1
|
Zhao Y, Tan F, Zhao J, Zhou S, Luo Y, Gong C. Targeting the Enhanced Sensitivity of Radiotherapy in Cancer: Mechanisms, Applications, and Challenges. MedComm (Beijing) 2025; 6:e70202. [PMID: 40384989 PMCID: PMC12079026 DOI: 10.1002/mco2.70202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 04/10/2025] [Accepted: 04/10/2025] [Indexed: 06/04/2025] Open
Abstract
Cancer is a major public health, societal, and economic challenge worldwide. According to Global Cancer Statistics 2022, it is estimated that by 2050, there will be 35 million new cancer cases globally. Although patient survival rates have improved through various therapeutic approaches, including surgery, chemotherapy, and radiotherapy, treatment efficacy remains limited once tumor metastasis occurs. Among various cancer treatment strategies, radiotherapy plays a crucial role. Along with surgery and chemotherapy, radiotherapy is a cost-effective single-modality treatment, accounting for approximately 5% of total cancer care costs. The use of radiosensitizing agents such as histone deacetylase inhibitors, 2-deoxy-d-glucose, enterolactone, and squalene epoxidase can enhance radiotherapy effectiveness. Recent radiosensitization methods involve physical stimuli and chemical radiosensitizers. However, improving their efficacy, durability, and overcoming radioresistance remain significant challenges. This review first introduces current applications of radiotherapy in cancer treatment, the molecular mechanisms underlying its anticancer effects, and its side effects. Second, it discusses the main types of radiosensitizers, their latest applications, and recent challenges in cancer treatment. Finally, it emphasizes on clinical trials of radiosensitizing agents and explores potential biomarkers for radiotherapy response in cancer. Multifunctional nanoparticles have shown greater clinical applicability than single-functional nanoparticles. Future research will focus on enhancing the drug-carrying capacity of nanomaterials to further improve radiotherapy outcomes.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Department of OncologyDepartment of RadiologyInstitute of Organ TransplantationTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Organ TransplantationMinistry of EducationNHC Key Laboratory of Organ TransplantationKey Laboratory of Organ TransplantationChinese Academy of Medical SciencesOrgan Transplantation Clinical Medical Research Center of Hubei Province WuhanWuhanChina
| | - Fangqin Tan
- Department of OncologyDepartment of RadiologyInstitute of Organ TransplantationTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jiajia Zhao
- Department of StomatologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Shuchang Zhou
- Department of OncologyDepartment of RadiologyInstitute of Organ TransplantationTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yao Luo
- Department of Laboratory MedicineSichuan Clinical Research Center for Laboratory MedicineWest China HospitalSichuan UniversityChengduChina
| | - Chen Gong
- Department of OncologyDepartment of RadiologyInstitute of Organ TransplantationTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
2
|
Geirnaert F, Kerkhove L, Rifi A, Everaert T, Sanders J, Coppens J, Vandenplas H, Corbet C, Gevaert T, Dufait I, De Ridder M. Revisiting hydrogen peroxide as radiosensitizer for solid tumor cells. Radiother Oncol 2025; 203:110692. [PMID: 39716590 DOI: 10.1016/j.radonc.2024.110692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/01/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND AND PURPOSE Tumor hypoxia is the principal cause of clinical radioresistance. Despite its established role as radiosensitizer, hydrogen peroxide (H2O2) encounters clinical limitations due to stability and toxicity concerns. Recent advancements in drug delivery combine H2O2 with sodium hyaluronate (SH), enabling intratumoral administration of H2O2. This study investigates the radiomodulatory pathways of Kochi Oxydol-Radiation for Unresectable Carcinomas (KORTUC) (H2O2 + SH) under hypoxia. MATERIALS AND METHODS CT26 and 4T1 tumor cells were exposed to H2O2, SH and KORTUC under hypoxic conditions. Toxicity levels were determined using MTT and live-cell analysis. KORTUC's radiomodulatory properties were evaluated by colony formation assay and in spheroids. Reactive oxygen species (ROS) levels, DNA damage, apoptosis and ferroptosis were analyzed using flow cytometry. Oxygen consumption rate (OCR) and mitochondrial complex activity were assessed by Seahorse Analyzer. Oxygen levels were investigated using fiber-optic sensors. The in vitro findings were validated in CT26-bearing mice. RESULTS KORTUC demonstrated less cytotoxicity than H2O2-alone. KORTUC radiosensitized hypoxic tumor cells in a dose-dependent manner with enhancement ratios of 3.1 (CT26) and 2.7 (4T1). Dose-dependent OCR reduction following KORTUC exposure correlated with complex I and II inhibition, accompanied by mitochondrial ROS elevation. KORTUC injection into a 2D hypoxic tumor model surged O2 levels. KORTUC radiosensitized CT26-tumors, delaying growth by 14 days. CONCLUSIONS SH in KORTUC mitigates H2O2 cytotoxicity. We demonstrate that KORTUC overcomes hypoxia-induced radioresistance through inhibition of OCR, via complex I- and II-blockade, leading to tumor reoxygenation. Understanding KORTUC's pathways is essential for developing effective cancer combination therapies.
Collapse
Affiliation(s)
- F Geirnaert
- Department of Radiotherapy, UZ Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - L Kerkhove
- Department of Radiotherapy, UZ Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - A Rifi
- Department of Radiotherapy, UZ Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - T Everaert
- Department of Radiotherapy, UZ Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - J Sanders
- Department of Chemical and Physical Health Risks, Sciensano, 1050 Brussels, Belgium; Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - J Coppens
- Department of Radiotherapy, UZ Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - H Vandenplas
- Department of Medical Oncology, UZ Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - C Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 1200 Brussels, Belgium
| | - T Gevaert
- Department of Radiotherapy, UZ Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - I Dufait
- Department of Radiotherapy, UZ Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - M De Ridder
- Department of Radiotherapy, UZ Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium.
| |
Collapse
|
3
|
Cecchi D, Jackson N, Beckham W, Chithrani DB. Improving the Efficacy of Common Cancer Treatments via Targeted Therapeutics towards the Tumour and Its Microenvironment. Pharmaceutics 2024; 16:175. [PMID: 38399237 PMCID: PMC10891984 DOI: 10.3390/pharmaceutics16020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Cancer is defined as the uncontrolled proliferation of heterogeneous cell cultures in the body that develop abnormalities and mutations, leading to their resistance to many forms of treatment. Left untreated, these abnormal cell growths can lead to detrimental and even fatal complications for patients. Radiation therapy is involved in around 50% of cancer treatment workflows; however, it presents significant recurrence rates and normal tissue toxicity, given the inevitable deposition of the dose to the surrounding healthy tissue. Chemotherapy is another treatment modality with excessive normal tissue toxicity that significantly affects patients' quality of life. To improve the therapeutic efficacy of radiotherapy and chemotherapy, multiple conjunctive modalities have been proposed, which include the targeting of components of the tumour microenvironment inhibiting tumour spread and anti-therapeutic pathways, increasing the oxygen content within the tumour to revert the hypoxic nature of the malignancy, improving the local dose deposition with metal nanoparticles, and the restriction of the cell cycle within radiosensitive phases. The tumour microenvironment is largely responsible for inhibiting nanoparticle capture within the tumour itself and improving resistance to various forms of cancer therapy. In this review, we discuss the current literature surrounding the administration of molecular and nanoparticle therapeutics, their pharmacokinetics, and contrasting mechanisms of action. The review aims to demonstrate the advancements in the field of conjugated nanomaterials and radiotherapeutics targeting, inhibiting, or bypassing the tumour microenvironment to promote further research that can improve treatment outcomes and toxicity rates.
Collapse
Affiliation(s)
- Daniel Cecchi
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; (D.C.)
| | - Nolan Jackson
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; (D.C.)
| | - Wayne Beckham
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; (D.C.)
- British Columbia Cancer-Victoria, Victoria, BC V8R 6V5, Canada
| | - Devika B. Chithrani
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; (D.C.)
- Centre for Advanced Materials and Related Technologies, Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
- Department of Computer Science, Mathematics, Physics and Statistics, Okanagan Campus, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|