1
|
Tikhonova MA, Shoeva OY, Tenditnik MV, Akopyan AA, Litvinova EA, Popova NA, Amstislavskaya TG, Khlestkina EK. Antitumor Effects of an Anthocyanin-Rich Grain Diet in a Mouse Model of Lewis Lung Carcinoma. Int J Mol Sci 2024; 25:5727. [PMID: 38891915 PMCID: PMC11171629 DOI: 10.3390/ijms25115727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Functional foods enriched with plant polyphenol anthocyanins attract particular attention due to their health-promoting properties, including antitumor activity. We evaluated the effects of a grain diet rich in anthocyanins in a mouse model of Lewis lung carcinoma. Mice of the C57BL/6 strain were fed with wheat of near-isogenic lines differing in the anthocyanin content for four months prior to tumor transplantation. Although a significant decrease in the size of the tumor and the number of metastases in the lungs was revealed in the groups with both types of grain diet, the highest percentage of animals without metastases and with attenuated cell proliferation in the primary tumor were observed in the mice with the anthocyanin-rich diet. Both grain diets reduced the body weight gain and spleen weight index. The antitumor effects of the grain diets were associated with the activation of different mechanisms: immune response of the allergic type with augmented interleukin(IL)-9 and eotaxin serum levels in mice fed with control grain vs. inhibition of the IL-6/LIF system accompanied by a decrease in the tumor-associated M2 macrophage marker arginase 1 gene mRNA levels and enhanced autophagy in the tumor evaluated by the mRNA levels of Beclin 1 gene. Thus, anthocyanin-rich wheat is suggested as a promising source of functional nutrition with confirmed in vivo antitumor activity.
Collapse
Affiliation(s)
- Maria A. Tikhonova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (IC&G SB RAS), 630090 Novosibirsk, Russia; (O.Y.S.); (T.G.A.)
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia
| | - Olesya Y. Shoeva
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (IC&G SB RAS), 630090 Novosibirsk, Russia; (O.Y.S.); (T.G.A.)
| | - Michael V. Tenditnik
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia
| | - Anna A. Akopyan
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia
| | - Ekaterina A. Litvinova
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia
| | - Nelly A. Popova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (IC&G SB RAS), 630090 Novosibirsk, Russia; (O.Y.S.); (T.G.A.)
- Department of Neuroscience, V. Zelman Institute for Medicine and Psychology, Faculty of Life Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Tamara G. Amstislavskaya
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (IC&G SB RAS), 630090 Novosibirsk, Russia; (O.Y.S.); (T.G.A.)
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia
- Department of Neuroscience, V. Zelman Institute for Medicine and Psychology, Faculty of Life Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Elena K. Khlestkina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (IC&G SB RAS), 630090 Novosibirsk, Russia; (O.Y.S.); (T.G.A.)
- N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources, 190000 St. Petersburg, Russia
| |
Collapse
|
2
|
Choi Y. Animal models to study the pathogenesis and novel therapeutics of oral lichen planus. FRONTIERS IN ORAL HEALTH 2024; 5:1405245. [PMID: 38783985 PMCID: PMC11111855 DOI: 10.3389/froh.2024.1405245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
Oral lichen planus (OLP) is a prevalent oral mucosal disease characterized by an unknown etiology and a complex pathogenesis. Patients with OLP endure a chronic course marked by alternating non-erosive and erosive lesions, with no definitive cure currently available. Particularly challenging is the treatment of recalcitrant erosive OLP, highlighting an urgent need for therapies targeting specific pathogenic pathways. In diseases like OLP, where the etiopathogenesis is intricate and elusive, animal models are indispensable for hypothesis testing and elucidating disease mechanisms. To date, only three animal models for oral lichenoid lesions have been reported in the literature. This Perspective paper evaluates these existing models, along with a novel OLP mouse model introduced at the 3rd International Conference on Oral Mucosal Immunity and Microbiome. The validity of these models is critically assessed, and their potential future applications in advancing our understanding of OLP are discussed.
Collapse
Affiliation(s)
- Youngnim Choi
- Department of Immunology and Molecular Microbiology in Dental Science, Seoul National University School of Dentistry and Dental Research Institute, Seoul, Republic of Korea
| |
Collapse
|
3
|
Matrix Metalloproteinases Shape the Tumor Microenvironment in Cancer Progression. Int J Mol Sci 2021; 23:ijms23010146. [PMID: 35008569 PMCID: PMC8745566 DOI: 10.3390/ijms23010146] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer progression with uncontrolled tumor growth, local invasion, and metastasis depends largely on the proteolytic activity of numerous matrix metalloproteinases (MMPs), which affect tissue integrity, immune cell recruitment, and tissue turnover by degrading extracellular matrix (ECM) components and by releasing matrikines, cell surface-bound cytokines, growth factors, or their receptors. Among the MMPs, MMP-14 is the driving force behind extracellular matrix and tissue destruction during cancer invasion and metastasis. MMP-14 also influences both intercellular as well as cell-matrix communication by regulating the activity of many plasma membrane-anchored and extracellular proteins. Cancer cells and other cells of the tumor stroma, embedded in a common extracellular matrix, interact with their matrix by means of various adhesive structures, of which particularly invadopodia are capable to remodel the matrix through spatially and temporally finely tuned proteolysis. As a deeper understanding of the underlying functional mechanisms is beneficial for the development of new prognostic and predictive markers and for targeted therapies, this review examined the current knowledge of the interplay of the various MMPs in the cancer context on the protein, subcellular, and cellular level with a focus on MMP14.
Collapse
|
4
|
Quintero-Fabián S, Arreola R, Becerril-Villanueva E, Torres-Romero JC, Arana-Argáez V, Lara-Riegos J, Ramírez-Camacho MA, Alvarez-Sánchez ME. Role of Matrix Metalloproteinases in Angiogenesis and Cancer. Front Oncol 2019; 9:1370. [PMID: 31921634 PMCID: PMC6915110 DOI: 10.3389/fonc.2019.01370] [Citation(s) in RCA: 610] [Impact Index Per Article: 101.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/20/2019] [Indexed: 12/15/2022] Open
Abstract
During angiogenesis, new vessels emerge from existing endothelial lined vessels to promote the degradation of the vascular basement membrane and remodel the extracellular matrix (ECM), followed by endothelial cell migration, and proliferation and the new generation of matrix components. Matrix metalloproteinases (MMPs) participate in the disruption, tumor neovascularization, and subsequent metastasis while tissue inhibitors of metalloproteinases (TIMPs) downregulate the activity of these MMPs. Then, the angiogenic response can be directly or indirectly mediated by MMPs through the modulation of the balance between pro- and anti-angiogenic factors. This review analyzes recent knowledge on MMPs and their participation in angiogenesis.
Collapse
Affiliation(s)
- Saray Quintero-Fabián
- Multidisciplinary Research Laboratory, Military School of Graduate of Health, Mexico City, Mexico
| | - Rodrigo Arreola
- Psychiatric Genetics Department, National Institute of Psychiatry "Ramón de la Fuente", Clinical Research Branch, Mexico City, Mexico
| | | | - Julio César Torres-Romero
- Biochemistry and Molecular Genetics Laboratory, Facultad de Química de la Universidad Autónoma de Yucatán, Merida, Mexico
| | - Victor Arana-Argáez
- Pharmacology Laboratory, Facultad de Química de la Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Julio Lara-Riegos
- Biochemistry and Molecular Genetics Laboratory, Facultad de Química de la Universidad Autónoma de Yucatán, Merida, Mexico
| | | | | |
Collapse
|
5
|
Wan J, Cai W, Wang H, Cheng J, Su Z, Wang S, Xu H. Role of type 2 innate lymphoid cell and its related cytokines in tumor immunity. J Cell Physiol 2019; 235:3249-3257. [PMID: 31625163 DOI: 10.1002/jcp.29287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Jie Wan
- Department of Immunology Jiangsu University Zhenjiang China
| | - Wei Cai
- Department of Immunology Jiangsu University Zhenjiang China
| | - Huixuan Wang
- Department of Immunology Jiangsu University Zhenjiang China
| | - Jianjun Cheng
- Department of Immunology Jiangsu University Zhenjiang China
| | - Zhaoliang Su
- Department of Immunology Jiangsu University Zhenjiang China
- The Central Laboratory The Fourth Affiliated Hospital of Jiangsu University Zhenjiang China
| | - Shengjun Wang
- Department of Immunology Jiangsu University Zhenjiang China
- Department of Laboratory Medicine, The Affiliated People's Hospital Jiangsu University Zhenjiang China
| | - Huaxi Xu
- Department of Immunology Jiangsu University Zhenjiang China
| |
Collapse
|
6
|
Vlachostergios PJ, Jakubowski CD, Niaz MJ, Lee A, Thomas C, Hackett AL, Patel P, Rashid N, Tagawa ST. Antibody-Drug Conjugates in Bladder Cancer. Bladder Cancer 2018; 4:247-259. [PMID: 30112436 PMCID: PMC6087439 DOI: 10.3233/blc-180169] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Urothelial carcinoma (UC) is characterized by expression of a plethora of cell surface antigens, thus offering opportunities for specific therapeutic targeting with use of antibody-drug conjugates (ADCs). ADCs are structured from two major constituents, a monoclonal antibody (mAb) against a specific target and a cytotoxic drug connected via a linker molecule. Several ADCs are developed against different UC surface markers, but the ones at most advanced stages of development include sacituzumab govitecan (IMMU-132), enfortumab vedotin (ASG-22CE/ASG-22ME), ASG-15ME for advanced UC, and oportuzumab monatox (VB4-845) for early UC. Several new targets are identified and utilized for novel or existing ADC testing. The most promising ones include human epidermal growth factor receptor 2 (HER2) and members of the fibroblast growth factor receptor axis (FGF/FGFR). Positive preclinical and early clinical results are reported in many cases, thus the next step involves further improving efficacy and reducing toxicity as well as testing combination strategies with approved agents.
Collapse
Affiliation(s)
| | | | - Muhammad J. Niaz
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Aileen Lee
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Charlene Thomas
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Amy L. Hackett
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Priyanka Patel
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Naureen Rashid
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Scott T. Tagawa
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
7
|
Ariyoshi W, Okinaga T, Chaweewannakorn W, Akifusa S, Nisihara T. Mechanisms involved in enhancement of matrix metalloproteinase-9 expression in macrophages by interleukin-33. J Cell Physiol 2017; 232:3481-3495. [PMID: 28105703 DOI: 10.1002/jcp.25809] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 01/13/2023]
Abstract
Endothelial transmigration of macrophages is accomplished by matrix metalloproteinase (MMP)-induced degradation of the basement membrane and extracellular matrix components. Macrophages upregulate MMP-9 expression and secretion upon immunological challenges and require its activity for migration during inflammatory responses. Interleukin (IL)-33 is a recently discovered pro-inflammatory cytokine that belongs to the IL-1 family. The aim of this study was to elucidate the mechanisms underlying IL-33-induced MMP-9 expression in the mouse monocyte/macrophage line RAW264.7. IL-33 increased MMP-9 mRNA and protein expression in RAW264.7 cells. Blockage of IL-33-IL-33 receptor (ST2L) binding suppressed IL-33-mediated induction of MMP-9. IL-33 induced phosphorylation and nuclear translocation of extracellular signal-regulated kinase 1/2 (ERK1/2) and nuclear factor-kappa B (NF-κB). Chromatin immunoprecipitation indicated that IL-33 increased c-fos recruitment to the MMP-9 promoter. Reporter assay findings also revealed that IL-33 stimulated the transcriptional activity of activator protein 1 (AP-1). Pre-treatment of the cells with a specific inhibitor of ERK1/2 and NF-κB attenuated the IL-33-induced activation of AP-1 subunits, transcriptional activity of AP-1, and expression of MMP-9. We also demonstrated that ERK-dependent activation of cAMP response element binding protein (CREB) is a key step for AP-1 activation by IL-33. These results indicate an essential role of ERK/CREB and NF-κB cascades in the induction of MMP-9 in monocytes/macrophages through AP-1 activation.
Collapse
Affiliation(s)
- Wataru Ariyoshi
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Toshinori Okinaga
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Wichida Chaweewannakorn
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, Japan.,Division of Developmental Stomatognathic Function Science, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Sumio Akifusa
- Units of Education on Healthcare Team, School of Oral Health Science, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Tatsuji Nisihara
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
8
|
Serum Levels of IL-1 β , IL-6, TGF- β , and MMP-9 in Patients Undergoing Carotid Artery Stenting and Regulation of MMP-9 in a New In Vitro Model of THP-1 Cells Activated by Stenting. Mediators Inflamm 2015; 2015:956082. [PMID: 26113783 PMCID: PMC4465715 DOI: 10.1155/2015/956082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/07/2015] [Accepted: 05/12/2015] [Indexed: 11/19/2022] Open
Abstract
Inflammation plays an important role in the pathophysiological process after carotid artery stenting (CAS). Monocyte is a significant source of inflammatory cytokines in vascular remodeling. Telmisartan could reduce inflammation. In our study, we first found that, after CAS, the serum IL-1β, IL-6, TGF-β, and MMP-9 levels were significantly increased, but only MMP-9 level was elevated no less than 3 months. Second, we established a new in vitro model, where THP-1 monocytes were treated with the supernatants of human umbilical vein endothelial cells (HUVECs) that were scratched by pipette tips, which mimics monocytes activated by mechanical injury of stenting. The treatment enhanced THP-1 cell adhesion, migration and invasion ability, and the phosphorylation of ERK1/2 and Elk-1 and MMP-9 expression were significantly increased. THP-1 cells pretreated with PD98095 (ERK1/2 inhibitor) attenuated the phosphorylation of ERK1/2 and Elk-1 and upregulation of MMP-9, while pretreatment with telmisartan merely decreased the phosphorylation of Elk-1 and MMP-9 expression. These results suggested that IL-1β, IL-6, TGF-β, and MMP-9 participate in the pathophysiological process after CAS. Our new in vitro model mimics monocytes activated by stenting. MMP-9 expression could be regulated through ERK1/2/Elk-1 pathway, and the protective effects of telmisartan after stenting are partly attributed to its MMP-9 inhibition effects via suppression of Elk-1.
Collapse
|
9
|
Zhu YD, Liu YQ, Qian YY, Zhang H, Li GQ, Yang L. Extracts of Celastrus orbiculatus exhibit anti-proliferative and anti-invasive effects on human gastric adenocarcinoma cells. Chin J Integr Med 2014. [PMID: 25382615 DOI: 10.1007/s11655-014-1951-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To assess the effect of Celastrus orbiculatus (COE) on growth, invasion and migration of human gastric cancer MGC-803 cells and to explore the possible mechanism. METHODS The effect of COE on cell viability, apoptosis, adhesion, invasion and migration were studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, flow cytometric, cell adhesion and transwell assay, respectively. The activity and expression of matrix metalloproteinase-9 (MMP-9) were determined by gelatin zymography, Western blot and quantitative real-time polymerase chain reaction analysis. Meanwhile, effects of COE on the expression of mitogen-activated protein kinases (MAPKs), serine threonine kinase (Akt), nuclear factor κB (NF-κB) were investigated with Western blot analysis. RESULTS COE inhibited proliferation and induced apoptosis of MGC-803 cells in a dose-dependent manner. When treated with low-toxic (below 80 μg/mL) doses of COE, cell adhesion, invasion and migration were markedly suppressed. Furthermore, the gelatinolytic activity and expression of MMP-9 were also remarkably suppressed in a dose-dependent manner. In addition, upstream signaling pathways, including the phosphatidylinositol-3 kinase (PI3K)/Akt and NF-κB, were suppressed by COE. Additionally, the PI3K/Akt inhibitor, LY294002, in treating MGC-803 cells potently suppressed cell invasion and migration as well as expression of MMP-9. Similarly, the combined treatment with COE and LY294002 showed a synergistic effect compared with the treatment with COE or LY294002 alone in MGC-803 cells. CONCLUSIONS COE inhibits invasion and migration of MGC-803 cells by reducing MMP-9 expression. It also inhibit PI3K/Akt and NF-κB signaling pathways, which may offer a novel approach for the treatment of human gastric cancer.
Collapse
Affiliation(s)
- Yao-Dong Zhu
- Institute of Traditional Chinese Medicine and Western Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
| | | | | | | | | | | |
Collapse
|
10
|
Yang CM, Lee IT, Hsu RC, Chi PL, Hsiao LD. NADPH oxidase/ROS-dependent PYK2 activation is involved in TNF-α-induced matrix metalloproteinase-9 expression in rat heart-derived H9c2 cells. Toxicol Appl Pharmacol 2013; 272:431-42. [PMID: 23774252 DOI: 10.1016/j.taap.2013.05.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/16/2013] [Accepted: 05/30/2013] [Indexed: 11/29/2022]
Abstract
TNF-α plays a mediator role in the pathogenesis of chronic heart failure contributing to cardiac remodeling and peripheral vascular disturbances. The implication of TNF-α in inflammatory responses has been shown to be mediated through up-regulation of matrix metalloproteinase-9 (MMP-9). However, the detailed mechanisms of TNF-α-induced MMP-9 expression in rat embryonic-heart derived H9c2 cells are largely not defined. We demonstrated that in H9c2 cells, TNF-α induced MMP-9 mRNA and protein expression associated with an increase in the secretion of pro-MMP-9. TNF-α-mediated responses were attenuated by pretreatment with the inhibitor of ROS (N-acetyl-l-cysteine, NAC), NADPH oxidase [apocynin (APO) or diphenyleneiodonium chloride (DPI)], MEK1/2 (U0126), p38 MAPK (SB202190), JNK1/2 (SP600125), NF-κB (Bay11-7082), or PYK2 (PF-431396) and transfection with siRNA of TNFR1, p47(phox), p42, p38, JNK1, p65, or PYK2. Moreover, TNF-α markedly induced NADPH oxidase-derived ROS generation in these cells. TNF-α-enhanced p42/p44 MAPK, p38 MAPK, JNK1/2, and NF-κB (p65) phosphorylation and in vivo binding of p65 to the MMP-9 promoter were inhibited by U0126, SB202190, SP600125, NAC, DPI, or APO. In addition, TNF-α-mediated PYK2 phosphorylation was inhibited by NAC, DPI, or APO. PYK2 inhibition could reduce TNF-α-stimulated MAPKs and NF-κB activation. Thus, in H9c2 cells, we are the first to show that TNF-α-induced MMP-9 expression is mediated through a TNFR1/NADPH oxidase/ROS/PYK2/MAPKs/NF-κB cascade. We demonstrated that NADPH oxidase-derived ROS generation is involved in TNF-α-induced PYK2 activation in these cells. Understanding the regulation of MMP-9 expression and NADPH oxidase activation by TNF-α on H9c2 cells may provide potential therapeutic targets of chronic heart failure.
Collapse
Affiliation(s)
- Chuen-Mao Yang
- Department of Physiology and Pharmacology and Health Aging Research Center, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan; Heart Failure Center, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan.
| | | | | | | | | |
Collapse
|
11
|
Lee EJ, Lee SJ, Kim S, Cho SC, Choi YH, Kim WJ, Moon SK. Interleukin-5 enhances the migration and invasion of bladder cancer cells via ERK1/2-mediated MMP-9/NF-κB/AP-1 pathway: involvement of the p21WAF1 expression. Cell Signal 2013; 25:2025-38. [PMID: 23770289 DOI: 10.1016/j.cellsig.2013.06.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/04/2013] [Indexed: 10/26/2022]
Abstract
Inflammatory cytokines may be a critical component of epithelial cancer progression. We examined the role of interleukin (IL)-5 in the migration of bladder cancer cells. The expression of IL-5 and its receptor IL-5Rα was enhanced in patients with muscle invasive bladder cancers (MIBC), and then it was detected in bladder cancer cell lines 5637 and T-24. IL-5 increased migration and MMP-9 expression via activation of transcription factors NF-κB and AP-1, and induced activation of ERK1/2 and Jak-Stat signaling in both cells. Treatment with ERK1/2 inhibitor U0126 significantly inhibited induction of migration, MMP-9 expression, and activation of NF-κB and AP-1 in IL-5-treated cells. However, none of the Jak inhibitors affected the IL-5-induced migration of bladder cancer cells. Moreover, gene knockdown for IL-5Rα, using siRNA transfection, suppressed migration, ERK1/2 activation, MMP-9 expression, as well as the binding activation of NF-κB and AP-1 in IL-5-treated bladder cancer cells. Similar results were observed in βc siRNA (si-βc) transfected cells. Unexpectedly, IL-5 treatment resulted in significant induction of p21WAF1 in both cell lines. The p21WAF1-specific small interfering RNA inhibited IL-5-induced cell migration, ERK activity, MMP-9 expression, and activation of NF-κB and AP-1 in bladder cancer cells. The effects of IL-5-induced cell responses were confirmed by transfection of IL-5 gene, which demonstrated that p21WAF1 participates in the induction of cell migration, leading to an increase in ERK1/2-mediated MMP-9 expression through activation of NF-κB and AP-1 in IL-5-treated bladder cancer cells. These unexpected results provide a theoretical basis for the therapeutic targeting of IL-5 in bladder cancer.
Collapse
Affiliation(s)
- Eo-Jin Lee
- Personalized Tumor Engineering Research Center, Department of Urology, Chungbuk National University, Cheongju, Chungbuk 361-763, South Korea
| | | | | | | | | | | | | |
Collapse
|
12
|
Tseng HC, Lee IT, Lin CC, Chi PL, Cheng SE, Shih RH, Hsiao LD, Yang CM. IL-1β promotes corneal epithelial cell migration by increasing MMP-9 expression through NF-κB- and AP-1-dependent pathways. PLoS One 2013; 8:e57955. [PMID: 23505448 PMCID: PMC3591450 DOI: 10.1371/journal.pone.0057955] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 01/29/2013] [Indexed: 11/18/2022] Open
Abstract
Interleukin-1β (IL-1β) plays a critical mediator in the pathogenesis of eye diseases. The implication of IL-1β in inflammatory responses has been shown to be mediated through up-regulation of inflammatory genes, including matrix metalloproteinase-9 (MMP-9). However, the detailed mechanisms of IL-1β-induced MMP-9 expression in Statens Seruminstitut Rabbit Corneal Cells (SIRCs) are largely unclear. Here, we demonstrated that in SIRCs, IL-1β induced MMP-9 promoter activity and mRNA expression associated with an increase in the secretion of pro-MMP-9. IL-1β-induced pro-MMP-9 expression and MMP-9 mRNA levels were attenuated by pretreatment with the inhibitor of MEK1/2 (U0126), JNK1/2 (SP600125), NF-κB (Bay11-7082), or AP-1 (Tanshinone IIA) and transfection with siRNA of p42 or JNK2. Moreover, IL-1β markedly stimulated p42/p44 MAPK and JNK1/2 phosphorylation in SIRCs. In addition, IL-1β also enhanced p42/p44 MAPK translocation from the cytosol into the nucleus. On the other hand, IL-1β induced c-Jun and c-Fos mRNA expression, c-Jun phosphorylation, and AP-1 promoter activity. NF-κB translocation, IκBα degradation, and NF-κB promoter activity were also enhanced by IL-1β. Pretreatment with U0126 or SP600125 inhibited IL-1β-induced AP-1 and NF-κB promoter activity, but not NF-κB translocation from the cytosol into the nucleus. Finally, we established that IL-1β could stimulate SIRCs migration via p42/p44 MAPK-, JNK1/2-, AP-1-, and NF-κB-dependent MMP-9 induction. These results suggested that NF-κB and AP-1 activated by JNK1/2 and p42/p44 MAPK cascade are involved in IL-1β-induced MMP-9 expression in SIRCs.
Collapse
Affiliation(s)
- Hui-Ching Tseng
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - I-Ta Lee
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Pei-Ling Chi
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Shin-Ei Cheng
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Ruey-Horng Shih
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Li-Der Hsiao
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
- * E-mail:
| |
Collapse
|
13
|
Yang CM, Lee IT, Lin CC, Wang CH, Cherng WJ, Hsiao LD. c-Src-dependent MAPKs/AP-1 activation is involved in TNF-α-induced matrix metalloproteinase-9 expression in rat heart-derived H9c2 cells. Biochem Pharmacol 2013; 85:1115-23. [PMID: 23353699 DOI: 10.1016/j.bcp.2013.01.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 10/27/2022]
Abstract
TNF-α plays a critical mediator in the pathogenesis of chronic heart failure contributing to cardiac remodeling and peripheral vascular disturbances. The implication of TNF-α in inflammatory responses has been shown to be mediated through up-regulation of inflammatory genes, including matrix metalloproteinase-9 (MMP-9). However, the detailed mechanisms of TNF-α-induced MMP-9 expression are largely unclear in the heart cells. Here, we demonstrated that in rat embryonic-heart derived H9c2 cells, TNF-α could induce MMP-9 mRNA expression associated with an increase in the secretion of MMP-9, determined by real-time PCR, zymography, and promoter activity assays. TNF-α-mediated responses were attenuated by pretreatment with the inhibitor of c-Src (PP1), EGFR (AG1478), PDGFR (AG1296), PI3K (LY294002), Akt (SH-5), MEK1/2 (U0126), p38 MAPK (SB202190), JNK1/2 (SP600125), or AP-1 (Tanshinone IIA) and transfection with siRNA of c-Src, EGFR, PDGFR, p110, Akt, or c-Jun. TNF-α stimulated c-Src, PDGFR, and EGFR phosphorylation, which were reduced by PP1. In addition, TNF-α-stimulated Akt phosphorylation was inhibited by PP1, AG1478, AG1296, or LY294002. We further demonstrated that TNF-α markedly stimulated p38 MAPK, p42/p44 MAPK, and JNK1/2 phosphorylation via a c-Src/EGFR, PDGFR/PI3K/Akt pathway. Finally, we showed that, in H9c2 cells, TNF-α-stimulated AP-1 promoter activity, c-Jun mRNA expression, and c-Jun phosphorylation were attenuated by PP1, AG1478, AG1296, LY294002, SB202190, SP600125, or U0126. These results suggested that TNF-α-induced MMP-9 expression is mediated through a c-Src/EGFR, PDGFR/PI3K/Akt/MAPKs/AP-1 cascade in H9c2 cells. Consequently, MMP-9 induction may contribute to cell migration and cardiovascular inflammation.
Collapse
Affiliation(s)
- Chuen-Mao Yang
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan.
| | | | | | | | | | | |
Collapse
|