (CRC) is the third most frequently diagnosed cancer with unfavorable clinical outcomes worldwide. circFNDC3B plays as a tumor suppressor in CRC, however, the mechanism of circFNDC3B in CRC remains ambiguous. The stem-like properties of CRC cells were detected by the evaluation of stemness markers, sphere formation assay and flow cytometry. qRT-PCR, FISH, IHC, and western blotting assessed the expression and localization of circFNDC3B, RNF41, ASB6, and stemness markers in CRC. The metastatic capabilities of CRC cells were examined by wound healing and Transwell assays, as well as in vivo liver metastasis model. Bioinformatics analysis, RNA immunoprecipitation (RIP), RNA pull-down assay and co-IP were used to detect the associations among circFNDC3B, FXR2, RNF41, and ASB6. Downregulated circFNDC3B was associated with unfavorite survival in CRC patients, and circFNDC3B overexpression suppressed CRC stemness and metastasis. Mechanistically, studies revealed that YTHDC1 facilitated cytoplasmic translocation of m6A-modified circFNDC3B, and circFNDC3B enhanced RNF41 mRNA stability and expression via binding to FXR2. circFNDC3B promoted ASB6 degradation through RNF41-mediated ubiquitination. Functional studies showed that silencing of RNF41 counteracted circFNDC3B-suppressed CRC stemness and metastasis, and ASB6 overexpression reversed circFNDC3B- or RNF41-mediated regulation of CRC stemness and metastasis. Elevated ASB6 was positively correlated with unfavorite survival in CRC patients. In vivo experiments further showed that circFNDC3B or RNF41 overexpression repressed tumor growth, stemness and liver metastasis via modulating ASB6. Taken together, m6A-modified circFNDC3B inhibited CRC stemness and metastasis via RNF41-dependent ASB6 degradation. These findings provide novel insights and important clues for targeted therapeutic strategies of CRC.
Collapse
|
16
|
Roh J, Im M, Chae Y, Kang J, Kim W. The Involvement of Long Non-Coding RNAs in Glutamine-Metabolic Reprogramming and Therapeutic Resistance in Cancer. Int J Mol Sci 2022; 23:ijms232314808. [PMID: 36499136 PMCID: PMC9738059 DOI: 10.3390/ijms232314808] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
Metabolic alterations that support the supply of biosynthetic molecules necessary for rapid and sustained proliferation are characteristic of cancer. Some cancer cells rely on glutamine to maintain their energy requirements for growth. Glutamine is an important metabolite in cells because it not only links to the tricarboxylic acid cycle by producing α-ketoglutarate by glutaminase and glutamate dehydrogenase but also supplies other non-essential amino acids, fatty acids, and components of nucleotide synthesis. Altered glutamine metabolism is associated with cancer cell survival, proliferation, metastasis, and aggression. Furthermore, altered glutamine metabolism is known to be involved in therapeutic resistance. In recent studies, lncRNAs were shown to act on amino acid transporters and glutamine-metabolic enzymes, resulting in the regulation of glutamine metabolism. The lncRNAs involved in the expression of the transporters include the abhydrolase domain containing 11 antisense RNA 1, LINC00857, plasmacytoma variant translocation 1, Myc-induced long non-coding RNA, and opa interacting protein 5 antisense RNA 1, all of which play oncogenic roles. When it comes to the regulation of glutamine-metabolic enzymes, several lncRNAs, including nuclear paraspeckle assembly transcript 1, XLOC_006390, urothelial cancer associated 1, and thymopoietin antisense RNA 1, show oncogenic activities, and others such as antisense lncRNA of glutaminase, lincRNA-p21, and ataxin 8 opposite strand serve as tumor suppressors. In addition, glutamine-dependent cancer cells with lncRNA dysregulation promote cell survival, proliferation, and metastasis by increasing chemo- and radio-resistance. Therefore, understanding the roles of lncRNAs in glutamine metabolism will be helpful for the establishment of therapeutic strategies for glutamine-dependent cancer patients.
Collapse
Affiliation(s)
- Jungwook Roh
- Department of Science Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Republic of Korea
| | - Mijung Im
- Department of Science Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Republic of Korea
| | - Yeonsoo Chae
- Department of Science Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Republic of Korea
| | - JiHoon Kang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Wanyeon Kim
- Department of Science Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Republic of Korea
- Department of Biology Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Republic of Korea
- Correspondence: ; Tel.: +82-43-230-3750
| |
Collapse
|
17
|
The functions of N6-methyladenosine (m6A) RNA modifications in colorectal cancer. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:235. [PMID: 36175777 DOI: 10.1007/s12032-022-01827-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/17/2022] [Indexed: 10/14/2022]
Abstract
Colorectal cancers (CRC), which includes colon cancer (CC) and rectal cancer (RC), are some of the most common malignant tumors that are prone to distant metastasis. Its high incidence rate and high mortality rate have attracted much attention. In recent years, epigenetics has attracted increasing attention and has been the focus of many research studies. N6-methyladenosine(m6A) RNA modifications can modify eukaryotic mRNA to impact metabolism. The changes in the m6A regulatory genes are related to the occurrence and development of CRC and play an important role in the pathogenesis of CRC. The effect of m6A RNA modification is regulated by its related regulatory factors ("writer", "eraser", "reader"). In this review, we comprehensively analyzed the effect of m6A methylation on CRC and the relationship between the expression of related regulatory factors and the development and occurrence of CRC. Then, we summarized the roles of m6A and its regulatory factors in CRC and its potential clinical value, which provides a basis for further research on the mechanism of m6A methylation in CRC.
Collapse
|
18
|
Ren X, Liu J, Wang R, Liu X, Ma X, Lu Z, Hu Z, Zheng M, Ma J, Li J. Exploring the oncogenic roles of LINC00857 in pan-cancer. Front Pharmacol 2022; 13:996686. [PMID: 36160408 PMCID: PMC9498830 DOI: 10.3389/fphar.2022.996686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
Although aberrant LINC00857 expression may play a key role in oncogenesis, no research has analyzed the pan-cancer oncogenic roles of LINC00857, particularly in tumor immunology. Here, we integrated data from several databases to analyze the characteristics of LINC00857 in pan-cancer. We found that LINC00857 was overexpressed and correlated with a poor prognosis in a variety of cancers. Furthermore, high-expression of LINC00857 was negatively associated with immune cell infiltration and immune checkpoint gene expression. Notably, LINC00857 expression was negatively related to microsatellite instability and tumor mutation burden in colorectal cancer, implying poor reaction to immunotherapy when LINC00857 was highly expressed. Targeting LINC00857 could dramatically impair the proliferative ability of colorectal cancer cells. After RNA-sequencing in HCT116 cells, gene set enrichment analysis showed that LINC00857 may accelerate cancer progression by inhibiting the ferroptosis pathway and promoting glycolipid metabolism in colorectal cancer. Screening by weighted gene co-expression network analysis determined PIWIL4 as a target of LINC00857, which also performed an immunosuppressive role in colorectal cancer. Based on the structure of PIWIL4, a number of small molecule drugs were screened out by virtual screening and sensitivity analysis. In summary, LINC00857 expression was closely correlated with an immunosuppressive microenvironment and may be a novel diagnostic and prognostic biomarker for diverse cancers. The LINC00857/PIWIL4 axis may be predictive biomarkers for immunotherapy and valuable molecular targets for malignant tumors.
Collapse
Affiliation(s)
- Xiaomin Ren
- Department of Oncology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Jing Liu
- Department of Oncology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Rui Wang
- Department of Oncology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Xinling Liu
- Department of Hematology, Laboratory for Stem Cell and Regenerative Medicine, Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Xiaolin Ma
- Department of Oncology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Zhong Lu
- Department of Oncology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Zhenbo Hu
- Department of Hematology, Laboratory for Stem Cell and Regenerative Medicine, Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Mingzhu Zheng
- Department of Oncology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Jingang Ma
- Department of Oncology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Jiaqiu Li
- Department of Oncology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
- *Correspondence: Jiaqiu Li,
| |
Collapse
|
19
|
Chen P, Zeng Z, Wang J, Cao W, Song C, Lei S, Li Y, Ren Z. Long noncoding RNA LINC00857 promotes pancreatic cancer proliferation and metastasis by regulating the miR-130b/RHOA axis. Cell Death Discov 2022; 8:198. [PMID: 35418193 PMCID: PMC9008000 DOI: 10.1038/s41420-022-01008-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of long noncoding RNAs (lncRNAs) is involved in the pathogenesis and progression of pancreatic cancer (PC). In the current study, we investigated the role and molecular mechanism of LINC00857 in PC. The expression of LINC00857 in PC was analyzed by bioinformatics analysis and qRT-PCR, and the relationship between LINC00857 expression and clinical characteristics of patients of PC was analyzed by Fisher's exact test. Gain- and loss-of-function assays were performed to determine the biological function of LINC00857 in PC. The relationship between LINC00857, miR-130b, and RHOA were determined by RNA pull-down assay, luciferase assay, and qRT-PCR. Our results demonstrated that LINC00857 expression was elevated in PC, and high expression of LINC00857 was positively associated with tumor diameter, T stage, and lymph node metastasis. LINC00857 promoted the proliferation and mobility of PC cells in vitro and in vivo. Mechanistically, LINC00857 acts as a sponge for miR-130b and decreases its expression. miR-130b exhibits tumor suppressor functions in PC, and RHOA was identified as the key target gene of miR-130b. The functions induced by LINC00857 in PC cells were dependent on the miR-130b/RHOA axis. In conclusion, the current study indicated that LINC00857 promotes PC tumorigenesis and metastasis by modulating the miR-130b/RHOA axis, implying that LINC00857 might be a new therapeutic target for PC.
Collapse
Affiliation(s)
- Peng Chen
- Department of General Surgery, Guang'an People's Hospital, Guang'an, Sichuan, China
| | - Zhirui Zeng
- Basic Medical College of Guizhou Medical University, Guiyang, Guizhou, China
| | - Jie Wang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wenpeng Cao
- Basic Medical College of Guizhou Medical University, Guiyang, Guizhou, China
| | - Chunzhuo Song
- Department of Hepatobiliary Surgery, The Second affiliated Hospital of Army Medical University, Chongqing, China
| | - Shan Lei
- Basic Medical College of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yichuan Li
- Department of General Surgery, Guang'an People's Hospital, Guang'an, Sichuan, China.
| | - Zhangxia Ren
- Department of General Surgery, Guang'an People's Hospital, Guang'an, Sichuan, China.
| |
Collapse
|
20
|
Vaasjo LO. LncRNAs and Chromatin Modifications Pattern m6A Methylation at the Untranslated Regions of mRNAs. Front Genet 2022; 13:866772. [PMID: 35368653 PMCID: PMC8968631 DOI: 10.3389/fgene.2022.866772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/28/2022] [Indexed: 12/16/2022] Open
Abstract
New roles for RNA in mediating gene expression are being discovered at an alarming rate. A broad array of pathways control patterning of N6-methyladenosine (m6A) methylation on RNA transcripts. This review comprehensively discusses long non-coding RNAs (lncRNAs) as an additional dynamic regulator of m6A methylation, with a focus on the untranslated regions (UTRs) of mRNAs. Although there is extensive literature describing m6A modification of lncRNA, the function of lncRNA in guiding m6A writers has not been thoroughly explored. The independent control of lncRNA expression, its heterogeneous roles in RNA metabolism, and its interactions with epigenetic machinery, alludes to their potential in dynamic patterning of m6A methylation. While epigenetic regulation by histone modification of H3K36me3 has been demonstrated to pattern RNA m6A methylation, these modifications were specific to the coding and 3′UTR regions. However, there are observations that 5′UTR m6A is distinct from that of the coding and 3′UTR regions, and substantial evidence supports the active regulation of 5′UTR m6A methylation. Consequently, two potential mechanisms in patterning the UTRs m6A methylation are discussed; (1) Anti-sense lncRNA (AS-lncRNA) can either bind directly to the UTR, or (2) act indirectly via recruitment of chromatin-modifying complexes to pattern m6A. Both pathways can guide the m6A writer complex, facilitate m6A methylation and modulate protein translation. Findings in the lncRNA-histone-m6A axis could potentially contribute to the discovery of new functions of lncRNAs and clarify lncRNA-m6A findings in translational medicine.
Collapse
Affiliation(s)
- Lee O. Vaasjo
- Cellular and Molecular Biology, Tulane University, New Orleans, LA, United States
- Neuroscience Program, Brain Institute, Tulane University, New Orleans, LA, United States
- *Correspondence: Lee O. Vaasjo,
| |
Collapse
|
21
|
Fang X, Miao C, Zeng T, Chu W, Zheng Y, Sun X, Yin X, Li Y. Role of m 5 C RNA methylation regulators in colorectal cancer prognosis and immune microenvironment. J Clin Lab Anal 2022; 36:e24303. [PMID: 35212022 PMCID: PMC8993619 DOI: 10.1002/jcla.24303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 12/24/2022] Open
Abstract
Background RNA modification has become one of the hot topics of research as it can be used for tumor prognosis. However, its role in various biological processes is still poorly understood. The aim of this study was to investigate the role of m5C and m1A regulators on colorectal cancer prognosis using bioinformatics tools. The association between these regulators and differences in patient survival as well as the clinicopathological characteristics and tumor immune microenvironment in colorectal cancer tissues were assessed. Methods We selected publicly available colorectal cancer data sets from The Cancer Genome Atlas and used the “limma” package in R to identify differentially expressed genes. The least absolute shrinkage and selection operator regression model was used to calculate the prognostic risk, and a risk prediction model was constructed, to help assess the prognostic values of the differentially expressed genes. Finally, using TISCH and TIMER, we assessed the extent of cellular infiltration in colorectal cancer. Results We explored NSUN6 and DNMT3A expression using UALCAN and HPA and found that their expression is significantly increased in colorectal cancer tissues and correlated with sex and TP53 mutation status. Moreover, we found NSUN6 and DNMT3A were related to the infiltration of six major immune cells, with DNMT3A being closely related to dendritic cells, CD4+ T cells, and B cells, whereas NSUN6 to B cells and CD8+ T cells. Conclusion Our findings suggest that m5C regulators can predict the clinical prognostic risk and regulate the tumor immune microenvironment in colorectal cancer.
Collapse
Affiliation(s)
- Xiaojie Fang
- Department of Anorectal Surgery, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenyun Miao
- Department of TCM Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Tianni Zeng
- Department of Medical Oncology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Weijian Chu
- Department of Anorectal Surgery, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Zheng
- Department of Anorectal Surgery, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Xi Sun
- Department of Anorectal Surgery, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Yin
- Department of Anorectal Surgery, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanyan Li
- Department of Anorectal Surgery, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|