1
|
Yang L, Chen Y, Wu Y. The hypoxia signaling pathway in the development of acute myeloid leukemia. Biomed Pharmacother 2025; 186:117999. [PMID: 40188762 DOI: 10.1016/j.biopha.2025.117999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/06/2025] [Accepted: 03/17/2025] [Indexed: 04/25/2025] Open
Abstract
Acute myeloid leukemia (AML) is the most common acute leukemia in adults. Although advances in targeted agents have greatly improved the prognosis of patients with AML in recent years, those who fail to achieve remission or relapse after remission are still in urgent need of novel therapeutic strategies. The hypoxia signaling pathway is involved in various biological processes, and hypoxia-inducible factor alpha (HIF-α) is considered a potential therapeutic target in AML. The bone marrow microenvironment is known to be in a state of chronic hypoxia, which is important for hematopoietic stem cells to maintain quiescence, and provides leukemic stem cells with a refuge from immune defenses and chemotherapeutic agents. Therefore, this review aims to explore the role of the HIF-α signaling pathway in the development of AML.
Collapse
Affiliation(s)
- Liqing Yang
- Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fujian 350001, China; Department of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
| | - Yuanzhong Chen
- Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fujian 350001, China
| | - Yong Wu
- Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fujian 350001, China; Department of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China.
| |
Collapse
|
2
|
Palczewski MB, Kuschman HP, Hoffman BM, Kathiresan V, Yang H, Glynn SA, Wilson DL, Kool ET, Montfort WR, Chang J, Petenkaya A, Chronis C, Cundari TR, Sappa S, Islam K, McVicar DW, Fan Y, Chen Q, Meerzaman D, Sierk M, Thomas DD. Nitric oxide inhibits ten-eleven translocation DNA demethylases to regulate 5mC and 5hmC across the genome. Nat Commun 2025; 16:1732. [PMID: 39966373 PMCID: PMC11836389 DOI: 10.1038/s41467-025-56928-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
DNA methylation at cytosine bases (5-methylcytosine, 5mC) is a heritable epigenetic mark regulating gene expression. While enzymes that metabolize 5mC are well-characterized, endogenous signaling molecules that regulate DNA methylation machinery have not been described. We report that physiological nitric oxide (NO) concentrations reversibly inhibit the DNA demethylases TET and ALKBH2 by binding to the mononuclear non-heme iron atom forming a dinitrosyliron complex (DNIC) and preventing cosubstrates from binding. In cancer cells treated with exogenous NO, or endogenously synthesizing NO, 5mC and 5-hydroxymethylcytosine (5hmC) increase, with no changes in DNA methyltransferase activity. 5mC is also significantly increased in NO-producing patient-derived xenograft tumors from mice. Genome-wide methylome analysis of cells chronically treated with NO (10 days) shows enrichment of 5mC and 5hmC at gene-regulatory loci, correlating with altered expression of NO-regulated tumor-associated genes. Regulation of DNA methylation is distinctly different from canonical NO signaling and represents a unique epigenetic role for NO.
Collapse
Affiliation(s)
- Marianne B Palczewski
- Department of Pharmaceutical Sciences, University of Illinois Chicago, College of Pharmacy, Chicago, IL, USA
| | - Hannah Petraitis Kuschman
- Department of Pharmaceutical Sciences, University of Illinois Chicago, College of Pharmacy, Chicago, IL, USA
| | - Brian M Hoffman
- Department of Chemistry, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Venkatesan Kathiresan
- Department of Chemistry, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Hao Yang
- Department of Chemistry, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Sharon A Glynn
- Discipline of Pathology, University of Galway, College of Medicine, Nursing and Health Sciences, School of Medicine, Galway, Ireland
| | - David L Wilson
- Department of Chemistry, Stanford University, School of Humanities and Sciences, Stanford, CA, USA
| | - Eric T Kool
- Department of Chemistry, Stanford University, School of Humanities and Sciences, Stanford, CA, USA
| | - William R Montfort
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Jenny Chang
- Dr. Mary and Neal Cancer Center at Houston Methodist, Weill Cornell Medical College, Houston, NY, USA
| | - Aydolun Petenkaya
- Department of Biomedical Engineering, University of Illinois Chicago, College of Engineering, Chicago, IL, USA
| | - Constantinos Chronis
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, College of Medicine, Chicago, IL, USA
| | - Thomas R Cundari
- Department of Chemistry, University of North Texas, Denton, TX, USA
| | - Sushma Sappa
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kabirul Islam
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel W McVicar
- Cancer Innovation Laboratory, National Cancer Institute, Center for Cancer Research, Frederick, MD, USA
| | - Yu Fan
- National Cancer Institute, Center for Biomedical Informatics and Information Technology, Bethesda, USA
| | - Qingrong Chen
- National Cancer Institute, Center for Biomedical Informatics and Information Technology, Bethesda, USA
| | - Daoud Meerzaman
- Cancer Innovation Laboratory, National Cancer Institute, Center for Cancer Research, Frederick, MD, USA
| | - Michael Sierk
- Cancer Innovation Laboratory, National Cancer Institute, Center for Cancer Research, Frederick, MD, USA
| | - Douglas D Thomas
- Department of Pharmaceutical Sciences, University of Illinois Chicago, College of Pharmacy, Chicago, IL, USA.
| |
Collapse
|
3
|
Zhang JX, Hu YX, Liu Y, Chen ZZ, Zheng JT, Qu XT, Zhang Y, Tang WY, Huang SC, Liu CS. Xianglian pill alleviates ulcerative colitis by inhibiting M1 macrophage polarization via modulation of energy metabolite itaconate. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156179. [PMID: 39467429 DOI: 10.1016/j.phymed.2024.156179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Xianglian pill (XLP) is a traditional Chinese medicine (TCM) that is widely used to treat ulcerative colitis (UC). However, its mechanism of action in UC is unclear. PURPOSE This study aimed to investigate the mechanism of action of XLP in treating UC and role of M1 macrophage polarization in this process. STUDY DESIGN In vivo experiments were performed using UC mice while in vitro experiments were conducted using RAW264.7 cells. METHODS Mice were administered 3 % dextran sulfate to induce UC model and then treated with XLP. Changes in histopathology and pro-inflammatory cytokines were evaluated. The levels of M1 macrophages in mesenteric lymph nodes were detected by flow cytometry. Colon metabolite levels were analyzed using an energy metabolomic assay. To assess itaconate's impact, both in vivo (mice) and in vitro (RAW264.7 cells) models were employed. Immunofluorescence staining was used to measure the expression levels of TNF-α, IL-6, and iNOS, while qRT-PCR was utilized to quantify the mRNA levels of TET2, STAT1, and Nfkbiz. RESULTS XLP alleviated ulcerative damage and reduced TNF-α and IL-6 levels in colon, and also downregulated the levels of M1 macrophages and modulated the state of energy metabolism. Specifically, XLP significantly increased ITA level in colonic tissue and this increase was significantly associated with decreased levels of M1 macrophages and alleviation of UC following XLP treatment. Moreover, ITA directly suppressed the polarization of macrophage from M0 to M1 phenotype, accompanied by the decrease of TNF-α, IL-6, and iNOS levels. Further, ITA decreased inflammatory responses in M1 macrophage by inhibiting the TET2/STAT1 and TET2/NF-κB signaling pathways. CONCLUSION XLP can treat UC by suppressing M1 macrophage polarization via increasing the level of energy metabolite ITA.
Collapse
Affiliation(s)
- Jia-Xuan Zhang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou 510515, PR China
| | - Yin-Xia Hu
- Department of Gastroenterology, PLA General Hospital of Southern Theater Command, Guangzhou 510010, PR China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou 510515, PR China
| | - Zi-Zhao Chen
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jin-Ting Zheng
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Xuan-Tong Qu
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Yi Zhang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Wen-Yin Tang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Si-Cong Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China
| | - Chang-Shun Liu
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou 510515, PR China.
| |
Collapse
|
4
|
Lee SCES, Pyo AHA, Koritzinsky M. Longitudinal dynamics of the tumor hypoxia response: From enzyme activity to biological phenotype. SCIENCE ADVANCES 2023; 9:eadj6409. [PMID: 37992163 PMCID: PMC10664991 DOI: 10.1126/sciadv.adj6409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Poor oxygenation (hypoxia) is a common spatially heterogeneous feature of human tumors. Biological responses to tumor hypoxia are orchestrated by the decreased activity of oxygen-dependent enzymes. The affinity of these enzymes for oxygen positions them along a continuum of oxygen sensing that defines their roles in launching reactive and adaptive cellular responses. These responses encompass regulation of all steps in the central dogma, with rapid perturbation of the metabolome and proteome followed by more persistent reprogramming of the transcriptome and epigenome. Core hypoxia response genes and pathways are commonly regulated at multiple inflection points, fine-tuning the dependencies on oxygen concentration and hypoxia duration. Ultimately, shifts in the activity of oxygen-sensing enzymes directly or indirectly endow cells with intrinsic hypoxia tolerance and drive processes that are associated with aggressive phenotypes in cancer including angiogenesis, migration, invasion, immune evasion, epithelial mesenchymal transition, and stemness.
Collapse
Affiliation(s)
- Sandy Che-Eun S. Lee
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Andrea Hye An Pyo
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Marianne Koritzinsky
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Humphries S, Bond DR, Germon ZP, Keely S, Enjeti AK, Dun MD, Lee HJ. Crosstalk between DNA methylation and hypoxia in acute myeloid leukaemia. Clin Epigenetics 2023; 15:150. [PMID: 37705055 PMCID: PMC10500762 DOI: 10.1186/s13148-023-01566-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Acute myeloid leukaemia (AML) is a deadly disease characterised by the uncontrolled proliferation of immature myeloid cells within the bone marrow. Altered regulation of DNA methylation is an important epigenetic driver of AML, where the hypoxic bone marrow microenvironment can help facilitate leukaemogenesis. Thus, interactions between epigenetic regulation and hypoxia signalling will have important implications for AML development and treatment. MAIN BODY This review summarises the importance of DNA methylation and the hypoxic bone marrow microenvironment in the development, progression, and treatment of AML. Here, we focus on the role hypoxia plays on signalling and the subsequent regulation of DNA methylation. Hypoxia is likely to influence DNA methylation through altered metabolic pathways, transcriptional control of epigenetic regulators, and direct effects on the enzymatic activity of epigenetic modifiers. DNA methylation may also prevent activation of hypoxia-responsive genes, demonstrating bidirectional crosstalk between epigenetic regulation and the hypoxic microenvironment. Finally, we consider the clinical implications of these interactions, suggesting that reduced cell cycling within the hypoxic bone marrow may decrease the efficacy of hypomethylating agents. CONCLUSION Hypoxia is likely to influence AML progression through complex interactions with DNA methylation, where the therapeutic efficacy of hypomethylating agents may be limited within the hypoxic bone marrow. To achieve optimal outcomes for AML patients, future studies should therefore consider co-treatments that can promote cycling of AML cells within the bone marrow or encourage their dissociation from the bone marrow.
Collapse
Affiliation(s)
- Sam Humphries
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Danielle R Bond
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Zacary P Germon
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Simon Keely
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Anoop K Enjeti
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
- Department of Haematology, Calvary Mater Hospital, Waratah, NSW, 2298, Australia
- New South Wales Health Pathology, John Hunter Hospital, New Lambton Heights, NSW, 2305, Australia
| | - Matthew D Dun
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Heather J Lee
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia.
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia.
| |
Collapse
|
6
|
Magliulo D, Bernardi R. Hypoxic stress and hypoxia-inducible factors in leukemias. Front Oncol 2022; 12:973978. [PMID: 36059690 PMCID: PMC9435438 DOI: 10.3389/fonc.2022.973978] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
To cope with hypoxic stress, ancient organisms have developed evolutionally conserved programs centered on hypoxia-inducible transcriptional factors (HIFs). HIFs and their regulatory proteins have evolved as rheostats to adapt cellular metabolism to atmospheric oxygen fluctuations, but the amplitude of their transcriptional programs has tremendously increased along evolution to include a wide spectrum of physiological and pathological processes. The bone marrow represents a notable example of an organ that is physiologically exposed to low oxygen levels and where basal activation of hypoxia signaling appears to be intrinsically wired within normal and neoplastic hematopoietic cells. HIF-mediated responses are mainly piloted by the oxygen-labile α subunits HIF1α and HIF2α, and current literature suggests that these genes have a functional specification that remains to be fully defined. Since their identification in the mid 90s, HIF factors have been extensively studied in solid tumors, while their implication in leukemia has lagged behind. In the last decades however, many laboratories have addressed the function of hypoxia signaling in leukemia and obtained somewhat contradictory results. Suppression of HIFs expression in different types of leukemia has unveiled common leukemia-promoting functions such as stimulation of bone marrow neoangiogenesis, maintenance of leukemia stem cells and chemoresistance. However, genetic studies are revealing that a definition of HIF factors as bona fide tumor promoters is overly simplistic, and, depending on the leukemia subtype, the specific oncogenic event, or the stage of leukemia development, activation of hypoxia-inducible genes may lead to opposite consequences. With this article we will provide an updated summary of the studies describing the regulation and function of HIF1α and HIF2α in blood malignancies, spanning from acute to chronic, lymphoid to myeloid leukemias. In discussing these data, we will attempt to provide plausible explanations to contradictory findings and point at what we believe are areas of weakness in which further investigations are urgently needed. Gaining additional knowledge into the role of hypoxia signaling in leukemia appears especially timely nowadays, as new inhibitors of HIF factors are entering the clinical arena for specific types of solid tumors but their utility for patients with leukemia is yet to be determined.
Collapse
Affiliation(s)
| | - Rosa Bernardi
- Laboratory of Preclinical Models of Cancer, Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
7
|
Hua J, Ma C, Wang CH, Wang Y, Feng S, Xiao T, Zhu C. Abnormal GRHL2 Methylation Confers Malignant Progression to Acute Leukemia. Appl Bionics Biomech 2022; 2022:9708829. [PMID: 35855840 PMCID: PMC9288345 DOI: 10.1155/2022/9708829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose Abnormal methylation of Grainyhead-like 2 (GRHL2) is associated with a substantial role in the malignant phenotype of tumor patients. Our present research is aimed at studying the abnormal expression of GRHL2 and the association of methylation in patients with acute leukemia and its relationship with prognosis. Materials and Methods We used quantitative real-time polymerase chain reaction (qRT-PCR) for detecting the aberrant expression level of GRHL2 in 60 patients with acute leukemia and 60 normal controls. We analyzed the significant correlation between the expression level of GRHL2 with clinicopathological features and patients' prognosis in acute leukemia using the corresponding statistical methods. Secondly, we employed qRT-PCR and Western blotting to detect the mRNA and protein levels of GRHL2 in leukemia cell lines. Next, we used methylation-specific polymerase chain reaction (MSP) technology for detecting the methylation of GRHL2 in clinical samples with acute leukemia and cell lines. Then we investigated the demethylating effect of arsenic trioxide and 5-azacitidine on the mRNA and protein expression levels of GRHL2 in cell lines of acute leukemia. Finally, we studied the effects of arsenide trioxide and 5-azacitidine on the proliferation of leukemia cells and the TGF-β signaling pathway. Results We found a lower level of GRHL2 expression not only in acute leukemia patients but also in cell lines when compared with normal controls. At the same time, the expression level of GRHL2 in patients with acute leukemia was significantly correlated with leukocyte count, platelet count, and cytogenetic risk grouping. In addition, the lower GRHL2 expression group showed a significantly lower overall survival rate in acute leukemia patients than that of patients with a higher GRHL2 expression group. Univariate and multivariate analyses revealed that the expression of GRHL2 is an independent risk factor in acute leukemia patients. The methylation level of the GRHL2 promoter region in acute leukemia patients and cell lines was significantly higher than the normal control group, and we found the elevated mRNA and protein levels of GRHL2 in acute leukemia cell lines after the use of the demethylation drug arsenic trioxide and 5-azacitidine. At the same time, arsenide trioxide and 5-azacitidine are associated with the inhibition of cellular proliferation of acute leukemia cells and also promote the elevated expression of TGF-β signaling pathway-linked proteins, including TGF-β, Smad2, Smad3, and Smad4. Conclusion Increased expression and methylation level of GRHL2 are closely associated with the prognosis and malignant phenotype of acute leukemia patients and play an irreplaceable role in the occurrence and development of patients with acute leukemia.
Collapse
Affiliation(s)
- Jing Hua
- Department of Hematology, Shandong Provincial Qianfoshan Hospital, Shandong University, China
| | - Congcong Ma
- Department of Hematology, Liaocheng People's Hospital, Shandong University, China
| | - Chao Hui Wang
- Department of Hematology, Qingdao Haici Medical Group, China
| | - Yan Wang
- Department of Hematology, Shandong Provincial Qianfoshan Hospital, Shandong University, China
| | - Saran Feng
- Department of Hematology, Shandong Provincial Qianfoshan Hospital, Shandong University, China
| | - Taiwu Xiao
- Department of Hematology, Liaocheng People's Hospital, Shandong University, China
| | - ChuanSheng Zhu
- Department of Hematology, Shandong Provincial Qianfoshan Hospital, Shandong University, China
| |
Collapse
|
8
|
Dissecting TET2 Regulatory Networks in Blood Differentiation and Cancer. Cancers (Basel) 2022; 14:cancers14030830. [PMID: 35159097 PMCID: PMC8834528 DOI: 10.3390/cancers14030830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Bone marrow disorders such as leukemia and myelodysplastic syndromes are characterized by abnormal healthy blood cells production and function. Uncontrolled growth and impaired differentiation of white blood cells hinder the correct development of healthy cells in the bone marrow. One of the most frequent alterations that appear to initiate this deregulation and persist in leukemia patients are mutations in epigenetic regulators such as TET2. This review summarizes the latest molecular findings regarding TET2 functions in hematopoietic cells and their potential implications in blood cancer origin and evolution. Our goal was to encompass and interlink up-to-date discoveries of the convoluted TET2 functional network to provide a more precise overview of the leukemic burden of this protein. Abstract Cytosine methylation (5mC) of CpG is the major epigenetic modification of mammalian DNA, playing essential roles during development and cancer. Although DNA methylation is generally associated with transcriptional repression, its role in gene regulation during cell fate decisions remains poorly understood. DNA demethylation can be either passive or active when initiated by TET dioxygenases. During active demethylation, transcription factors (TFs) recruit TET enzymes (TET1, 2, and 3) to specific gene regulatory regions to first catalyze the oxidation of 5mC to 5-hydroxymethylcytosine (5hmC) and subsequently to higher oxidized cytosine derivatives. Only TET2 is frequently mutated in the hematopoietic system from the three TET family members. These mutations initially lead to the hematopoietic stem cells (HSCs) compartment expansion, eventually evolving to give rise to a wide range of blood malignancies. This review focuses on recent advances in characterizing the main TET2-mediated molecular mechanisms that activate aberrant transcriptional programs in blood cancer onset and development. In addition, we discuss some of the key outstanding questions in the field.
Collapse
|