1
|
Liu Z, Zhang X, Ben T, Li M, Jin Y, Wang T, Song Y. Focal adhesion in the tumour metastasis: from molecular mechanisms to therapeutic targets. Biomark Res 2025; 13:38. [PMID: 40045379 PMCID: PMC11884212 DOI: 10.1186/s40364-025-00745-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/11/2025] [Indexed: 03/09/2025] Open
Abstract
The tumour microenvironment is the "hotbed" of tumour cells, providing abundant extracellular support for growth and metastasis. However, the tumour microenvironment is not static and is constantly remodelled by a variety of cellular components, including tumour cells, through mechanical, biological and chemical means to promote metastasis. Focal adhesion plays an important role in cell-extracellular matrix adhesion. An in-depth exploration of the role of focal adhesion in tumour metastasis, especially their contribution at the biomechanical level, is an important direction of current research. In this review, we first summarize the assembly of focal adhesions and explore their kinetics in tumour cells. Then, we describe in detail the role of focal adhesion in various stages of tumour metastasis, especially its key functions in cell migration, invasion, and matrix remodelling. Finally, we describe the anti-tumour strategies targeting focal adhesion and the current progress in the development of some inhibitors against focal adhesion proteins. In this paper, we summarize for the first time that focal adhesion play a positive feedback role in pro-tumour metastatic matrix remodelling by summarizing the five processes of focal adhesion assembly in a multidimensional way. It is beneficial for researchers to have a deeper understanding of the role of focal adhesion in the biological behaviour of tumour metastasis and the potential of focal adhesion as a therapeutic target, providing new ideas for the prevention and treatment of metastases.
Collapse
Affiliation(s)
- Zonghao Liu
- Department of Radiotherapy, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China
- The First Clinical College, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
| | - Xiaofang Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Tianru Ben
- The First Clinical College, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
| | - Mo Li
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China
| | - Yi Jin
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China
| | - Tianlu Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China.
- Department of Radiotherapy, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning Province, 110042, People's Republic of China.
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning Province, 116024, P. R. China.
| | - Yingqiu Song
- Department of Radiotherapy, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China.
- Department of Radiotherapy, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China.
| |
Collapse
|
2
|
Li J, Wang W, Lin Z, Liu Z, Zhang R, Li R, Zhang J, Zheng Y, Qin D, Wu Y, Liu Y. Vinculin: A new target for the diagnosis and treatment of disease. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:157-166. [PMID: 39863082 DOI: 10.1016/j.pbiomolbio.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025]
Abstract
Vinculin, a crucial adhesion plaque protein, plays a significant role in cell morphology and tissue development. Dysregulation of focal adhesion proteins has been linked to numerous diseases, including cardiovascular conditions, gastrointestinal disorders, and cancer. Recent studies increasingly highlight vinculin's involvement in the progression of these diseases; however, a comprehensive review remains lacking. Therefore, an in-depth and timely review is essential to consolidate the latest findings on vinculin's role in disease mechanisms. This study aims to examine how vinculin coordinates a complex network of signaling pathways across various pathological contexts.
Collapse
Affiliation(s)
- Jiqiang Li
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, China
| | - Weiming Wang
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, China
| | - Zipeng Lin
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, China
| | - Zhenyu Liu
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, China
| | - Ruilin Zhang
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, China
| | - Runwen Li
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, China
| | - Jie Zhang
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, China
| | - Youkun Zheng
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, 646000, Luzhou, China
| | - Dalian Qin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, 646000, Luzhou, China
| | - Ya Wu
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, 646000, Luzhou, China; Department of General Surgery, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, China.
| | - Yong Liu
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, 646000, Luzhou, China; Department of General Surgery, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, China.
| |
Collapse
|
3
|
Sun X, Wang S, Wong CC. Mass spectrometry–based proteomics technology in pancreatic cancer research. JOURNAL OF PANCREATOLOGY 2024; 7:145-163. [DOI: 10.1097/jp9.0000000000000152] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has become a significant health concern with increasing incidence and mortality rates over the past few decades. Researchers have turned their attention to cutting-edge mass spectrometry (MS) technology due to its high-throughput and accurate detection capacity, which plays a vital role in understanding the mechanisms and discovering biomarkers for pancreatic diseases. In this review, we comprehensively investigate various methodologies of quantitative and qualitative proteomics MS technologies, alongside bioinformatical platforms employed in pancreatic cancer research. The integration of these optimized approaches provides novel insights into the molecular mechanisms underlying tumorigenesis and disease progression, ultimately facilitating the discovery of potential diagnostic, prognostic biomarkers, and therapeutic targets. The robust MS-based strategy shows promise in paving the way for early diagnosis and personalized medicine for pancreatic cancer patients.
Collapse
Affiliation(s)
- Xue Sun
- First School of Clinical Medicine, Peking University Health Science Center, Peking University, Beijing 100871, China
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Siyuan Wang
- State Key Laboratory of Complex Severe and Rare Diseases, Clinical Research Institute, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Catherine C.L. Wong
- First School of Clinical Medicine, Peking University Health Science Center, Peking University, Beijing 100871, China
- State Key Laboratory of Complex Severe and Rare Diseases, Clinical Research Institute, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
- Tsinghua-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Safari F, Bararpour S, Omidi Chomachaei F. The suppression of cell motility through the reduction of FAK activity and expression of cell adhesion proteins by hAMSCs secretome in MDA-MB-231 breast cancer cells. Invest New Drugs 2024; 42:272-280. [PMID: 38536544 DOI: 10.1007/s10637-024-01434-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/20/2024] [Indexed: 06/11/2024]
Abstract
Breast cancer is a leading cause of death in women worldwide. Cancer therapy based on stem cells is considered as a novel and promising platform. In the present study, we explore the therapeutic effects of human amniotic mesenchymal stromal cells (hAMSCs) through the reduction of focal adhesion kinase (FAK) activity, SHP-2, and cell adhesion proteins such as Paxillin, Vinculin, Fibronectin, Talin, and integrin αvβ3 expression in MDA-MB-231 breast cancer cells. For this purpose, we employed a co-culture system using 6-well plate transwell. After 72 h, hAMSCs-treated MDA-MB-231 breast cancer cells, the activity of focal adhesion kinase (FAK) and the expression of SHP-2 and cell adhesion proteins such as Paxillin, Vinculin, Fibronectin, Talin, and integrin αvβ3 expression were analyzed using western blot. The shape and migration of cells were also analyzed. Based on our results, a significant reduction in tumor cell motility through downregulation of the tyrosine phosphorylation level of FAK (at Y397 and Y576/577 sites) and cell adhesion expression in MDA-MB-231 breast cancer cells was demonstrated. Our findings indicate that hAMSCS secretome has therapeutic effects on cancer cell migration through downregulation of FAK activity and expression of cell adhesion proteins.
Collapse
Affiliation(s)
- Fatemeh Safari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran.
| | - Setareh Bararpour
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | | |
Collapse
|
5
|
Yan M, Zheng H, Yan R, Lang L, Wang Q, Xiao B, Zhang D, Lin H, Jia Y, Pan S, Chen Q. Vinculin Identified as a Potential Biomarker in Hand-Arm Vibration Syndrome Based on iTRAQ and LC-MS/MS-Based Proteomic Analysis. J Proteome Res 2023; 22:2714-2726. [PMID: 37437295 PMCID: PMC10408646 DOI: 10.1021/acs.jproteome.3c00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Indexed: 07/14/2023]
Abstract
Local vibration can induce vascular injuries, one example is the hand-arm vibration syndrome (HAVS) caused by hand-transmitted vibration (HTV). Little is known about the molecular mechanism of HAVS-induced vascular injuries. Herein, the iTRAQ (isobaric tags for relative and absolute quantitation) followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomics approach was applied to conduct the quantitative proteomic analysis of plasma from specimens with HTV exposure or HAVS diagnosis. Overall, 726 proteins were identified in iTRAQ. 37 proteins upregulated and 43 downregulated in HAVS. Moreover, 37 upregulated and 40 downregulated when comparing severe HAVS and mild HAVS. Among them, Vinculin (VCL) was found to be downregulated in the whole process of HAVS. The concentration of vinculin was further verified by ELISA, and the results suggested that the proteomics data was reliable. Bioinformative analyses were used, and those proteins mainly engaged in specific biological processes like binding, focal adhesion, and integrins. The potential of vinculin application in HAVS diagnosis was validated by the receiver operating characteristic curve.
Collapse
Affiliation(s)
- Maosheng Yan
- Guangdong
Province Hospital for Occupational Disease Prevention and Treatment, Guangdong Provincial Key Laboratory of Occupational
Disease Prevention and Treatment, Guangzhou, Guangdong 510230, China
- Department
of Public Health, Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Hanjun Zheng
- Guangdong
Province Hospital for Occupational Disease Prevention and Treatment, Guangdong Provincial Key Laboratory of Occupational
Disease Prevention and Treatment, Guangzhou, Guangdong 510230, China
- Department
of Public Health, Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Rong Yan
- The
Centers for Disease Control and Prevention of Haizhu District, Guangzhou, Guangdong 510230, China
| | - Li Lang
- Guangdong
Province Hospital for Occupational Disease Prevention and Treatment, Guangdong Provincial Key Laboratory of Occupational
Disease Prevention and Treatment, Guangzhou, Guangdong 510230, China
| | - Qia Wang
- Guangdong
Province Hospital for Occupational Disease Prevention and Treatment, Guangdong Provincial Key Laboratory of Occupational
Disease Prevention and Treatment, Guangzhou, Guangdong 510230, China
| | - Bin Xiao
- Guangdong
Province Hospital for Occupational Disease Prevention and Treatment, Guangdong Provincial Key Laboratory of Occupational
Disease Prevention and Treatment, Guangzhou, Guangdong 510230, China
| | - Danying Zhang
- Guangdong
Province Hospital for Occupational Disease Prevention and Treatment, Guangdong Provincial Key Laboratory of Occupational
Disease Prevention and Treatment, Guangzhou, Guangdong 510230, China
| | - Hansheng Lin
- Guangdong
Province Hospital for Occupational Disease Prevention and Treatment, Guangdong Provincial Key Laboratory of Occupational
Disease Prevention and Treatment, Guangzhou, Guangdong 510230, China
| | - Yanxia Jia
- Department
of Public Health, Shanxi Medical University, Tai Yuan, Shanxi 030000, China
| | - Siyu Pan
- Guangdong
Province Hospital for Occupational Disease Prevention and Treatment, Guangdong Provincial Key Laboratory of Occupational
Disease Prevention and Treatment, Guangzhou, Guangdong 510230, China
- Department
of Public Health, Guangdong Pharmaceutical
University, Guangzhou, Guangdong 510230, China
| | - Qingsong Chen
- Department
of Public Health, Guangdong Pharmaceutical
University, Guangzhou, Guangdong 510230, China
| |
Collapse
|
6
|
Naffa R, Padányi R, Ignácz A, Hegyi Z, Jezsó B, Tóth S, Varga K, Homolya L, Hegedűs L, Schlett K, Enyedi A. The Plasma Membrane Ca 2+ Pump PMCA4b Regulates Melanoma Cell Migration through Remodeling of the Actin Cytoskeleton. Cancers (Basel) 2021; 13:cancers13061354. [PMID: 33802790 PMCID: PMC8002435 DOI: 10.3390/cancers13061354] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/08/2021] [Accepted: 03/14/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Earlier we demonstrated that the plasma membrane Ca2+ pump PMCA4b inhibits migration and metastatic activity of BRAF mutant melanoma cells, however, the exact mechanism has not been fully understood. Here we demonstrate that PMCA4b acted through actin cytoskeleton remodeling in generating a low migratory melanoma cell phenotype resulting in increased cell–cell connections, lamellipodia and stress fiber formation. Both proper trafficking and calcium transporting activity of the pump were essential to complete these tasks indicating that controlling Ca2+ concentration levels at specific plasma membrane locations such as the cell front played a role. Our findings suggest that PMCA4b downregulation is likely one of the mechanisms that leads to the perturbed cancer cell cytoskeleton organization resulting in enhanced melanoma cell migration and metastasis. Abstract We demonstrated that the plasma membrane Ca2+ ATPase PMCA4b inhibits migration and metastatic activity of BRAF mutant melanoma cells. Actin dynamics are essential for cells to move, invade and metastasize, therefore, we hypothesized that PMCA4b affected cell migration through remodeling of the actin cytoskeleton. We found that expression of PMCA4b in A375 BRAF mutant melanoma cells induced a profound change in cell shape, cell culture morphology, and displayed a polarized migratory character. Along with these changes the cells became more rounded with increased cell–cell connections, lamellipodia and stress fiber formation. Silencing PMCA4b in MCF-7 breast cancer cells had a similar effect, resulting in a dramatic loss of stress fibers. In addition, the PMCA4b expressing A375 cells maintained front-to-rear Ca2+ concentration gradient with the actin severing protein cofilin localizing to the lamellipodia, and preserved the integrity of the actin cytoskeleton from a destructive Ca2+ overload. We showed that both PMCA4b activity and trafficking were essential for the observed morphology and motility changes. In conclusion, our data suggest that PMCA4b plays a critical role in adopting front-to-rear polarity in a normally spindle-shaped cell type through F-actin rearrangement resulting in a less aggressive melanoma cell phenotype.
Collapse
Affiliation(s)
- Randa Naffa
- Department of Transfusiology, Semmelweis University, H-1089 Budapest, Hungary; (R.N.); (S.T.)
| | - Rita Padányi
- Department of Biophysics and Radiation Biology, Semmelweis University, H-1094 Budapest, Hungary;
| | - Attila Ignácz
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary; (A.I.); (K.S.)
| | - Zoltán Hegyi
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudosok krt.2, H-1117 Budapest, Hungary; (Z.H.); (B.J.); (L.H.)
| | - Bálint Jezsó
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudosok krt.2, H-1117 Budapest, Hungary; (Z.H.); (B.J.); (L.H.)
| | - Sarolta Tóth
- Department of Transfusiology, Semmelweis University, H-1089 Budapest, Hungary; (R.N.); (S.T.)
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | | | - László Homolya
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudosok krt.2, H-1117 Budapest, Hungary; (Z.H.); (B.J.); (L.H.)
| | - Luca Hegedűs
- Department of Thoracic Surgery, Ruhrlandklinik, University Clinic Essen, 45239 Essen, Germany;
| | - Katalin Schlett
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary; (A.I.); (K.S.)
| | - Agnes Enyedi
- Department of Transfusiology, Semmelweis University, H-1089 Budapest, Hungary; (R.N.); (S.T.)
- Correspondence:
| |
Collapse
|
7
|
Wang F, Fang M, Kong M, Wang C, Xu Y. Vinculin presents unfavorable prediction in ovarian cancer and prevents proliferation and migration of ovarian cancer cells. J Biochem Mol Toxicol 2020; 34:e22525. [PMID: 32369671 DOI: 10.1002/jbt.22525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/21/2020] [Accepted: 04/27/2020] [Indexed: 12/24/2022]
Abstract
The influences of Vinculin on many cancers were blurry, including ovarian cancer. Thus, we concentrated on the efficient role of Vinculin in ovarian cancer and explored the potential mechanism(s). Expression of Vinculin in ovarian cancer tissues and cell lines was investigated by real-time polymerase chain reaction, immunohistochemistry, and Western blot. The Kaplan-Meier manner with the logrank was performed to assess overall survival. We further evaluated the relations between Vinculin expression and clinicopathological features of ovarian cancer. Moreover, Vinculin was overexpressed or silenced by respectively transfection with pcDNA-Vinculin or small interfering (si-Vinculin) into human ovarian cancer cell line Caov3 or human ovarian epithelial cell line (HOEpiC). Thereafter, cell viability, cell apoptosis, and migration were checked by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide, flow cytometer, and scratch assay, respectively. Likewise, the apoptosis- and migration-related proteins were distinguished by Western blot. Compared to the nontumor tissues or HOEpiC cells, Vinculin was significantly lower expressed in the ovarian cancer tissues and cells. Furthermore, we found out that Vinculin was primarily distributed at the cell membrane and cytoplasm. Moreover, Vinculin was negatively associated with International Federation of Gynecology and Obstetrics stage, grade, and distant metastasis. Overexpression of Vinculin dramatically weakened cell viability and migration and stimulated apoptosis. Conversely, suppression of Vinculin showed opposite results. Vinculin presents unfavorable prediction in ovarian cancer and inhibits ovarian cancer proliferation and migration.
Collapse
Affiliation(s)
- Fei Wang
- Department of Gynecology, Jining No.1 People's Hospital, Jining, Shandong, China
| | - Meixia Fang
- Department of Gynecology, Jining No.1 People's Hospital, Jining, Shandong, China
| | - Min Kong
- Department of Gynecology, Jining No.1 People's Hospital, Jining, Shandong, China
| | - Changhe Wang
- Department of Gynecology, Jining No.1 People's Hospital, Jining, Shandong, China
| | - Yuting Xu
- Department of Gynecology, Jining No.1 People's Hospital, Jining, Shandong, China
| |
Collapse
|
8
|
Zhang M, Liu P, Xu F, He Y, Xie X, Jiang X. Vinculin promotes gastric cancer proliferation and migration and predicts poor prognosis in patients with gastric cancer. J Cell Biochem 2019; 120:14107-14115. [PMID: 30989694 DOI: 10.1002/jcb.28686] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 12/17/2022]
Abstract
Vinculin is a highly conserved protein involved in cell proliferation, migration, and adhesion. However, the effects of vinculin on gastric cancer (GC) remain unclear. Therefore, we aimed to explore the functional role of vinculin in GC, as well as its underlying mechanism. Expression of vinculin in patients with GC was analyzed by real-time polymerase chain reaction, Western blot analysis, and immunohistochemistry. Overall survival was evaluated by the Kaplan-Meier method with the log-rank test. The relationship between vinculin and clinicopathological characteristics of patients with GC was further identified. In addition, we assessed the expression of vinculin in GC cell lines. Besides, vinculin was suppressed or overexpressed by transfection with small interfering (si-vinculin) or pcDNA-vinculin and then cell viability, cell apoptosis, and/or migration was respectively examined by the 3-(4, 5-dimethylthiazole-2-yl)-2, 5-biphenyl tetrazolium bromide assay, flow cytometer, and scratch assay, respectively. Moreover, the cell cycle- and apoptosis-related proteins were detected by Western blot analysis. The expression of vinculin was significantly increased in the GC tissues and cells compared with the nontumor tissues or cells. Vinculin protein positive staining was mainly located in the cell membrane and cytoplasm. Moreover, vinculin was significantly associated with Tumor Node Metastasis (TNM) and poor differentiation. Patients with high vinculin levels had significantly worse overall survival than those with low levels. Suppression of vinculin significantly decreased cell viability and migration and promoted cell apoptosis. However, overexpression of vinculin statistically increased cell viability but had no effects on cell apoptosis. Vinculin promotes GC proliferation and migration and predicts poor prognosis in patients with GC.
Collapse
Affiliation(s)
- Mingming Zhang
- Department of Gastroenterology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong, China
| | - Pei Liu
- Department of Infectious Diseases, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Famei Xu
- Department of Pathology, Zibo Central Hospital, Zibo, Shandong, China
| | - Yuanlong He
- Department of Gastroenterology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiangjun Xie
- Department of Gastroenterology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiangjun Jiang
- Department of Gastroenterology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
9
|
Verano-Braga T, Gorshkov V, Munthe S, Sørensen MD, Kristensen BW, Kjeldsen F. SuperQuant-assisted comparative proteome analysis of glioblastoma subpopulations allows for identification of potential novel therapeutic targets and cell markers. Oncotarget 2018; 9:9400-9414. [PMID: 29507698 PMCID: PMC5823648 DOI: 10.18632/oncotarget.24321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 01/22/2018] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is a highly aggressive brain cancer with poor prognosis and low survival rate. Invasive cancer stem-like cells (CSCs) are responsible for tumor recurrence because they escape current treatments. Our main goal was to study the proteome of three GBM subpopulations to identify key molecules behind GBM cell phenotypes and potential cell markers for migrating cells. We used SuperQuant-an enhanced quantitative proteome approach-to increase proteome coverage. We found 148 proteins differentially regulated in migrating CSCs and 199 proteins differentially regulated in differentiated cells. We used Ingenuity Pathway Analysis (IPA) to predict upstream regulators, downstream effects and canonical pathways associated with regulated proteins. IPA analysis predicted activation of integrin-linked kinase (ILK) signaling, actin cytoskeleton signaling, and lysine demethylase 5B (KDM5B) in CSC migration. Moreover, our data suggested that microRNA-122 (miR-122) is a potential upstream regulator of GBM phenotypes as miR-122 activation was predicted for differentiated cells while its inhibition was predicted for migrating CSCs. Finally, we validated transferrin (TF) and procollagen-lysine 2-oxoglutarate 5-dioxygenase 2 (PLOD2) as potential markers for migrating cells.
Collapse
Affiliation(s)
- Thiago Verano-Braga
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.,Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vladimir Gorshkov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Sune Munthe
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Neurosurgery, Odense University Hospital, Odense, Denmark
| | - Mia D Sørensen
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Bjarne W Kristensen
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Frank Kjeldsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
10
|
Li Y, Bai W, Zhang X. Identifying heterogeneous subtypes of gastric cancer and subtype‑specific subpaths of microRNA‑target pathways. Mol Med Rep 2017; 17:3583-3590. [PMID: 29286091 PMCID: PMC5802161 DOI: 10.3892/mmr.2017.8329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 11/15/2017] [Indexed: 01/13/2023] Open
Abstract
The present study aimed to classify gastric cancer (GC) into subtypes and to screen the subtype-specific genes, their targeted microRNAs (miRNAs) and enriched pathways to explore the putative mechanism of each GC subtypes. The GSE13861 data set was downloaded from the Gene Expression Omnibus and used to screen differential expression genes (DEGs) in GC samples based on the detection of imbalanced differential signal algorithm. The specific genes in each subtype were identified with the cut-off criterion of U>0.04, pathway enrichment analysis was performed and the subtype-specific subpaths of miRNA-target pathway were determined. A total of 1,263 DEGs were identified in the primary gastric adenocarcinoma (PGD) samples, which were subsequently divided into four subtypes, according to the hierarchy cluster analysis. Identification of the subpaths of each subtype indicated that the subpath related to subtype 1 was miRNA (miR)-202/calcium voltage-gated channel subunit α1 (CACNA1E)/type II diabetes mellitus. The nuclear factor-κB signaling pathway was the most significantly specific pathway and subpath identified for subtype 2, which was regulated by miR-338-targeted suppression of C-C motif chemokine ligand 21 (CCL21). For subtype 3, significant related pathways included ubiquitin-mediated proteolysis and proteasome, and the important subpath was miR-146B/proteasome 26S subunit, non-ATPase 3 (PSMD3)/proteasome; focal adhesion was the significant pathway indicated for subtype 4, and the subpaths were miR-34A/vinculin (VCL)/focal adhesion and miR-34C/VCL/focal adhesion. In addition, Helicobacter pylori infection was higher in GC subtype 1 than in other subtypes. Specific genes, such as CACNA1E, CCL21, PSMD3 and VCL, may be used as potential feature genes to identify different subtypes of GC, and their associated subpaths may partially explain the pathogenetic mechanism of each GC subtype.
Collapse
Affiliation(s)
- Yuanhang Li
- Medical Department, Cancer Hospital of China Medical University, Shenyang, Liaoning 110042, P.R. China
| | - Weijun Bai
- Medical Department, Cancer Hospital of China Medical University, Shenyang, Liaoning 110042, P.R. China
| | - Xu Zhang
- Radiotherapy Department, Cancer Hospital of China Medical University, Shenyang, Liaoning 110042, P.R. China
| |
Collapse
|
11
|
Kuroda M, Wada H, Kimura Y, Ueda K, Kioka N. Vinculin promotes nuclear localization of TAZ to inhibit ECM stiffness-dependent differentiation into adipocytes. J Cell Sci 2017; 130:989-1002. [PMID: 28115535 DOI: 10.1242/jcs.194779] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 01/17/2017] [Indexed: 12/17/2022] Open
Abstract
Extracellular matrix (ECM) stiffness regulates the lineage commitment of mesenchymal stem cells (MSCs). Although cells sense ECM stiffness through focal adhesions, how cells sense ECM stiffness and regulate ECM stiffness-dependent differentiation remains largely unclear. In this study, we show that the cytoskeletal focal adhesion protein vinculin plays a critical role in the ECM stiffness-dependent adipocyte differentiation of MSCs. ST2 mouse MSCs differentiate into adipocytes and osteoblasts in an ECM stiffness-dependent manner. We find that a rigid ECM increases the amount of cytoskeleton-associated vinculin and promotes the nuclear localization and activity of the transcriptional coactivator paralogs Yes-associated protein (YAP, also known as YAP1) and transcriptional coactivator with a PDZ-binding motif (TAZ, also known as WWTR1) (hereafter YAP/TAZ). Vinculin is necessary for enhanced nuclear localization and activity of YAP/TAZ on the rigid ECM but it does not affect the phosphorylation of the YAP/TAZ kinase LATS1. Furthermore, vinculin depletion promotes differentiation into adipocytes on rigid ECM, while it inhibits differentiation into osteoblasts. Finally, TAZ knockdown was less effective at promoting adipocyte differentiation in vinculin-depleted cells than in control cells. These results suggest that vinculin promotes the nuclear localization of transcription factor TAZ to inhibit the adipocyte differentiation on rigid ECM.
Collapse
Affiliation(s)
- Mito Kuroda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hiroki Wada
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Yasuhisa Kimura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kazumitsu Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8507, Japan
| | - Noriyuki Kioka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| |
Collapse
|
12
|
Jin GH, Xu W, Shi Y, Wang LB. Celecoxib exhibits an anti-gastric cancer effect by targeting focal adhesion and leukocyte transendothelial migration-associated genes. Oncol Lett 2016; 12:2345-2350. [PMID: 27698798 PMCID: PMC5038604 DOI: 10.3892/ol.2016.4976] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 05/23/2016] [Indexed: 12/20/2022] Open
Abstract
Gastric cancer (GC) is a prevalent cancer, which remains incurable, and therefore requires an alternative treatment method. Celecoxib is a nonsteroidal anti-inflammatory drug that targets cyclooxygenase-2, and exhibits anticancer effects. The present study aimed to investigate the anti-GC mechanism of celecoxib using bioinformatics methods. Gene expression datasets GSE56807 (GC tissues and normal gastric tissues) and GSE54657 (celecoxib-treated and non-treated human GC epithelial AGS cells) were downloaded from the Gene Expression Omnibus database. Two groups of differentially expressed genes (DEGs) were identified using limma package in R language. The criterion for GSE56807 was a false discovery rate of <0.05, while that for GSE54657 was P<0.01. Overlapping DEGs from the two datasets were screened out. Subsequently, pathway enrichment analysis was performed using Database for Annotation, Visualization and Integrated Discovery software (P<0.1; gene count ≥2). In addition, the protein-protein interactions (PPIs) among the overlapped DEGs were obtained based on IntAct, Database of Interacting Proteins, Biomolecular Interaction Network Database and Human Protein Reference Database. Finally, a PPI network was visualized using Cytoscape software. A total of 137 overlapped DEGs were obtained, and DEGs with opposite regulation directions in the two datasets were significantly enriched in focal adhesion and leukocyte transendothelial migration. Subsequently, a PPI network of overlapped DEGs was constructed. Comprehensively, a total of 8 key DEGs [cysteine and glycine rich protein 1 (CSRP1), thrombospondin 1 (THBS1), myosin light chain 9 (MYL9), filamin A (FLNA), actinin alpha 1 (ACTN1), vinculin (VCL), laminin subunit gamma 2 (LAMC2) and claudin 1 (CLDN1)] were upregulated in GC tissues and downregulated in celecoxib-treated cells. In conclusion, celecoxib may exhibit anti-GC effects by suppressing the expression of CSRP1, THBS1, MYL9, FLNA, ACTN1, VCL, LAMC2 and CLDN1, and inhibiting leukocyte transendothelial migration and focal adhesion. However, relevant experiments are required to confirm the conclusion of the present study.
Collapse
Affiliation(s)
- Guo-Hua Jin
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wei Xu
- Department of Laboratory, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yang Shi
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Li-Bo Wang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
13
|
Wang Y, Kuramitsu Y, Baron B, Kitagawa T, Akada J, Tokuda K, Cui D, Nakamura K. PERK/CHOP contributes to the CGK733-induced vesicular calcium sequestration which is accompanied by non-apoptotic cell death. Oncotarget 2016; 6:25252-65. [PMID: 26259235 PMCID: PMC4694829 DOI: 10.18632/oncotarget.4487] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/29/2015] [Indexed: 11/25/2022] Open
Abstract
Calcium ions (Ca2+) are indispensable for the physiology of organisms and the molecular regulation of cells. We observed that CGK733, a synthetic chemical substance, induced non-apoptotic cell death and stimulated reversible calcium sequestration by vesicles in pancreatic cancer cells. The endoplasmic reticulum (ER) stress eukaryotic translation initiation factor 2-alpha kinase 3/C/EBP homologous protein (PERK/CHOP) signaling pathway was shown to be activated by treatment with CGK733. Ionomycin, an ER stress drug and calcium ionophore, can activate PERK/CHOP signaling and accelerate CGK733-induced calcium sequestration. Knockdown of CHOP diminished CGK733-induced vesicular calcium sequestration, but had no effects on the cell death. Proteomic analysis demonstrated that the ER-located calcium-binding proteins, calumenin and protein S100-A11, were altered in CGK733-treated cells compared to non-treated controls. Our study reveals that CGK733-induced intracellular calcium sequestration is correlated with the PERK/CHOP signaling pathway and may also be involved in the dysregulations of calcium-binding proteins.
Collapse
Affiliation(s)
- Yufeng Wang
- Department of Biochemistry and Functional Proteomics, Yamguchi University Graduate School of Medicine, Ube, Japan
| | - Yasuhiro Kuramitsu
- Department of Biochemistry and Functional Proteomics, Yamguchi University Graduate School of Medicine, Ube, Japan
| | - Byron Baron
- Department of Biochemistry and Functional Proteomics, Yamguchi University Graduate School of Medicine, Ube, Japan
| | - Takao Kitagawa
- Department of Biochemistry and Functional Proteomics, Yamguchi University Graduate School of Medicine, Ube, Japan
| | - Junko Akada
- Department of Biochemistry and Functional Proteomics, Yamguchi University Graduate School of Medicine, Ube, Japan
| | - Kazuhiro Tokuda
- Department of Biochemistry and Functional Proteomics, Yamguchi University Graduate School of Medicine, Ube, Japan
| | - Dan Cui
- Department of Pathology, Yamguchi University Graduate School of Medicine, Ube, Japan
| | - Kazuyuki Nakamura
- Department of Biochemistry and Functional Proteomics, Yamguchi University Graduate School of Medicine, Ube, Japan.,Centre of Clinical Laboratories in Tokuyama Medical Association Hospital, Shunan, Japan
| |
Collapse
|
14
|
Chan AKC, Bruce JIE, Siriwardena AK. Glucose metabolic phenotype of pancreatic cancer. World J Gastroenterol 2016; 22:3471-3485. [PMID: 27022229 PMCID: PMC4806205 DOI: 10.3748/wjg.v22.i12.3471] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/30/2016] [Accepted: 03/02/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To construct a global “metabolic phenotype” of pancreatic ductal adenocarcinoma (PDAC) reflecting tumour-related metabolic enzyme expression.
METHODS: A systematic review of the literature was performed using OvidSP and PubMed databases using keywords “pancreatic cancer” and individual glycolytic and mitochondrial oxidative phosphorylation (MOP) enzymes. Both human and animal studies investigating the oncological effect of enzyme expression changes and inhibitors in both an in vitro and in vivo setting were included in the review. Data reporting changes in enzyme expression and the effects on PDAC cells, such as survival and metastatic potential, were extracted to construct a metabolic phenotype.
RESULTS: Seven hundred and ten papers were initially retrieved, and were screened to meet the review inclusion criteria. 107 unique articles were identified as reporting data involving glycolytic enzymes, and 28 articles involving MOP enzymes in PDAC. Data extraction followed a pre-defined protocol. There is consistent over-expression of glycolytic enzymes and lactate dehydrogenase in keeping with the Warburg effect to facilitate rapid adenosine-triphosphate production from glycolysis. Certain isoforms of these enzymes were over-expressed specifically in PDAC. Altering expression levels of HK, PGI, FBA, enolase, PK-M2 and LDA-A with metabolic inhibitors have shown a favourable effect on PDAC, thus identifying these as potential therapeutic targets. However, the Warburg effect on MOP enzymes is less clear, with different expression levels at different points in the Krebs cycle resulting in a fundamental change of metabolite levels, suggesting that other essential anabolic pathways are being stimulated.
CONCLUSION: Further characterisation of the PDAC metabolic phenotype is necessary as currently there are few clinical studies and no successful clinical trials targeting metabolic enzymes.
Collapse
|
15
|
Hauptmann M, Haghdoost S, Gomolka M, Sarioglu H, Ueffing M, Dietz A, Kulka U, Unger K, Babini G, Harms-Ringdahl M, Ottolenghi A, Hornhardt S. Differential Response and Priming Dose Effect on the Proteome of Human Fibroblast and Stem Cells Induced by Exposure to Low Doses of Ionizing Radiation. Radiat Res 2016; 185:299-312. [PMID: 26934482 DOI: 10.1667/rr14226.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
It has been suggested that a mechanistic understanding of the cellular responses to low dose and dose rate may be valuable in reducing some of the uncertainties involved in current risk estimates for cancer- and non-cancer-related radiation effects that are inherited in the linear no-threshold hypothesis. In this study, the effects of low-dose radiation on the proteome in both human fibroblasts and stem cells were investigated. Particular emphasis was placed on examining: 1. the dose-response relationships for the differential expression of proteins in the low-dose range (40-140 mGy) of low-linear energy transfer (LET) radiation; and 2. the effect on differential expression of proteins of a priming dose given prior to a challenge dose (adaptive response effects). These studies were performed on cultured human fibroblasts (VH10) and human adipose-derived stem cells (ADSC). The results from the VH10 cell experiments demonstrated that low-doses of low-LET radiation induced unique patterns of differentially expressed proteins for each dose investigated. In addition, a low priming radiation dose significantly changed the protein expression induced by the subsequent challenge exposure. In the ADSC the number of differentially expressed proteins was markedly less compared to VH10 cells, indicating that ADSC differ in their intrinsic response to low doses of radiation. The proteomic results are further discussed in terms of possible pathways influenced by low-dose irradiation.
Collapse
Affiliation(s)
- Monika Hauptmann
- a Federal Office for Radiation Protection, Department SG Radiation Protection and Health, Oberschleissheim, Germany
| | - Siamak Haghdoost
- c Center for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Maria Gomolka
- a Federal Office for Radiation Protection, Department SG Radiation Protection and Health, Oberschleissheim, Germany
| | - Hakan Sarioglu
- b Helmholtz Zentrum München, German Research Center for Environmental Health, Department of Protein Science, Neuherberg, Germany
| | - Marius Ueffing
- b Helmholtz Zentrum München, German Research Center for Environmental Health, Department of Protein Science, Neuherberg, Germany
| | - Anne Dietz
- a Federal Office for Radiation Protection, Department SG Radiation Protection and Health, Oberschleissheim, Germany
| | - Ulrike Kulka
- a Federal Office for Radiation Protection, Department SG Radiation Protection and Health, Oberschleissheim, Germany
| | - Kristian Unger
- d Helmholtz Zentrum München, German Research Center for Environmental Health, Department of Radiation Cytogenetics, Neuherberg, Germany; and
| | | | - Mats Harms-Ringdahl
- c Center for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | - Sabine Hornhardt
- a Federal Office for Radiation Protection, Department SG Radiation Protection and Health, Oberschleissheim, Germany
| |
Collapse
|
16
|
Santini AC, Giovane G, Auletta A, Di Carlo A, Fiorelli A, Cito L, Astarita C, Giordano A, Alfano R, Feola A, Di Domenico M. Translational Research and Plasma Proteomic in Cancer. J Cell Biochem 2015; 117:828-35. [PMID: 26479787 DOI: 10.1002/jcb.25413] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/16/2015] [Indexed: 12/14/2022]
Abstract
Proteomics is a recent field of research in molecular biology that can help in the fight against cancer through the search for biomarkers that can detect this disease in the early stages of its development. Proteomic is a speedily growing technology, also thanks to the development of even more sensitive and fast mass spectrometry analysis. Although this technique is the most widespread for the discovery of new cancer biomarkers, it still suffers of a poor sensitivity and insufficient reproducibility, essentially due to the tumor heterogeneity. Common technical shortcomings include limitations in the sensitivity of detecting low abundant biomarkers and possible systematic biases in the observed data. Current research attempts are trying to develop high-resolution proteomic instrumentation for high-throughput monitoring of protein changes that occur in cancer. In this review, we describe the basic features of the proteomic tools which have proven to be useful in cancer research, showing their advantages and disadvantages. The application of these proteomic tools could provide early biomarkers detection in various cancer types and could improve the understanding the mechanisms of tumor growth and dissemination.
Collapse
Affiliation(s)
- Annamaria Chiara Santini
- Department of Morphopathology, Thoracic Surgery Unit, Second University of Naples, Naples, Italy
| | - Giancarlo Giovane
- Department of Experimental Medicine, Section of Hygiene, Occupational Medicine and Forensic Medicine, Second University of Naples, Naples, Italy
| | - Adelaide Auletta
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Angelina Di Carlo
- Department of Medico-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, Rome, Italy
| | - Alfonso Fiorelli
- Department of Morphopathology, Thoracic Surgery Unit, Second University of Naples, Naples, Italy
| | - Letizia Cito
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Tumori "Fodazione G. Pascale" - IRCCS, Naples, Italy
| | - Carlo Astarita
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, Pennsylvania
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, Pennsylvania.,Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Roberto Alfano
- Department of Anesthesiological, Surgical and Emergency Sciences. Second University of Naples, Naples, Italy
| | - Antonia Feola
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy.,Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Marina Di Domenico
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Li J, Kong F, Wu K, Song K, He J, Sun W. miR-193b directly targets STMN1 and uPA genes and suppresses tumor growth and metastasis in pancreatic cancer. Mol Med Rep 2014; 10:2613-20. [PMID: 25215905 DOI: 10.3892/mmr.2014.2558] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 05/13/2014] [Indexed: 11/06/2022] Open
Abstract
Pancreatic cancer has the poorest prognosis among all cancer types, due to its late diagnosis and the lack of effective therapies. Therefore, identification of novel gene targets, which are differentially expressed in pancreatic cancer and functionally involved in the malignant phenotype, is critical to achieve early diagnosis and develop effective therapeutic strategies. microRNAs (miRNAs) are small non-coding RNAs, which negatively regulate the expression of their targets. Due to their various targets, miRNAs play a key role in a number of physiological processes and in oncogenesis. Therefore, investigating the role of miRNAs in tumor may contribute to the development of new diagnostic and therapeutic tools for various types of cancer, including pancreatic cancer. Here, we investigated the role of miR-193b in pancreatic cancer. Our data showed that the expression of miR-193b is markedly decreased in pancreatic cancer tissues compared to adjacent healthy tissues. The Panc-1 cell line transfected with the miR‑193b exhibited significantly decreased proliferative, migratory, and invasive ability compared to untransfected cells. Moreover, miR-193b inhibited the expression of stathmin 1 (STMN1) and urokinase-type plasminogen activator (uPA) in Panc-1 cells. These data suggest that miR-193b acts as a tumor suppressor in pancreatic cancer. Therefore, miR-193b may constitute a promising therapeutic agent for the suppression of pancreatic cancer cell growth and metastasis.
Collapse
Affiliation(s)
- Jian Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Fujiao Kong
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Kemin Wu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Kun Song
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jianfeng He
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Weijia Sun
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
18
|
Han L, Zhang W, Song F, Guo Y, Guo K, Zhou W. Soluble a‑proliferation‑inducing ligand (sAPRIL), a novel serum biomarker predicting the recurrence and metastasis of pancreatic adenocarcinoma after surgery. Mol Med Rep 2014; 10:1978-84. [PMID: 25110120 DOI: 10.3892/mmr.2014.2443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 05/19/2014] [Indexed: 11/06/2022] Open
Abstract
Pancreatic adenocarcinoma (PA) is a leading cause of adult cancer mortality, and surgery is still the best available treatment strategy. However, PA can recur at any time and has limited prognosis. It is therefore necessary to explore novel serum biomarkers of PA to allow the early diagnosis of PA. Soluble a-proliferation-inducing ligand (sAPRIL), a promising inducer of the epithelial-mesenchymal transition (EMT), is often found overexpressed in a variety of autoimmune diseases. To determine whether serum sAPRIL can constitute a PA biomarker, the protein level of sAPRIL was examined by immunohistochemistry and western blot, and the mRNA level was quantified by RT-qPCR. The PA cell line PanC-1 was transfected with vectors bearing the sAPRIL gene and sAPRIL short hairpin RNA (shRNA) oligos. Increased expression of serum sAPRIL was observed in patients with PA recurrence or metastasis after five-year surgery compared to subjects without PA recurrence or metastasis. The growth rate of PanC-1 cells transfected with the sAPRIL expression vector was increased by 23% (P<0.01, vs. control group), and was reduced by 17% (P<0.01, vs. control group) in the sAPRIL shRNA-silenced cell line. Thus, sAPRIL is highly expressed in PA, and serum levels of sAPRIL can serve as a useful indicator for the recurrence or metastasis of PA after surgery. Additional validation studies on the use of serum sAPRIL as a diagnostic marker in PA are however needed.
Collapse
Affiliation(s)
- Lei Han
- Department of Hepatobiliary and Pancreas Surgery, The General Hospital of Shenyang Military Region, Shenyang, Liaoning 110016, P.R. China
| | - Wei Zhang
- Department of Hepatobiliary and Pancreas Surgery, The General Hospital of Shenyang Military Region, Shenyang, Liaoning 110016, P.R. China
| | - Fulin Song
- Department of Pathology, The General Hospital of Shenyang Military Region, Shenyang, Liaoning 110016, P.R. China
| | - Yang Guo
- Department of Hepatobiliary and Pancreas Surgery, The General Hospital of Shenyang Military Region, Shenyang, Liaoning 110016, P.R. China
| | - Kejian Guo
- Department of General Surgery, College of Clinical Medical Sciences, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Wenping Zhou
- Department of Hepatobiliary and Pancreas Surgery, The General Hospital of Shenyang Military Region, Shenyang, Liaoning 110016, P.R. China
| |
Collapse
|
19
|
A combination of paclitaxel and siRNA-mediated silencing of Stathmin inhibits growth and promotes apoptosis of nasopharyngeal carcinoma cells. Cell Oncol (Dordr) 2013; 37:53-67. [DOI: 10.1007/s13402-013-0163-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2013] [Indexed: 12/30/2022] Open
|
20
|
Kumar DM, Patil V, Ramachandran B, Nila MV, Dharmalingam K, Somasundaram K. Temozolomide-modulated glioma proteome: Role of interleukin-1 receptor-associated kinase-4 (IRAK4) in chemosensitivity. Proteomics 2013; 13:2113-24. [DOI: 10.1002/pmic.201200261] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 02/28/2013] [Accepted: 03/19/2013] [Indexed: 01/21/2023]
Affiliation(s)
- Durairaj M. Kumar
- Department of Microbiology and Cell Biology; Indian Institute of Science; Bangalore India
| | - Vikas Patil
- Department of Microbiology and Cell Biology; Indian Institute of Science; Bangalore India
| | - Bini Ramachandran
- Department of Genetic Engineering; School of Biotechnology, Madurai Kamaraj University; Madurai India
| | - Murugesan V. Nila
- Department of Genetic Engineering; School of Biotechnology, Madurai Kamaraj University; Madurai India
| | - Kuppamuthu Dharmalingam
- Department of Genetic Engineering; School of Biotechnology, Madurai Kamaraj University; Madurai India
| | - Kumaravel Somasundaram
- Department of Microbiology and Cell Biology; Indian Institute of Science; Bangalore India
| |
Collapse
|