1
|
Jiraviriyakul A, Nensat C, Promchai S, Chaiaun Y, Hoiraya Y, Yamnak N, Khutanthong S, Singpan N, Songjang W. High Mobility Group Box 1 Is Potential Target Therapy for Inhibiting Metastasis and Enhancing Drug Sensitivity of Hepatocellular Carcinoma. Int J Mol Sci 2025; 26:3491. [PMID: 40331953 PMCID: PMC12026555 DOI: 10.3390/ijms26083491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a lethal malignancy associated with drug resistance, resulting in a poor prognosis. High mobility group box 1 (HMGB1) is a chromatin-binding protein that regulates HCC progression. The overexpression of HMGB1 has been found to promote tumorigenesis and drug resistance. In this study, we aimed to investigate the role of HMGB1 expression in tumorigenesis and metastasis and its impact on sorafenib and oxaliplatin resistance. Tissue samples from patients with HCC (n = 48) were subjected to immunohistochemistry. The expression of HMGB1 was correlated with clinical pathology parameters. Moreover, the HCC cell line HuH-7 was used to study the regulatory effect of HMGB1 on cell proliferation, cell adhesion, migration, and invasion by using the siRNA (small interfering RNA) silencing method. Furthermore, drug challenges were performed to determine the effect of HMGB1 on the sensitivity to chemotherapeutic drugs (sorafenib and oxaliplatin). HMGB1 was significantly overexpressed in tumor tissues, highlighted by the expression increment in patients with M1 advanced metastasis tumors with immunoreactivity scores 2.61 and 6.50 for adjacent and tumor tissues, respectively (p-values = 0.0035). The involved mechanisms were then described through the suppression of HCC cell adhesion, migration, and invasion by HMGB1 silencing. Notably, the inhibition of HMGB1 expression promoted sorafenib/oxaliplatin sensitivity in the HCC cell line by increasing the cell toxicity by about 13-18%. Our study demonstrated that HMGB1 shows potential as a promising biomarker and a target for HCC treatment that is involved in tumorigenesis, metastasis, and chemo-drug resistance.
Collapse
Affiliation(s)
- Arunya Jiraviriyakul
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (A.J.); (C.N.)
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Chatchai Nensat
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (A.J.); (C.N.)
- Department of Cardio-Thoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Samitanan Promchai
- Biomedical Sciences Program, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Yanisa Chaiaun
- Medical Technology Program, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (Y.C.)
| | - Yanisa Hoiraya
- Medical Technology Program, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (Y.C.)
| | - Nutnicha Yamnak
- Medical Technology Program, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (Y.C.)
| | - Suphakit Khutanthong
- Department of Pathology, Faculty of Medicine, Naresuan University, Phitsanulok 65000, Thailand; (S.K.)
| | - Nun Singpan
- Department of Pathology, Faculty of Medicine, Naresuan University, Phitsanulok 65000, Thailand; (S.K.)
| | - Worawat Songjang
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (A.J.); (C.N.)
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
2
|
Amontailak S, Titapun A, Jusakul A, Thanan R, Kimawaha P, Jamnongkan W, Thanee M, Sirithawat P, Haohan S, Techasen A. Evaluation of HMGB1 Expression as a Clinical Biomarker for Cholangiocarcinoma. Cancer Genomics Proteomics 2025; 22:81-89. [PMID: 39730185 PMCID: PMC11696321 DOI: 10.21873/cgp.20489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/23/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND/AIM Cholangiocarcinoma (CCA) is an epithelial malignancy that is most prevalent in Southeast Asia, particularly in the northeast of Thailand. Identifying and establishing specific biomarkers of CCA is crucial for ensuring accurate prognosis and enabling effective treatment. High-mobility group box 1 (HMGB1) is a damage-associated molecular pattern (DAMP) molecule that can be released by dead or injured cells and is associated with tumor progression. This study aimed to investigate the expression levels of HMGB1 in CCA. MATERIALS AND METHODS The clinical significance of HMGB1 levels was assessed by examining their correlation with patients' clinicopathological data. A bioinformatics analysis was conducted to examine HMGB1 mRNA expression and perform survival analysis. The expression levels of 137 tissue cases were evaluated using the immunohistochemical technique, whereas the serum levels of 31 cases were evaluated using indirect ELISA. RESULTS The GEPIA analysis demonstrated that HMGB1 exhibited elevated mRNA expression in CCA compared to the normal group. Immunohistochemical staining revealed that HMGB1 expression was primarily localized in the nucleus. High HMGB1 expression was observed in 57.6% of tissue samples, while low expression was detected in 42.4%. There was a significant positive correlation between high HMGB1 expression and the extrahepatic type of CCA as well as lymph node metastasis. The measurement of HMGB1 levels were assessed using indirect ELISA in 31 CCA serum samples, where 51.6% exhibited elevated concentrations of HMGB1. Elevated serum HMGB1 levels were significantly associated with advanced tumor stages and high levels of bilirubin levels. CONCLUSION HMGB1 in both tissue biopsies and blood serum shows potential as a predictive biomarker in CCA patients. These biomarkers could form the basis for facilitating more effective treatment planning.
Collapse
Affiliation(s)
- Supakan Amontailak
- Medical Science Program, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Attapol Titapun
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Apinya Jusakul
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Raynoo Thanan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Phongsaran Kimawaha
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Wassana Jamnongkan
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Malinee Thanee
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Papitchaya Sirithawat
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Songpol Haohan
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Anchalee Techasen
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand;
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
3
|
Wang L, Dong Z, Zhang Y, Peng L. Emerging Roles of High-mobility Group Box-1 in Liver Disease. J Clin Transl Hepatol 2024; 12:1043-1056. [PMID: 39649031 PMCID: PMC11622203 DOI: 10.14218/jcth.2024.00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 12/10/2024] Open
Abstract
High-mobility group box-1 (HMGB1) is an architectural chromosomal protein with various roles depending on its cellular localization. Extracellular HMGB1 functions as a prototypical damage-associated molecular pattern that triggers inflammation and adaptive immune responses, mediated by specific cell surface receptors, including receptors for advanced glycation end products and toll-like receptors. Post-translational modifications of HMGB1 significantly impact various cellular processes that contribute to the pathogenesis of liver diseases. Recent studies have highlighted the close relationship between HMGB1 and the pathogenesis of acute liver injuries, including acetaminophen-induced liver injury, hepatic ischemia-reperfusion injury, and acute liver failure. In chronic liver diseases, HMGB1 plays a role in nonalcoholic fatty liver disease, alcohol-associated liver disease, liver fibrosis, and hepatocellular carcinoma. Targeting HMGB1 as a therapeutic approach, either by inhibiting its release or blocking its extracellular function, is a promising strategy for treating liver diseases. This review aimed to summarize the available evidence on HMGB1's role in liver disease, focusing on its multifaceted signaling pathways, impact on disease progression, and the translation of these findings into clinical interventions.
Collapse
Affiliation(s)
- Lu Wang
- Department of Diagnostics, Second School of Clinical Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Zhiwei Dong
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yeqiong Zhang
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liang Peng
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Yang HM, Zhao XN, Li XL, Wang X, Pu Y, Wei DK, Li Z. A pan-cancer analysis of the oncogenic function of HMGB1 in human tumors. Biochem Biophys Rep 2024; 40:101851. [PMID: 39582753 PMCID: PMC11584604 DOI: 10.1016/j.bbrep.2024.101851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/30/2024] [Accepted: 10/16/2024] [Indexed: 11/26/2024] Open
Abstract
Background Although high mobility group box protein 1 (HMGB1) has been researched in relation to cancer in many investigations, a thorough investigation of its role in pan-cancer has yet to be conducted. With the objective of bridging this gap, we delved into the functions of HMGB1 in various tumors. Methods This investigation employed The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases to examine HMGB1 gene expression differences and correlation with survival across various human tumors. Then, genetic alterations of HMGB1 were analyzed by tool cBioPortal, and immune cell infiltration was assessed. Finally, we gathered clinial samples from 95 patients with various types of solid tumor and performed somatic mutation analysis using panel sequencing. This further highlighted the role of HMGB1 in different solid tumors. Results There was a notable elevation of HMGB1 gene expression in tumor tissues as opposed to non-cancerous tissues across the bulk of tumor types. Elevated HMGB1 gene expression had a connection with shorter overall survival, progression-free survival, and disease-free survival in specific tumor types. Genetic alterations of HMGB1 suggested that the amplifications and mutations of HMGB1 may impact the prognosis of breast cancer (BRCA) and liver hepatocellular carcinoma (LIHC). Both BRCA and mesothelioma (MESO) displayed a connection between the infiltration of cancer-associated fibroblasts (CAFs) and HMGB1 gene expression. Moreover, HMGB1 co-expression analysis revealed its association with genes involved in RNA splicing, mRNA processing, and modulation of mRNA metabolic processes. Additionally, a pathway analysis by use of the Kyoto Encyclopedia of Genes and Genomes (KEGG) unveiled that HMGB1 was implicated in the pathogenic mechanisms of "Hepatitis B," "Viral Carcinogenesis," and "Hepatocellular Carcinoma." Based on somatic mutation analysis of 95 patients with different solid tumors, we found that the frequency of HMGB1 mutations was higher in Liver cancer patients compared to other solid tumors. This finding is consistent with our in-silico study results. Additionally, we discovered that the frequency of HMGB1 mutations ranked among the top 20 mutated genes in the 95 patients' data, indicating that HMGB1 plays an important role in the development and prognosis of various solid tumors. Conclusion This pan-cancer study of HMGB1 underscores its potential as a signature marker and target for the management of various tumor types.
Collapse
Affiliation(s)
- Hui-min Yang
- Shanghai Singlera Medical Laboratory, 1rst Floor, No. 20 Building, 500 Furonghua Road, Pudong New District, Shanghai, China
| | - Xiang-ning Zhao
- Department of Surgical Oncology, Shanghai Mengchao Cancer Hospital, 118 Qianyang Road, Jiading District, Shanghai, China
| | | | - Xi Wang
- Suzhou Func Biotech Inc, Suzhou, Jiangsu, China
| | - Yu Pu
- Suzhou Func Biotech Inc, Suzhou, Jiangsu, China
| | | | - Zhe Li
- Department of Breast Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New District, Shanghai, China
| |
Collapse
|
5
|
Yan R, Zeng S, Gao F, Li L, Xiao X. CircUBE2D2 regulates HMGB1 through miR-885-5p to promote ovarian cancer malignancy. Clinics (Sao Paulo) 2024; 79:100391. [PMID: 38848634 PMCID: PMC11214364 DOI: 10.1016/j.clinsp.2024.100391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND The newly discovered CircUBE2D2 has been shown to abnormally upregulate and promote cancer progression in a variety of cancers. The present study explored circUBE2D2 (hsa_circ_0005728) in Ovarian Cancer (OC) progression. METHODS CircUBE2D2, miR-885-5p, and HMGB1 were examined by RT-qPCR or WB. SKOV-3 cell functions (including cell viability, apoptosis, migration, and invasion) were validated using the CCK-8, flow cytometry, scratch assay, and transwell assay, respectively. The direct relationship between miR-885-5p and circUBE2D2 or HMGB1 was confirmed by a dual-luciferase reporter and RNA pull-down analysis. circUBE2D2's role in vivo tumor xenograft experiment was further probed. RESULTS OC tissue and cell lines had higher circUBE2D2 and HMGB1 and lower miR-885-5p. Mechanically, CircUBE2D2 shared a binding relation with miR-885-5p, while miR-885-5p can directly target HMGB1. Eliminating circUBE2D2 or miR-885-5p induction inhibited OC cell activities. However, these functions were relieved by down-regulating miR-885-5p or HMGB1 induction. Furthermore, circUBE2D2 knockout reduced tumor growth. CONCLUSION CircUBE2D2 regulates the expression of HMGB1 by acting as a sponge of ceRNA as miR-885-5p, thereby promoting the control of OC cell proliferation and migration and inhibiting cell apoptosis. Targeting CircUBE2D2 could serve as a new potential treatment strategy for OC.
Collapse
Affiliation(s)
- RuiXue Yan
- Department of Gynecology I, Cangzhou Central Hospital, Cangzhou City, Hebei Province, China.
| | - SaiTian Zeng
- Department of Gynecology I, Cangzhou Central Hospital, Cangzhou City, Hebei Province, China
| | - FangYuan Gao
- Department of Gynecology I, Cangzhou Central Hospital, Cangzhou City, Hebei Province, China
| | - LingLing Li
- Department of Gynecology I, Cangzhou Central Hospital, Cangzhou City, Hebei Province, China
| | - XiYun Xiao
- Department of Gynecology I, Cangzhou Central Hospital, Cangzhou City, Hebei Province, China
| |
Collapse
|
6
|
Idoudi S, Bedhiafi T, Pedersen S, Elahtem M, Alremawi I, Akhtar S, Dermime S, Merhi M, Uddin S. Role of HMGB1 and its associated signaling pathways in human malignancies. Cell Signal 2023; 112:110904. [PMID: 37757902 DOI: 10.1016/j.cellsig.2023.110904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
The High-Mobility Group Box-1 (HMGB1), a non-histone chromatin-associated protein, plays a crucial role in cancer growth and response to therapy as it retains a pivotal role in promoting both cell death and survival. HMGB1 has been reported to regulate several signaling pathways engaged in inflammation, genome stability, immune function, cell proliferation, cell autophagy, metabolism, and apoptosis. However, the association between HMGB1 and cancer is complex and its mechanism in tumorigenesis needs to be further elucidated. This review aims to understand the role of HMGB1 in human malignancies and discuss the signaling pathways linked to this process to provide a comprehensive understanding on the association of HMGB1 with carcinogenesis. Further, we will review the role of HMGB1 as a target/biomarker for cancer therapy, the therapeutic strategies used to target this protein, and its potential role in preventing or treating cancers. In light of the recent growing evidence linking HMGB1 to cancer progression, we think that it may be suggested as a novel and emergent therapeutic target for cancer therapy. Hence, HMGB1 warrants paramount investigation to comprehensively map its role in tumorigenesis.
Collapse
Affiliation(s)
- Sourour Idoudi
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | | | - Shona Pedersen
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
| | - Mohamed Elahtem
- College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
| | | | - Sabah Akhtar
- Department of Dermatology and venereology, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar.
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
7
|
Liu W, Ming S, Zhao X, Zhu X, Gong Y. Developmental expression of high-mobility group box 1 (HMGB1) in the mouse cochlea. Eur J Histochem 2023; 67:3704. [PMID: 37667832 PMCID: PMC10518653 DOI: 10.4081/ejh.2023.3704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023] Open
Abstract
The expression changes of high-mobility group box 1 (HMGB1) in the mouse cochlea have recently been implicated in noise-induced hearing loss, suggesting that HMGB1 participates in regulating cochlear function. However, the precise role of HMGB1 in the auditory system remains largely unclear. This study aimed to investigate its function in the developing mouse cochlea by examining the expression pattern of HMGB1 in the mouse cochlea from embryonic day (E) 18.5 to postnatal day (P) 28 using double immunofluorescence on frozen sections. Our findings revealed that HMGB1 was extensively expressed in the cell nucleus across various regions of the mouse cochlea, including the organ of Corti. Furthermore, its expression underwent developmental regulation during mouse cochlear development. Specifically, HMGB1 was found to be localized in the tympanic border cells at each developmental stage, coinciding with the gradual anatomical in this region during development. In addition, HMGB1 was expressed in the greater epithelial ridge (GER) and supporting cells of the organ of Corti, as validated by the supporting cell marker Sox2 at P1 and P8. However, at P14, the expression of HMGB1 disappeared from the GER, coinciding with the degeneration of the GER into the inner sulcus cells. Moreover, we observed that HMGB1 co-localized with Ki-67-positive proliferating cells in several cochlear regions during late embryonic and early postnatal stages, including the GER, the tympanic border cells, cochlear lateral wall, and cochlear nerves. Furthermore, by dual-staining Ki-67 with neuronal marker TUJ1 and glial marker Sox10, we determined the expression of Ki-67 in the neonatal glial cells. Our spatial-temporal analysis demonstrated that HMGB1 exhibited distinct expression patterns during mouse cochlear development. The co-localization of HMGB1 with Ki-67-positive proliferating cells suggested that HMGB1 may play a role in cochlear development.
Collapse
Affiliation(s)
- Wenjing Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing.
| | - Shanshan Ming
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing.
| | - Xiaobing Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing.
| | - Xin Zhu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing.
| | - Yuxiang Gong
- Department of Nephrology, Zhongda Hospital, Southeast University, Nanjing.
| |
Collapse
|
8
|
Shi X, Ding J, Zheng Y, Wang J, Sobhani N, Neeli P, Wang G, Zheng J, Chai D. HMGB1/GPC3 dual targeting vaccine induces dendritic cells-mediated CD8 +T cell immune response and elicits potential therapeutic effect in hepatocellular carcinoma. iScience 2023; 26:106143. [PMID: 36879804 PMCID: PMC9984564 DOI: 10.1016/j.isci.2023.106143] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/15/2022] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a fatal malignant tumor, but effective clinical interventions are limited. PLGA/PEI-mediated DNA vaccine encoding the dual targets of high-mobility group box 1 (HMGB1) or GPC3 was developed for HCC treatment. Compared with PLGA/PEI-GPC3 immunization, PLGA/PEI-HMGB1/GPC3 co-immunization significantly inhibited the subcutaneous tumor growth, while increasing the infiltration of CD8+T cells and DCs. Furthermore, the PLGA/PEI-HMGB1/GPC3 vaccine induced a strong CTL effect and promoted functional CD8+T cell proliferation. Intriguingly, the depletion assay proved that the therapeutic effect PLGA/PEI-HMGB1/GPC3 vaccine was dependent on antigen-specific CD8+T cell immune responses. In the rechallenge experiment, PLGA/PEI-HMGB1/GPC3 vaccine provided a long-lasting resistance to the growth of the contralateral tumor by inducing the memory CD8+T cell responses. Collectively, PLGA/PEI-HMGB1/GPC3 vaccine could induce a strong and long-lasting CTL effect and inhibit the tumor progression or re-attack. Therefore, the combined co-immunization of PLGA/PEI-HMGB1/GPC3 might be served as an effective anti-tumor strategy against HCC.
Collapse
Affiliation(s)
- Xiaoqing Shi
- Department of General Surgery, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Lianyungang, Jiangsu 222004, China
| | - Jiage Ding
- Department of Oncology, Xuzhou Central Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221009, China.,Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Yanyan Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Jiawei Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Navid Sobhani
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Praveen Neeli
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Junnian Zheng
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.,Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
9
|
Rojas A, Schneider I, Lindner C, Gonzalez I, Morales M. The RAGE/multiligand axis: a new actor in tumor biology. Biosci Rep 2022; 42:BSR20220395. [PMID: 35727208 PMCID: PMC9251583 DOI: 10.1042/bsr20220395] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/02/2022] [Accepted: 06/21/2022] [Indexed: 01/06/2023] Open
Abstract
The receptor for advanced glycation end-products (RAGE) is a multiligand binding and single-pass transmembrane protein which actively participates in several chronic inflammation-related diseases. RAGE, in addition to AGEs, has a wide repertoire of ligands, including several damage-associated molecular pattern molecules or alarmins such as HMGB1 and members of the S100 family proteins. Over the last years, a large and compelling body of evidence has revealed the active participation of the RAGE axis in tumor biology based on its active involvement in several crucial mechanisms involved in tumor growth, immune evasion, dissemination, as well as by sculpturing of the tumor microenvironment as a tumor-supportive niche. In the present review, we will detail the consequences of the RAGE axis activation to fuel essential mechanisms to guarantee tumor growth and spreading.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Labs., Universidad Catolica del Maule, Facultad de Medicina, 3605 San Miguel Ave., Talca, Chile
| | - Ivan Schneider
- Biomedical Research Labs., Universidad Catolica del Maule, Facultad de Medicina, 3605 San Miguel Ave., Talca, Chile
| | - Cristian Lindner
- Biomedical Research Labs., Universidad Catolica del Maule, Facultad de Medicina, 3605 San Miguel Ave., Talca, Chile
| | - Ileana Gonzalez
- Biomedical Research Labs., Universidad Catolica del Maule, Facultad de Medicina, 3605 San Miguel Ave., Talca, Chile
| | - Miguel A. Morales
- Department of Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Universidad de Chile, Santiago 8320000, Chile, Santiago, Chile
| |
Collapse
|
10
|
Chavez-Dominguez RL, Perez-Medina MA, Lopez-Gonzalez JS, Galicia-Velasco M, Matias-Florentino M, Avila-Rios S, Rumbo-Nava U, Salgado-Aguayo A, Gonzalez-Gonzalez C, Aguilar-Cazares D. Role of HMGB1 in Cisplatin-Persistent Lung Adenocarcinoma Cell Lines. Front Oncol 2021; 11:750677. [PMID: 34966671 PMCID: PMC8710495 DOI: 10.3389/fonc.2021.750677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/11/2021] [Indexed: 12/22/2022] Open
Abstract
Significant advances have been made recently in the development of targeted therapy for lung adenocarcinoma. However, platinum-based chemotherapy remains as the cornerstone in the treatment of this neoplasm. This is the treatment option for adenocarcinomas without EGFR gain-of-function mutations or tumors that have developed resistance to targeted therapy. The High-Mobility Group Box 1 (HMGB1) is a multifunctional protein involved in intrinsic resistance to cisplatin. HMGB1 is released when cytotoxic agents, such as cisplatin, induce cell death. In the extracellular milieu, HMGB1 acts as adjuvant to induce an antitumor immune response. However, the opposite effect favoring tumor progression has also been reported. In this study, the effects of cisplatin in lung adenocarcinoma cell lines harboring clinically relevant mutations, such as EGFR mutations, were studied. Subcellular localization of HMGB1 was detected in the cell lines and in viable cells after a single exposure to cisplatin, which are designated as cisplatin-persistent cells. The mRNA expression of the receptor for advanced glycation end products (RAGE), TLR-2, and TLR-4 receptors was measured in parental cell lines and their persistent variants. Finally, changes in plasma HMGB1 from a cohort of lung adenocarcinoma patients without EGFR mutation and treated with cisplatin-based therapy were analyzed. Cisplatin-susceptible lung adenocarcinoma cell lines died by apoptosis or necrosis and released HMGB1. In cisplatin-persistent cells, nuclear relocalization of HMGB1 and overexpression of HMGB1 and RAGE, but not TLR-2 or TLR-4, were observed. In tumor cells, this HMGB1–RAGE interaction may be associated with the development of cisplatin resistance. The results indicate a direct relationship between the plasma levels of HMGB1 and overall survival. In conclusion, HMGB1 may be an effective biomarker associated with increased overall survival of lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Rodolfo L Chavez-Dominguez
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico, Mexico.,Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Mexico, Mexico
| | - Mario A Perez-Medina
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico, Mexico.,Laboratorio de Quimioterapia Experimental, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico, Mexico
| | - Jose S Lopez-Gonzalez
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico, Mexico
| | - Miriam Galicia-Velasco
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico, Mexico
| | - Margarita Matias-Florentino
- Centro de Investigacion en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico, Mexico
| | - Santiago Avila-Rios
- Centro de Investigacion en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico, Mexico
| | - Uriel Rumbo-Nava
- Clinica de Neumo-Oncologia, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico, Mexico
| | - Alfonso Salgado-Aguayo
- Laboratorio de Enfermedades Reumaticas, Departmento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico, Mexico
| | | | - Dolores Aguilar-Cazares
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico, Mexico
| |
Collapse
|
11
|
Chen H, Lin X, Liu H, Huang C, Li R, Ai J, Wei J, Xiao S. HMGB1 Translocation is Associated with Tumor-Associated Myeloid Cells and Involved in the Progression of Fibroblastic Sarcoma. Pathol Oncol Res 2021; 27:608582. [PMID: 34257571 PMCID: PMC8262203 DOI: 10.3389/pore.2021.608582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/26/2021] [Indexed: 11/13/2022]
Abstract
The morphological variability and genetic complexity of fibroblastic sarcoma makes its diagnosis and treatment a challenge. High-mobility group box 1 protein (HMGB1), which functions as a DNA chaperone and a prototypical damage-associated molecular pattern, plays a paradoxical role in cancer. However, the expression pattern and role of HMGB1 in fibroblastic sarcomas is ill defined. By immunostaining of 95 tissue microarray cores of fibroblastic sarcomas, HMGB1 was found to be expressed in most tumor tissues. Nuclear HMGB1 translocation to cytoplasm was observed both in tumor cells and vascular endothelial cells. A visible number of tumor-associated myeloid cells including CD68+ and CD163+ macrophages and CD33+ myeloid cells were also detected in most tumor tissues. HMGB1 translocation was not only associated with CD68, CD163, and CD33 density, but also with disease progression. These results imply that HMGB1, an important regulator of the tumor microenvironment, is associated with tumor-associated myeloid cells and involved in the progression of fibroblastic sarcomas; HMGB1 may serve as a promising prognostic biomarker and a potential therapeutic target for fibroblastic sarcoma.
Collapse
Affiliation(s)
- Huoying Chen
- Prenatal Diagnosis Center, Guangdong Second Provincial General Hospital, Guangdong Provincial Emergency Hospital, Guangzhou, China.,Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xiaoying Lin
- Prenatal Diagnosis Center, Guangdong Second Provincial General Hospital, Guangdong Provincial Emergency Hospital, Guangzhou, China
| | - Hongbo Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Cheng Huang
- Prenatal Diagnosis Center, Guangdong Second Provincial General Hospital, Guangdong Provincial Emergency Hospital, Guangzhou, China
| | - Rong Li
- Prenatal Diagnosis Center, Guangdong Second Provincial General Hospital, Guangdong Provincial Emergency Hospital, Guangzhou, China
| | - Jie Ai
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jiaxue Wei
- Prenatal Diagnosis Center, Guangdong Second Provincial General Hospital, Guangdong Provincial Emergency Hospital, Guangzhou, China
| | - Shengjun Xiao
- Department of Pathology, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
12
|
Wang G, Hiramoto K, Ma N, Yoshikawa N, Ohnishi S, Murata M, Kawanishi S. Glycyrrhizin Attenuates Carcinogenesis by Inhibiting the Inflammatory Response in a Murine Model of Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22052609. [PMID: 33807620 PMCID: PMC7961658 DOI: 10.3390/ijms22052609] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
Glycyrrhizin (GL), an important active ingredient of licorice root, which weakens the proinflammatory effects of high-mobility group box 1 (HMGB1) by blocking HMGB1 signaling. In this study, we investigated whether GL could suppress inflammation and carcinogenesis in an azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced murine model of colorectal cancer. ICR mice were divided into four groups (n = 5, each)—control group, GL group, colon cancer (CC) group, and GL-treated CC (CC + GL) group, and sacrificed after 20 weeks. Plasma levels of interleukin (IL)-6 and tumor necrosis factor (TNF)-α were measured using an enzyme-linked immunosorbent assay. The colonic tissue samples were immunohistochemically stained with DNA damage markers (8-nitroguanine and 8-oxo-7,8-dihydro-2′-deoxy-guanosine), inflammatory markers (COX-2 and HMGB1), and stem cell markers (YAP1 and SOX9). The average number of colonic tumors and the levels of IL-6 and TNF-α in the CC + GL group were significantly lower than those in the CC group. The levels of all inflammatory and cancer markers were significantly reduced in the CC + GL group. These results suggest that GL inhibits the inflammatory response by binding HMGB1, thereby inhibiting DNA damage and cancer stem cell proliferation and dedifferentiation. In conclusion, GL significantly attenuates the pathogenesis of AOM/DSS-induced colorectal cancer by inhibiting HMGB1-TLR4-NF-κB signaling.
Collapse
Affiliation(s)
- Guifeng Wang
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan;
- Sakuranomori Shiroko Home, Social Service Elderly Facilities, Suzuka University of Medical Science, Suzuka, Mie 513-0816, Japan
| | - Keiichi Hiramoto
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670, Japan; (K.H.); (S.O.)
| | - Ning Ma
- Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Mie 513-8670, Japan;
- Institute of Traditional Chinese Medicine, Suzuka University of Medical Science, Suzuka, Mie 510-0226, Japan
| | - Nobuji Yoshikawa
- Matsusaka R&D Center, Cokey Co., Ltd., Matsusaka, Mie 515-0041, Japan;
| | - Shiho Ohnishi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670, Japan; (K.H.); (S.O.)
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan;
- Correspondence: (M.M.); (S.K.); Tel.: +81-59-231-5011 (M.M.); +81-59-340-0550 (S.K.)
| | - Shosuke Kawanishi
- Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670, Japan
- Correspondence: (M.M.); (S.K.); Tel.: +81-59-231-5011 (M.M.); +81-59-340-0550 (S.K.)
| |
Collapse
|
13
|
Handke NA, Rupp ABA, Trimpop N, von Pawel J, Holdenrieder S. Soluble High Mobility Group Box 1 (HMGB1) Is a Promising Biomarker for Prediction of Therapy Response and Prognosis in Advanced Lung Cancer Patients. Diagnostics (Basel) 2021; 11:diagnostics11020356. [PMID: 33672622 PMCID: PMC7924191 DOI: 10.3390/diagnostics11020356] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND High mobility group box 1 protein (HMGB1) is known for its significant elevation in a multitude of tumors and benign diseases. In this study, we investigated the relevance of soluble HMGB1 for the prediction and monitoring of therapy response as well as the estimation of prognosis in advanced lung cancer. MATERIALS AND METHODS In a retrospective study, HMGB1 levels were assessed by an enzyme-linked immunosorbent assay (ELISA) in the sera of 96 patients with advanced lung cancer (79 non-small-cell lung carcinoma (NSCLC); 14 small cell lung carcinoma (SCLC), 3 Mesothelioma) prior to cycles 1, 2, and 3 of chemotherapy and correlated with radiological therapy response after 2 and 4 cycles as well as with overall survival. In addition, HMGB1 was compared with established tumor markers cytokeratin 19-fragments (CYFRA 21-1), carcinoembryonic antigen (CEA) and neuron specific enolase (NSE). RESULTS While pretherapeutic HMGB1 levels were not predictive or prognostically relevant in NSCLC patients, HMGB1 values prior to cycles 2 and 3 as well as kinetics from cycle 1 to 2 discriminated significantly between patients with good (remission and stable disease) and poor response (progression). Performance of HMGB1 in receiver operating characteristic (ROC) analyses of NSCLC patients, with areas under the curve (AUCs) of 0.690 at cycle 2 and 0.794 at cycle 3 as well as sensitivities of 34.4% and 37.5%, respectively, for progression at 90% specificity, was comparable with the best tumor-associated antigen CYFRA 21-1 (AUCs 0.719 and 0.799; sensitivities of 37.5% and 41.7%, respectively). Furthermore, high concentrations of HMGB1 at cycles 2 and 3 were associated with shorter overall survival in NSCLC patients. CONCLUSION Soluble HMGB1 is a promising biomarker for prediction of therapy response and prognosis in advanced NSCLC patients.
Collapse
Affiliation(s)
- Nikolaus A. Handke
- Department of Radiology, University Hospital Bonn, 53127 Bonn, Germany;
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany; (A.B.A.R.); (N.T.)
| | - Alexander B. A. Rupp
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany; (A.B.A.R.); (N.T.)
- Institute of Laboratory Medicine, German Heart Centre Munich, Technical University Munich, 80636 Munich, Germany
| | - Nicolai Trimpop
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany; (A.B.A.R.); (N.T.)
| | - Joachim von Pawel
- Asklepios Lungen-Fachkliniken München-Gauting, 82131 Gauting, Germany;
| | - Stefan Holdenrieder
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany; (A.B.A.R.); (N.T.)
- Institute of Laboratory Medicine, German Heart Centre Munich, Technical University Munich, 80636 Munich, Germany
- Correspondence:
| |
Collapse
|
14
|
Li L, Lv G, Wang B, Ma H. Long Noncoding RNA LINC00525 Promotes the Aggressive Phenotype of Chordoma Through Acting as a microRNA-505-3p Sponge and Consequently Raising HMGB1 Expression. Onco Targets Ther 2020; 13:9015-9027. [PMID: 32982292 PMCID: PMC7490091 DOI: 10.2147/ott.s268678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Purposes Long intergenic non-protein coding RNA 525 (LINC00525), a long noncoding RNA, has been implicated in the carcinogenesis and progression of many human cancer types. However, the detailed roles of LINC00525 in chordoma and the underlying mechanisms are not fully understood. Here, we aimed to determine whether LINC00525 could modulate the oncogenicity of chordoma cells and to elucidate in detail the molecular events underlying these tumor-promoting activities. Methods Reverse-transcription quantitative polymerase chain reactions were performed to assess LINC00525 expression in chordoma. The effects of LINC00525 silencing on chordoma cell proliferation, apoptosis, migration, and invasiveness in vitro and tumor growth in vivo were respectively tested using CCK-8 assay, flow cytometry, migration and invasion assays, and xenograft experiments. Results High LINC00525 expression levels were detected in chordoma tissues. The proliferative, migratory, and invasive abilities of chordoma cells in vitro and their tumor growth in vivo were suppressed by the LINC00525 knockdown, whereas apoptosis was induced by it. Mechanistically, LINC00525 acted as a molecular sponge of microRNA-505-3p (miR-505-3p) and upregulated the expression of high mobility group box 1 (HMGB1), which is directly targeted by miR-505-3p. Rescue assays indicated that increasing the output of miR-505-3p-HMGB1 axis attenuated the effects of LINC00525 depletion on chordoma cells. Conclusion LINC00525, a pro-oncogenic long noncoding RNA, promotes chordoma progression by regulating the miR-505-3p-HMGB1 axis. The LINC00525-miR-505-3p-HMGB1 pathway may be a novel therapeutic target in chordoma.
Collapse
Affiliation(s)
- Lei Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Guohua Lv
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Bing Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Hong Ma
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| |
Collapse
|
15
|
Targeting AXL and RAGE to prevent geminin overexpression-induced triple-negative breast cancer metastasis. Sci Rep 2019; 9:19150. [PMID: 31844158 PMCID: PMC6915698 DOI: 10.1038/s41598-019-55702-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023] Open
Abstract
Dissemination of metastatic precursors from primaries is the primary reason for patient death. Dissemination encompasses tumor cells invasion of stroma, followed by intravasation through the endothelium barrier into the bloodstream. Here, we describe how geminin-overexpressing tumor cells acquire dissemination ability. Acetylated HMGB1 (Ac-HMGB1) secreted by geminin-overexpressing cells activates RAGE and CXCR4 expression on mesenchymal stem cells (MSCs) located in tumor stroma. Through secreting CXCL12, geminin-overexpressing cells recruit these CXCR4+-MSCs into the tumor. Within the tumor, MSCs differentiate into S100A4-secreting cancer-associated fibroblasts (CAFs). S100A4, in a reciprocal manner, activates geminin-overexpressing cells to secrete CCL2 that recruits M0-macrophages from the stroma into the tumor. Within the tumor, CCL2 polarizes M0-macrophages into Gas6-secreting M2-tumor-associated macrophages (M2-TAMs). In concert, geminin-overexpression, S100A4/RAGE and Gas6/AXL signaling promote the invasive and intravasation abilities in geminin-overexpressing cells through exacerbating their stemness and epithelial-to-mesenchymal phenotypes and enhancing expression and functional interaction of CD151 and α3β1-integrin in geminin-overexpressing cells. Tumors formed following injection of geminin-overexpressing cells admixed with MSCs/CAFs grew faster, metastasized earlier, especially to lungs, and were extremely sensitive to anti-c-Abl, anti-RAGE, and anti-AXL drugs. These data support an intrinsic ability in geminin-overexpressing tumor cells to promote their metastatic potential through recruitment and bi-directional interactions with MSCs/CAFs and M2-TAMs.
Collapse
|
16
|
Gaskell H, Ge X, Desert R, Das S, Han H, Lantvit D, Guzman G, Nieto N. Ablation of Hmgb1 in Intestinal Epithelial Cells Causes Intestinal Lipid Accumulation and Reduces NASH in Mice. Hepatol Commun 2019; 4:92-108. [PMID: 31909358 PMCID: PMC6939545 DOI: 10.1002/hep4.1448] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/20/2019] [Indexed: 12/16/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a metabolic disorder in which poor nutrition and the gut-to-liver interaction play a major role. We previously established that hepatic high mobility group box-1 (HMGB1) is involved in chronic liver disease. HMGB1 increases in patients with NASH and it is expressed in intestinal epithelial cells (IEC); yet, the role of intestinal HMGB1 in the pathogenesis of NASH has not been investigated. Thus, we hypothesized that IEC-derived HMGB1 could play a role in NASH due to local effects in the intestine that govern hepatic steatosis. Control littermates and Hmgb1 ΔIEC mice were fed for 1 or 24 weeks a control diet or a high fat, high cholesterol (CHO) and fructose-enriched diet (HFCFD). Hepatic and intestinal injury were analyzed. Hmgb1 ΔIEC mice were protected from HFCFD-induced NASH after 1 or 24 weeks of feeding; however, they showed extensive atypical lipid droplet accumulation and increased concentrations of triglycerides (TG) and CHO in jejunal IEC together with lower TG and other lipid classes in serum. Olive oil or CHO gavage resulted in decreased serum TG and CHO in Hmgb1 ΔIEC mice, respectively, indicating delayed and/or reduced chylomicron (CM) efflux. There was significant up-regulation of scavenger receptor class B type 1 (SR-B1) and down-regulation of apolipoprotein B48 (ApoB48) proteins, suggesting decreased lipid packaging and/or CM formation that resulted in lesser hepatosteatosis. Conclusion: Ablation of Hmgb1 in IEC causes up-regulation of SR-B1 and down-regulation of ApoB48, leads to lipid accumulation in jejunal IEC, decreases CM packaging and/or release, reduces serum TG, and lessens liver steatosis, therefore protecting Hmgb1 ΔIEC mice from HFCFD-induced NASH.
Collapse
Affiliation(s)
- Harriet Gaskell
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Xiaodong Ge
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Romain Desert
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Sukanta Das
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Hui Han
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Daniel Lantvit
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Grace Guzman
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Natalia Nieto
- Department of Pathology University of Illinois at Chicago Chicago IL.,Department of Medicine Division of Gastroenterology and Hepatology University of Illinois at Chicago Chicago IL
| |
Collapse
|
17
|
Khambu B, Yan S, Huda N, Yin XM. Role of High-Mobility Group Box-1 in Liver Pathogenesis. Int J Mol Sci 2019; 20:ijms20215314. [PMID: 31731454 PMCID: PMC6862281 DOI: 10.3390/ijms20215314] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 12/21/2022] Open
Abstract
High-mobility group box 1 (HMGB1) is a highly abundant DNA-binding protein that can relocate to the cytosol or undergo extracellular release during cellular stress or death. HMGB1 has a functional versatility depending on its cellular location. While intracellular HMGB1 is important for DNA structure maintenance, gene expression, and autophagy induction, extracellular HMGB1 acts as a damage-associated molecular pattern (DAMP) molecule to alert the host of damage by triggering immune responses. The biological function of HMGB1 is mediated by multiple receptors, including the receptor for advanced glycation end products (RAGE) and Toll-like receptors (TLRs), which are expressed in different hepatic cells. Activation of HMGB1 and downstream signaling pathways are contributing factors in the pathogenesis of non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), and drug-induced liver injury (DILI), each of which involves sterile inflammation, liver fibrosis, ductular reaction, and hepatic tumorigenesis. In this review, we will discuss the critical role of HMGB1 in these pathogenic contexts and propose HMGB1 as a bona fide and targetable DAMP in the setting of common liver diseases.
Collapse
Affiliation(s)
- Bilon Khambu
- Correspondence: ; Tel.: +1-317-274-1789; Fax: +1-317-491-6639
| | | | | | | |
Collapse
|
18
|
Liu Q, Gao Y, Wang Y, Du J, Yin Q, Shi K. Diagnostic value of hepatic artery perfusion fraction combined with TGF-β in patients with hepatocellular carcinoma. Oncol Lett 2019; 17:5635-5641. [PMID: 31186786 PMCID: PMC6507442 DOI: 10.3892/ol.2019.10228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/21/2019] [Indexed: 11/10/2022] Open
Abstract
Diagnostic value of hepatic artery perfusion fraction (HAF) combined with transforming growth factor-β (TGF-β) in the diagnosis of primary liver carcinoma (PLC) was evaluated. The clinical data of 128 PLC patients undergoing radical hepatectomy in Affiliated Hospital of Jining Medical University were regarded as the study group. Seventy-four healthy volunteers examined in Affiliated Hospital of Jining Medical University were collected as the control group. Double-antibody sandwich enzyme-linked immunosorbent assay was used to detect the expression level of serum TGF-β. The upper abdomen of the subjects was scanned by a 64-slice spiral CT, and the perfusion parameters were analyzed and calculated. According to the HAF and the expression level of TGF-β in the two groups, single and combined detection of TGF-β and HAF parameters were detected, respectively, by ROC curve. The expression of TGF-β in serum of the study group was higher than that of the control group (P<0.05). The expression level of serum TGF-β was closely related to total bilirubin, ascites, TNM stage, prothrombin time and tumor diameter. Blood flow (BF), blood volume (BV), permeability surface (PS), HAF and other perfusion parameters in the study group were higher than those in the control group (P<0.05). The specificity and sensitivity of TGF-β expression level in diagnosing PLC were 73 and 93%, respectively; the specificity and sensitivity of HAF parameter in diagnosing PLC were 73 and 100%, respectively; the specificity and sensitivity of HAF parameter combined with TGF-β expression level were 84 and 100%, respectively. TGF-β is highly expressed in serum of PLC patients; HAF parameter combined with TGF-β expression level can improve the specificity and has an important value in the diagnosis of PLC, which is worthy of clinical promotion.
Collapse
Affiliation(s)
- Qingxu Liu
- Department of Medical Imaging, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Yan Gao
- Department of Radiology, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| | - Yongxue Wang
- Department of Medical Records, The People's Hospital of Zhangqiu Area, Jinan, Shandong 250200, P.R. China
| | - Jiexin Du
- Department of Neurology, The People's Hospital of Zhangqiu Area, Jinan, Shandong 250200, P.R. China
| | - Qiang Yin
- Ward 1, Department of Oncology, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| | - Kewei Shi
- Department of Medical Imaging, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| |
Collapse
|
19
|
Tripathi A, Shrinet K, Kumar A. HMGB1 protein as a novel target for cancer. Toxicol Rep 2019; 6:253-261. [PMID: 30911468 PMCID: PMC6416660 DOI: 10.1016/j.toxrep.2019.03.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/23/2019] [Accepted: 03/01/2019] [Indexed: 12/11/2022] Open
Abstract
Highly conserved nuclear protein High Mobility Group Box1 (HMGB1) present in mammals has functionality as an immuno-modulator in the form of cytokine molecule, as a nuclear factor to regulate these molecules and DNA structural determination. It has proximal homologous DNA binding domains Box-A, Box-B and distal C-terminal domain. Reduced form exists in basic condition has chemotaxis activity, while form with disulphide bond reduced at 106th cysteine showed cytokine activity. The oxidized form is devoid of both activities. HMGB1 binds and bends dsDNA and also activates genes for secretion of inflammatory cytokines such as IL-1β, TNF-α, IL-6 and IL-18. It can interact with transcription factors Rel/NF-κB and p53 responsible for up-regulating oncogenes. Oxidative stressed injured tissues actively secrete HMGB1 outside cells to necrotize other nearby tissues passively in cytosol. Acetylation of HMGB1 weakens its binding with DNA, and promotes its migration to different tissues leading to secretion of inflammatory-cytokines. HMGB1 expression has been found very important in the genesis and promotion of different cancer by promoting metastasis. In current article, we emphasized on condition based structural variability of HMGB1, mechanism of release, physiological functions and its functionality as a biomarker for cancer to be targeted to curb cancer genesis and progression.
Collapse
Affiliation(s)
| | | | - Arvind Kumar
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
20
|
Gaskell H, Ge X, Nieto N. High-Mobility Group Box-1 and Liver Disease. Hepatol Commun 2018; 2:1005-1020. [PMID: 30202816 PMCID: PMC6128227 DOI: 10.1002/hep4.1223] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/03/2018] [Indexed: 12/12/2022] Open
Abstract
High‐mobility group box‐1 (HMGB1) is a ubiquitous protein. While initially thought to be simply an architectural protein due to its DNA‐binding ability, evidence from the last decade suggests that HMGB1 is a key protein participating in the pathogenesis of acute liver injury and chronic liver disease. When it is passively released or actively secreted after injury, HMGB1 acts as a damage‐associated molecular pattern that communicates injury and inflammation to neighboring cells by the receptor for advanced glycation end products or toll‐like receptor 4, among others. In the setting of acute liver injury, HMGB1 participates in ischemia/reperfusion, sepsis, and drug‐induced liver injury. In the context of chronic liver disease, it has been implicated in alcoholic liver disease, liver fibrosis, nonalcoholic steatohepatitis, and hepatocellular carcinoma. Recently, specific posttranslational modifications have been identified that could condition the effects of the protein in the liver. Here, we provide a detailed review of how HMGB1 signaling participates in acute liver injury and chronic liver disease.
Collapse
Affiliation(s)
- Harriet Gaskell
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Xiaodong Ge
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Natalia Nieto
- Department of Pathology University of Illinois at Chicago Chicago IL.,Department of Medicine University of Illinois at Chicago Chicago IL
| |
Collapse
|
21
|
Wu K, Zhang H, Fu Y, Zhu Y, Kong L, Chen L, Zhao F, Yu L, Chen X. TLR4/MyD88 signaling determines the metastatic potential of breast cancer cells. Mol Med Rep 2018; 18:3411-3420. [PMID: 30066873 PMCID: PMC6102647 DOI: 10.3892/mmr.2018.9326] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 06/12/2018] [Indexed: 12/12/2022] Open
Abstract
The influence of Toll-like receptor (TLR)4/myeloid differentiation factor (MyD)88 signaling on the invasion and metastasis of cancer cells has been previously reported. The purpose of the present study was to determine the role of TLR4/MyD88 in breast cancer cell migration and invasion, and to discover novel therapeutic targets for breast cancer treatment. TLR4, MyD88 and high mobility group box 1 (HMGB1) mRNA expression levels were assessed in highly invasive human MDA-MB-231 breast cancer cells, breast cancer cells with a low rate of invasion (MCF-7) and normal human MDA-Kb2 mammary gland cells by reverse transcription-quantitative polymerase chain reaction. The protein expression levels of these markers were detected by western blotting and immunofluorescence. Randomly selected breast cancer and paracarcinoma tissues were used to measure TLR4 and MyD88 protein expression levels by immunohistochemistry. The mRNA and protein expression levels of TLR4 and MyD88 were significantly higher in MDA-MB-231 cells compared with either MCF-7 cells or MDA-Kb2 cells. The mRNA and protein expression levels of HMGB1 were comparable in the two breast cancer cell lines, with no statistical difference (P>0.05). TLR4 and MyD88 protein expression levels were also significantly higher in breast cancer tissues compared with paracarcinoma tissues (P<0.05). TLR4 and MyD88 protein expression levels were positively correlated with axillary lymph node metastasis and histological grade (P<0.05). TLR4/MyD88 expression levels were positively correlated with the metastasis of breast cancer cells. TLR4/MyD88 may be useful as a novel biomarker to evaluate the prognosis and treatment of patients with breast cancer.
Collapse
Affiliation(s)
- Kunlin Wu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Huihao Zhang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Yajuan Fu
- Southern Biomedical Research Center, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Youzhi Zhu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Lingjun Kong
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Ling Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Feng Zhao
- First Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Liangfei Yu
- First Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Xiangjin Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| |
Collapse
|
22
|
Palanissami G, Paul SFD. RAGE and Its Ligands: Molecular Interplay Between Glycation, Inflammation, and Hallmarks of Cancer—a Review. Discov Oncol 2018; 9:295-325. [DOI: 10.1007/s12672-018-0342-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022] Open
|
23
|
SPANXA suppresses EMT by inhibiting c-JUN/SNAI2 signaling in lung adenocarcinoma. Oncotarget 2018; 7:44417-44429. [PMID: 27323831 PMCID: PMC5190107 DOI: 10.18632/oncotarget.10088] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/01/2016] [Indexed: 01/07/2023] Open
Abstract
SPANXA (Sperm Protein Associated with the Nucleus on the X-chromosome, family members A1/A2) acts as a cancer-testis antigen expressed in normal testes, but dysregulated in various tumors. We found that SPANXA is highly expressed in low-invasive CL1-0 cells compared with isogenous high-invasive CL1-5 cells. SPANXA was preferably expressed in tumor tissues and associated with the prolonged survival of lung adenocarcinomas. SPANXA suppressed the invasion and metastasis of lung cancer cells in vitro and in vivo. By the expression microarray and pathway analysis, we found that the SPANXA-altered genes were enriched in the epithelial–mesenchymal transition (EMT) pathway. SPANXA reduced SNAI2 expression resulted in up-regulating E-cadherin. c-JUN acts as the positive-regulator of EMT. Silencing SPANXA increased c-JUN mRNA expression and blockage of c-JUN led to SNAI2 down-regulation. Our results clearly characterized SPANXA as an EMT inhibitor by suppressing c-JUN-SNAI2 axis in lung adenocarcinoma.
Collapse
|
24
|
A. Richard S. High-mobility group box 1 is a promising diagnostic and therapeutic monitoring biomarker in Cancers: A review. AIMS MOLECULAR SCIENCE 2018. [DOI: 10.3934/molsci.2018.4.183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
25
|
Chen S, Dong Z, Yang P, Wang X, Jin G, Yu H, Chen L, Li L, Tang L, Bai S, Yan H, Shen F, Cong W, Wen W, Wang H. Hepatitis B virus X protein stimulates high mobility group box 1 secretion and enhances hepatocellular carcinoma metastasis. Cancer Lett 2017; 394:22-32. [PMID: 28216372 DOI: 10.1016/j.canlet.2017.02.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 01/17/2017] [Accepted: 02/10/2017] [Indexed: 12/20/2022]
Abstract
Hepatitis B virus X protein (HBx) plays an important role in the progression of hepatocellular carcinoma. Here we reported that overexpression of HBx in hepatocellular carcinoma (HCC) cells could induce the secretion of high-mobility group box 1 (HMGB1) to promote invasion and metastasis of HCC in an autocrine/paracrine manner. HBx triggered an increase of cytoplasmic calcium and activated CAMKK/CAMKIV pathway, leading to subsequent translocation and release of HMGB1. HMGB1 neutralizing antibody, as well as calcium chelator or inhibitors of CAMKK/CAMKIV, could remarkably reduce invasion and metastasis of HCC cells in vitro and in a murine HCC metastasis model in vivo. Furthermore, the level of HMGB1 in patient serum and tumor tissues was positively correlated with HBV DNA load. We demonstrate an inverse relationship between HMGB1 in tumor cytoplasm and overall prognosis of HCC patients. CONCLUSION HBx promotes the progression of HCC through translocation and secretion of HMGB1 from tumor cells via calcium dependent cascades. These data indicates that HMGB1 could serve as a novel prognostic biomarker and potential therapeutic target for HBV-related HCC.
Collapse
Affiliation(s)
- Shuzhen Chen
- National Center for Liver Cancer, Second Military Medical University, 225 Changhai Road, Shanghai 200438, China; International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Zihui Dong
- National Center for Liver Cancer, Second Military Medical University, 225 Changhai Road, Shanghai 200438, China; International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Pinghua Yang
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xianming Wang
- National Center for Liver Cancer, Second Military Medical University, 225 Changhai Road, Shanghai 200438, China
| | - Guangzhi Jin
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Han Yu
- National Center for Liver Cancer, Second Military Medical University, 225 Changhai Road, Shanghai 200438, China; International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Lei Chen
- National Center for Liver Cancer, Second Military Medical University, 225 Changhai Road, Shanghai 200438, China; International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Liang Li
- National Center for Liver Cancer, Second Military Medical University, 225 Changhai Road, Shanghai 200438, China; International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Liang Tang
- National Center for Liver Cancer, Second Military Medical University, 225 Changhai Road, Shanghai 200438, China; International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Shilei Bai
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Hexin Yan
- National Center for Liver Cancer, Second Military Medical University, 225 Changhai Road, Shanghai 200438, China; International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Feng Shen
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Wenming Cong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Wen Wen
- National Center for Liver Cancer, Second Military Medical University, 225 Changhai Road, Shanghai 200438, China; International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China.
| | - Hongyang Wang
- National Center for Liver Cancer, Second Military Medical University, 225 Changhai Road, Shanghai 200438, China; International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China; Ministry of Education (MOE) Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University, Shanghai, China.
| |
Collapse
|
26
|
Liang XY, Li Y, Ma YQ, Zhang ZM, He YL. Clinical significance of expression of high mobility group protein B1 and Toll-like receptor 4 in esophageal squamous cell carcinoma. Shijie Huaren Xiaohua Zazhi 2016; 24:3495-3501. [DOI: 10.11569/wcjd.v24.i23.3495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect the expression of high mobility group protein B1 (HMGB1) and Toll-like receptor 4 (TLR4) in human esophageal squamous cell carcinoma and analyze their clinical significance.
METHODS: The expression of HMGB1 and TLR4 was detected by EnVision immunohisto-
chemical staining method in 72 esophageal squamous carcinoma specimens and 15 matched normal tissue specimens. Statistical methods were used to analyze the relationship between the expression of HMGB1 and TLR4 and clinical and pathological parameters.
RESULTS: The expression of HMGB1 and TLR4 in esophageal squamous carcinoma tissues was significantly higher than that in matched normal tissues (P < 0.05). HMGB1 and TLR4 expression was positively associated with lymphatic metastasis and TNM stage (P < 0.05), but negatively correlated with tumor size and degree of differentiation. The expression of HMGB1 and TLR4 had a significant positive correlation (r = 0.377, P < 0.01).
CONCLUSION: The expression of HMGB1 and TLR4 in esophageal squamous carcinoma tissues is associated with lymphatic metastasis and TNM stage, and the joint detection of HMGB1 and TLR4 expression may help evaluate the degree of malignancy of esophageal squamous carcinoma. HMGB1/TLR may be used as important biological indicators reflecting the prognosis of esophageal cancer and important targets for therapy of esophageal cancer.
Collapse
|
27
|
Liao H, Xiao Y, Hu Y, Xiao Y, Yin Z, Liu L. Suppression of Cellular Proliferation and Invasion by HMGB1 Knockdown in Bladder Urothelial Carcinoma Cells. Oncol Res 2016; 22:235-45. [PMID: 26629935 PMCID: PMC7842537 DOI: 10.3727/096504015x14267282610858] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
HMGB1, which acts as a DNA chaperone to help maintain nuclear homeostasis, was reported to play a prominent role in cancer progression, angiogenesis, invasion, and metastasis development. Increased expression of HMGB1 has been observed in several tumor entities. However, the molecular mechanisms of HMGB1 in tumorigenesis of bladder cancer have rarely been reported. In the present study, real-time quantitative RT-PCR analysis revealed that the expression of HMGB1 in human bladder urothelial carcinoma (BUC) cells was much higher than that in human normal urethra epithelial cells. In order to investigate the role of HMGB1 in BUC cells, RNA interference and Talen-mediated gene knockout (KO) were used to knockdown and knockout HMGB1, respectively, in BUC cell lines BIU-87 and T24. HMGB1 knockdown/out greatly inhibited proliferation, invasion, and cell cycle G1/S transition of BUC cells. The decrease in cell viability caused by HMGB1 knockdown/out was due to an increase in apoptosis via Bax/Bcl-2, both of which were important molecules involved in the apoptotic pathway. We then investigated the effect of HMGB1 knockdown/out on the sensitivity of BUC cells treated with the anticancer drug cisplatin. Knockdown or knockout of HMGB1 rendered BUC cells more sensitive to cisplatin. The decreased expression of LC3-II and Beclin 1, which resulted in decreased levels of autophagy, could probably explain this phenomenon. Thus, HMGB1 may become a novel promising candidate for the prognosis and therapy for bladder cancer.
Collapse
Affiliation(s)
- Haiqiu Liao
- Department of Urology, Loudi Central Hospital of Hunan Province, Loudi, China
| | | | | | | | | | | |
Collapse
|
28
|
Yue L, Zhang Q, He L, Zhang M, Dong J, Zhao D, Ma H, Pan H, Zheng L. Genetic predisposition of six well-defined polymorphisms in HMGB1/RAGE pathway to breast cancer in a large Han Chinese population. J Cell Mol Med 2016; 20:1966-73. [PMID: 27241711 PMCID: PMC5020633 DOI: 10.1111/jcmm.12888] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/26/2016] [Indexed: 12/14/2022] Open
Abstract
Breast cancer constitutes an enormous burden in China. A strong familial clustering of breast cancer suggests a genetic component in its carcinogenesis. To examine the genetic predisposition of high mobility group box‐1/receptor for advanced glycation end products (HMGB1/RAGE) pathway to breast cancer, we genotyped six well‐defined polymorphisms in this pathway among 524 breast cancer patients and 518 cancer‐free controls from Heilongjiang province, China. There were no deviations from Hardy–Weinberg equilibrium for all polymorphisms. In single‐locus analysis, the frequency of rs1800624 polymorphism mutant A allele in RAGE gene was significantly higher in patients than in controls (24.52% versus 19.50%, P = 0.006), with the carriers of rs1800624‐A allele being 1.51 times more likely to develop breast cancer relative to those with rs1800624‐GG genotype after adjustment (95% confidence interval or CI: 1.17–1.94, P = 0.001). In HMGB1 gene, haplotype analysis did not reveal any significance, while in RAGE gene, haplotypes C‐T‐A and C‐A‐G (alleles in order of rs1800625, rs18006024, rs2070600) were significantly associated with an increased risk of breast cancer (adjusted OR = 2.72 and 10.35; 95% CI: 1.20–6.18 and 1.58–67.80; P = 0.017 and 0.015 respectively). In further genetic score analysis, per unit and quartile increments of unfavourable alleles were significantly associated with an increased risk of breast cancer after adjustment (odds ratio or OR = 1.20 and 1.26; 95% CI: 1.09–1.32 and 1.12–1.42; P < 0.001 and <0.001 respectively). Our findings altogether demonstrate a significant association between RAGE gene rs1800624 polymorphism and breast cancer risk, and more importantly a cumulative impact of multiple risk associated polymorphisms in HMGB1/RAGE pathway on breast carcinogenesis.
Collapse
Affiliation(s)
- Liling Yue
- Department of Biogenetics, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Qibing Zhang
- Department of General Surgery, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
| | - Lan He
- Department of Mathematics, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Minglong Zhang
- Department of Biogenetics, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Jing Dong
- Department of Biogenetics, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Dalong Zhao
- Clinical Laboratory, Qiqihar Jianhua Hospital, Qiqihar, Heilongjiang, China
| | - Hongxing Ma
- Clinical Laboratory, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
| | - Hongming Pan
- Department of Biochemistry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Lihong Zheng
- Department of Biogenetics, Qiqihar Medical University, Qiqihar, Heilongjiang, China.
| |
Collapse
|
29
|
Abstract
PURPOSE Alarmins are constitutively present endogenous molecules that essentially act as early warning signals for the immune system. We provide a brief overview of major alarmins and highlight their roles in tumor immunity. METHODS We searched PubMed up to January 10, 2016, using alarmins and/or damage-associated molecular patterns (DAMPs), as key words. We selected and reviewed articles that focused on the discovery and functions of alarmin and their roles in tumor immunity. FINDINGS Alarmins are essentially endogenous immunostimulatory DAMP molecules that are exposed in response to danger (eg, infection or tissue injury) as a result of degranulation, cell death, or induction. They are sensed by chemotactic receptors and pattern recognition receptors to induce immune responses by promoting the recruitment and activation of leukocytes, particularly antigen-presenting cells. IMPLICATIONS Accumulating data suggest that certain alarmins, High-mobility group nucleosome-binding protein 1 (HMGN1) in particular, contribute to the generation of antitumor immunity. Some alarmins can also be used as cancer biomarkers. Therefore, alarmins can potentially be applied for our fight against cancers.
Collapse
Affiliation(s)
- Yingjie Nie
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland; Guizhou Provincial Peoples' Hospital, Guiyang, Guizhou Province, China
| | - De Yang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland; Basic Research Program, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Joost J Oppenheim
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland.
| |
Collapse
|
30
|
Cornide-Petronio ME, Negrete-Sánchez E, Mendes-Braz M, Casillas-Ramírez A, Bujaldon E, Meroño N, Martínez-Carreres L, Gracia-Sancho J, Rodés J, Jiménez-Castro MB, Peralta C. The Effect of High-Mobility Group Box 1 in Rat Steatotic and Nonsteatotic Liver Transplantation From Donors After Brain Death. Am J Transplant 2016; 16:1148-1159. [PMID: 26704922 DOI: 10.1111/ajt.13560] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/02/2015] [Accepted: 10/03/2015] [Indexed: 01/25/2023]
Abstract
High-mobility group box 1 (HMGB1) has been described in different inflammatory disorders, and the deleterious effects of brain death (BD) may counteract the protection conferred by ischemic preconditioning (IP), the only surgical strategy that is being applied in clinical liver transplantation. Our study examined how HMGB1 may affect preconditioned and unpreconditioned steatotic and nonsteatotic liver grafts from donors after BD (DBDs) for transplantation. HMGB1 was pharmacologically modulated in liver grafts from DBDs, and HMGB1-underlying mechanisms were characterized. We found that BD decreased HMGB1 in preconditioned and unpreconditioned livers and was associated with inflammation and damage. Exogenous HMGB1 in DBDs activates phosphoinositide-3-kinase and Akt and reduces hepatic inflammation and damage, increasing the survival of recipients. Combination of IP and exogenous HMGB1 shows additional benefits compared with HMGB1 alone. This study provides new mechanistic insights into the pathophysiology of BD-derived liver graft damage and contributes to the development of novel and efficient strategies to ultimately improve liver graft quality.
Collapse
Affiliation(s)
- M E Cornide-Petronio
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - E Negrete-Sánchez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - M Mendes-Braz
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - A Casillas-Ramírez
- Hospital Regional de Alta Especialidad de Ciudad Victoria, Ciudad Victoria, México
| | - E Bujaldon
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - N Meroño
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - L Martínez-Carreres
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - J Gracia-Sancho
- Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - J Rodés
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
- Liver Unit, Hospital Clínic, Barcelona, Spain
| | - M B Jiménez-Castro
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - C Peralta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| |
Collapse
|
31
|
Wang H, Li Z, Sun Y, Xu Z, Han J, Song B, Song W, Qin C, Yin L. Relationship between high-mobility group box 1 overexpression in ovarian cancer tissue and serum: a meta-analysis. Onco Targets Ther 2015; 8:3523-31. [PMID: 26664135 PMCID: PMC4669932 DOI: 10.2147/ott.s93357] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE To implement a meta-analysis to investigate the relationship between high-mobility group box 1 (HMGB1) overexpression in the tissue and serum of ovarian cancer patients, and to evaluate its prognostic significance. METHODS Searches were made of China National Knowledge Infrastructure, EMBASE, WanFang, PubMed, MEDLINE, and Web of Science databases up to August 2015, with no language or style restrictions. Reference lists of related studies were also carefully reviewed to identify additional articles. RESULTS The literature search identified a total of 12 relevant studies on HMGB1 expression for inclusion in the meta-analysis: seven in ovarian tumor tissue, four in ovarian tumor patient serum, and one in both tissue and serum. HMGB1 protein levels in ovarian cancer tissues were notably higher than those in normal ovarian tissues with no evidence of heterogeneity between studies (RD=0.64, 95% confidence interval (CI): 0.57-0.70, Z=18.70, P<0.00001, I (2)=15%), and also higher than those in benign tumor tissues with no evidence of heterogeneity between studies (RD=0.52, 95% CI: 0.43-0.61, Z=11.14, P<0.00001, I (2)=0). Serum HMGB1 levels were similarly significantly higher in ovarian cancer patients than those with benign tumors or normal ovaries. Pooled mean differences of HMGB1 in ovarian cancer patients compared with patients with benign tumors or normal ovaries were 99.32 with 95% CI: 67.82-130.81, Z=6.18, P<0.00001, and 95.34 with 95% CI: 62.11-128.57, Z=5.62, P<0.0001. The pooled relative risk of ovarian cancer with high vs low HMGB1 expression levels was 1.40 with 95% CI: 1.09-1.79, Z=2.66, P=0.008, heterogeneity I (2)=50%. CONCLUSION This meta-analysis suggested that HMGB1 levels in both tissue and serum of ovarian cancer patients were significantly higher than those of benign tumor and normal ovarian samples. High serum or tissue HMGB1 expression may therefore be an effective molecular marker for ovarian benign or malignant tumor diagnosis and patient prognosis.
Collapse
Affiliation(s)
- Haipeng Wang
- Department of Surgery, Shandong Academy of Medical Sciences, University of Jinan, Jinan, Shandong, People's Republic of China ; Department of General Surgery, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, University of Jinan, Jinan, Shandong, People's Republic of China
| | - Zengjun Li
- Department of General Surgery, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, University of Jinan, Jinan, Shandong, People's Republic of China
| | - Yanlai Sun
- Department of General Surgery, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, University of Jinan, Jinan, Shandong, People's Republic of China
| | - Zhongfa Xu
- Department of General Surgery, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, University of Jinan, Jinan, Shandong, People's Republic of China
| | - Jianjun Han
- Department of General Surgery, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, University of Jinan, Jinan, Shandong, People's Republic of China
| | - Bao Song
- Cancer Research Center, Shandong Provincial Key Laboratory of Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, University of Jinan, Jinan, Shandong, People's Republic of China
| | - Wentao Song
- Department of Surgery, Shandong Academy of Medical Sciences, University of Jinan, Jinan, Shandong, People's Republic of China ; Department of General Surgery, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, University of Jinan, Jinan, Shandong, People's Republic of China
| | - Chen Qin
- Department of Surgery, Shandong Academy of Medical Sciences, University of Jinan, Jinan, Shandong, People's Republic of China ; Department of General Surgery, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, University of Jinan, Jinan, Shandong, People's Republic of China
| | - Lei Yin
- Department of Surgery, Shandong Academy of Medical Sciences, University of Jinan, Jinan, Shandong, People's Republic of China ; Department of General Surgery, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, University of Jinan, Jinan, Shandong, People's Republic of China
| |
Collapse
|
32
|
Wang X, Xiang L, Li H, Chen P, Feng Y, Zhang J, Yang N, Li F, Wang Y, Zhang Q, Li F, Cao F. The Role of HMGB1 Signaling Pathway in the Development and Progression of Hepatocellular Carcinoma: A Review. Int J Mol Sci 2015; 16:22527-40. [PMID: 26393575 PMCID: PMC4613322 DOI: 10.3390/ijms160922527] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 12/15/2022] Open
Abstract
The story of high mobility group protein B1 (HMGB1) in cancer is complicated and the function of HMGB1 in different cancers is uncertain. This review aims to retrieve literature regarding HMGB1 from English electronic resources, analyze and summarize the role of the HMGB1 signaling pathway in hepatocellular carcinoma (HCC), and provide useful information for carcinogenesis and progression of HCC. Results showed that HMGB1 could induce cell proliferation, differentiation, cell death, angiogenesis, metastasis, inflammation, and enhance immunofunction in in vitro and in vivo HCC models. HMGB1 and its downstream receptors RAGE, TLRs and TREM-1 may be potential anticancer targets. In conclusion, HMGB1 plays an important role in oncogenesis and represents a novel therapeutic target, which deserves further study.
Collapse
Affiliation(s)
- Xuanbin Wang
- Laboratory of Chinese Herbal Pharmacology, Renmin Hospital, 30 South Renmin Road, Shiyan 442000, Hubei, China.
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, 30 South Renmin Road, Shiyan 442000, Hubei, China.
| | - Longchao Xiang
- Laboratory of Chinese Herbal Pharmacology, Renmin Hospital, 30 South Renmin Road, Shiyan 442000, Hubei, China.
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, 30 South Renmin Road, Shiyan 442000, Hubei, China.
| | - Hongliang Li
- Laboratory of Chinese Herbal Pharmacology, Renmin Hospital, 30 South Renmin Road, Shiyan 442000, Hubei, China.
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, 30 South Renmin Road, Shiyan 442000, Hubei, China.
| | - Ping Chen
- Laboratory of Chinese Herbal Pharmacology, Renmin Hospital, 30 South Renmin Road, Shiyan 442000, Hubei, China.
| | - Yibin Feng
- School of Chinese Medicine, the University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China.
| | - Jingxuan Zhang
- Laboratory of Chinese Herbal Pharmacology, Renmin Hospital, 30 South Renmin Road, Shiyan 442000, Hubei, China.
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, 30 South Renmin Road, Shiyan 442000, Hubei, China.
| | - Nian Yang
- Laboratory of Chinese Herbal Pharmacology, Renmin Hospital, 30 South Renmin Road, Shiyan 442000, Hubei, China.
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, 30 South Renmin Road, Shiyan 442000, Hubei, China.
| | - Fei Li
- Laboratory of Chinese Herbal Pharmacology, Renmin Hospital, 30 South Renmin Road, Shiyan 442000, Hubei, China.
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, 30 South Renmin Road, Shiyan 442000, Hubei, China.
| | - Ye Wang
- Laboratory of Chinese Herbal Pharmacology, Renmin Hospital, 30 South Renmin Road, Shiyan 442000, Hubei, China.
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, 30 South Renmin Road, Shiyan 442000, Hubei, China.
| | - Quifang Zhang
- Laboratory of Chinese Herbal Pharmacology, Renmin Hospital, 30 South Renmin Road, Shiyan 442000, Hubei, China.
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, 30 South Renmin Road, Shiyan 442000, Hubei, China.
| | - Fang Li
- Laboratory of Chinese Herbal Pharmacology, Renmin Hospital, 30 South Renmin Road, Shiyan 442000, Hubei, China.
| | - Fengjun Cao
- Laboratory of Chinese Herbal Pharmacology, Renmin Hospital, 30 South Renmin Road, Shiyan 442000, Hubei, China.
| |
Collapse
|
33
|
Zhang R, Li Y, Wang Z, Chen L, Dong X, Nie X. Interference with HMGB1 increases the sensitivity to chemotherapy drugs by inhibiting HMGB1-mediated cell autophagy and inducing cell apoptosis. Tumour Biol 2015; 36:8585-92. [DOI: 10.1007/s13277-015-3617-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 05/26/2015] [Indexed: 11/30/2022] Open
|
34
|
Pathway-based gene signatures predicting clinical outcome of lung adenocarcinoma. Sci Rep 2015; 5:10979. [PMID: 26042604 PMCID: PMC4455286 DOI: 10.1038/srep10979] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 05/11/2015] [Indexed: 01/24/2023] Open
Abstract
Lung adenocarcinoma is often diagnosed at an advanced stage with poor prognosis. Patients with different clinical outcomes may have similar clinico-pathological characteristics. The results of previous studies for biomarkers for lung adenocarcinoma have generally been inconsistent and limited in clinical application. In this study, we used inverse-variance weighting to combine the hazard ratios for the four datasets and performed pathway analysis to identify prognosis-associated gene signatures. A total of 2,418 genes were found to be significantly associated with overall survival. Of these, a 21-gene signature in the HMGB1/RAGE signalling pathway and a 31-gene signature in the clathrin-coated vesicle cycle pathway were significantly associated with prognosis of lung adenocarcinoma across all four datasets (all p-values < 0.05, log-rank test). We combined the scores for the three pathways to derive a combined pathway-based risk (CPBR) score. Three pathway-based signatures and CPBR score also had more predictive power than single genes. Finally, the CPBR score was validated in two independent cohorts (GSE14814 and GSE13213 in the GEO database) and had significant adjusted hazard ratios 2.72 (p-value < 0.0001) and 1.71 (p-value < 0.0001), respectively. These results could provide a more complete picture of the lung cancer pathogenesis.
Collapse
|
35
|
Niu ZS, Niu XJ, Wang M. Management of hepatocellular carcinoma: Predictive value of immunohistochemical markers for postoperative survival. World J Hepatol 2015; 7:7-27. [PMID: 25624992 PMCID: PMC4295195 DOI: 10.4254/wjh.v7.i1.7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/02/2014] [Accepted: 11/07/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for over 90% of all primary liver cancers. With an ever increasing incidence trend year by year, it has become the third most common cause of death from cancer worldwide. Hepatic resection is generally considered to be one of the most effective therapies for HCC patients, however, there is a high risk of recurrence in postoperative HCC. In clinical practice, there exists an urgent need for valid prognostic markers to identify patients with prognosis, hence the importance of studies on prognostic markers in improving the prediction of HCC prognosis. This review focuses on the most promising immunohistochemical prognostic markers in predicting the postoperative survival of HCC patients.
Collapse
Affiliation(s)
- Zhao-Shan Niu
- Zhao-Shan Niu, Lab of Micromorphology, Medical College of Qingdao University, Qingdao 266071, Shandong Province, China
| | - Xiao-Jun Niu
- Zhao-Shan Niu, Lab of Micromorphology, Medical College of Qingdao University, Qingdao 266071, Shandong Province, China
| | - Mei Wang
- Zhao-Shan Niu, Lab of Micromorphology, Medical College of Qingdao University, Qingdao 266071, Shandong Province, China
| |
Collapse
|
36
|
Bi MR, Zhu LY, Yan BZ, Chen LY, Wang FX, Ma YJ, Yang BS. Association of Upregulated HMGB1 and c-IAP2 Proteins With Hepatocellular Carcinoma Development and Progression. HEPATITIS MONTHLY 2014; 14:e23552. [PMID: 25685165 PMCID: PMC4310020 DOI: 10.5812/hepatmon.23552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/20/2014] [Accepted: 11/29/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most important health problems in China. OBJECTIVES This study analyzed expression of high-mobility group protein B1 (HMGB1) and inhibitor of apoptosis protein-2 (c-IAP2) proteins in HCC compared to paired para-tumor tissue samples to assess the association with HCC pathogenesis and progression. MATERIALS AND METHODS Sixty-eight HCC and para-tumor tissue samples were collected for Western blot, qRT-PCR and immunohistochemical analyses of HMGB1 and c-IAP2. RESULTS HMGB1 and c-IAP2 proteins were highly expressed in HCC tissue samples [85.3% (58/68) and 82.4% (56/68), respectively] compared to para-tumor tissue samples [32.3% and 27.9%, respectively]. Furthermore, expression of HMGB1 was significantly associated with enhanced c-IAP2 expression in HCC tissue samples (r = 0.878, P < 0.01). Expression of HMGB1 was associated with tumor multiplicity and size, alpha-fetoprotein (AFP) level and advanced TNM stage, while expression of c-IAP2 was associated with tumor size, AFP level and advanced TNM stage. CONCLUSIONS Expression of HMGB1 and c-IAP2 proteins was associated with HCC development and progression, and the expression of HMGB1 and c-IAP2 proteins in HCC were significantly associated with each other. Additionally, these proteins may show promise as biomarkers to predict HCC progression.
Collapse
Affiliation(s)
- Man Ru Bi
- The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Li Ying Zhu
- The Fourth Clinical Medical College, Harbin Medical University, Harbin, China
| | - Bing Zhu Yan
- The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Li Yan Chen
- The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Fu Xiang Wang
- The Fourth Clinical Medical College, Harbin Medical University, Harbin, China
| | - Ying Ji Ma
- The Fourth Clinical Medical College, Harbin Medical University, Harbin, China
- Corresponding Authors: Ying Ji Ma, The Fourth Clinical Medical College, Harbin Medical University, Harbin 150001, China. Tel: +86-45182576842, Fax: +86-45182576842, E-mail: ; Bao Shan Yang, The Second Clinical Medical College, Harbin Medical University, Harbin 150001, China. Tel: +86-45186297509, Fax: +86-45186297509, E-mail:
| | - Bao Shan Yang
- The Second Clinical Medical College, Harbin Medical University, Harbin, China
- Corresponding Authors: Ying Ji Ma, The Fourth Clinical Medical College, Harbin Medical University, Harbin 150001, China. Tel: +86-45182576842, Fax: +86-45182576842, E-mail: ; Bao Shan Yang, The Second Clinical Medical College, Harbin Medical University, Harbin 150001, China. Tel: +86-45186297509, Fax: +86-45186297509, E-mail:
| |
Collapse
|
37
|
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014; 40:1-116. [PMID: 25010388 PMCID: PMC4254084 DOI: 10.1016/j.mam.2014.05.001] [Citation(s) in RCA: 731] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Sha Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengwen Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
38
|
Wang Y, Tao T, Dong Y, Zhang J, Qin Z. Effect of ulinastatin on the expression and distribution of high mobility group box 1 in human colon carcinoma cells in vitro. Mol Med Rep 2014; 11:2041-7. [PMID: 25385285 DOI: 10.3892/mmr.2014.2921] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 09/18/2014] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the in vitro effects of ulinastatin (UTI) on the proliferation, invasion, apoptosis, expression and distribution of high mobility group box 1 (HMGB1) and the expression of nuclear factor κB (NF‑κB) in human colon carcinoma LoVo cells. The cells were divided into control (untreated), UTI1 (400 U/ml UTI), UTI2 (800 U/ml UTI) and UTI3 (1,600 U/ml UTI) groups. The cell proliferation, invasion, apoptosis and the gene and protein expression of HMGB1 and NF‑κB were detected using a tetrazolium assay, Transwell cell invasion assays, a caspase‑3 activity assay, western blot analysis and reverse transcription quantitative polymerase chain reaction, respectively. The distribution of HMGB1 was detected using immunofluorescence. LoVo cell proilferation decreased the most in the UTI3 group followed, in order, by the UTI2, UTI1 and control groups. UTI inhibited invasion in LoVo cells and the inhibitory effect was enhanced as the UTI concentration increased. The activity of caspase‑3 increased the least in the control group followed, in order, by the UTI1, UTI2 and UTI3 groups. UTI inhibited the expression of HMGB1 and NF‑κB, and decreased the cytoplasmic distribution of HMGB1. Thus, UTI inhibited LoVo cell proliferation and induced LoVo cell apoptosis, the mechanism of which may be associated with a decreased in the expression of HMGB1 and NF‑κB, and the cytoplasmic distribution of HMGB1.
Collapse
Affiliation(s)
- Yunhua Wang
- Department of Anesthesiology, The First People's Hospital of Foshan and Foshan Hospital of Sun Yat‑Sen University, Foshan, Guangdong 528000, P.R. China
| | - Tao Tao
- Department of Anesthesiology, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yinv Dong
- Department of Anesthesiology, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jing Zhang
- Department of Anesthesiology, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zaisheng Qin
- Department of Anesthesiology, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
39
|
Zhang L, Han J, Wu H, Liang X, Zhang J, Li J, Xie L, Xie Y, Sheng X, Yu J. The association of HMGB1 expression with clinicopathological significance and prognosis in hepatocellular carcinoma: a meta-analysis and literature review. PLoS One 2014; 9:e110626. [PMID: 25356587 PMCID: PMC4214718 DOI: 10.1371/journal.pone.0110626] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 09/14/2014] [Indexed: 12/15/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the fifth most common cancer, and it is the second most common cancer-related mortality globally. The prognostic value of high mobility group box 1 (HMGB1) remains controversial. The purpose of this study is to conduct a meta-analysis and literature review to evaluate the association of HMGB1 expression with the prognosis of patients with HCC. Methods A detailed literature search was made in Medline, Google Scholar and others for related research publications. The data were extracted and assessed by two reviewers independently. Analysis of pooled data were performed, Hazard Ratio (HR) and mean difference with corresponding confidence intervals (CIs) were calculated and summarized respectively. Results 10 relevant articles were included for this meta-analysis study. HMGB1 mRNA levels in HCC were significantly higher than those in normal (p<0.00001) and para-tumor tissues (p = 0.002) respectively. The protein levels of HMGB1 in HCC were significantly higher than those in para-tumor tissues (p = 0.005). Two studies reported the serum HMGB1 levels in patients with HCC of TNM stages, and indicating significantly different between stage I and II, stage II and III, as well as stage III and IV (two studies showed p<0.01 and p<0.001 respectively). The overall survival (OS) was significantly shorter in HCC patients with high HMGB1 expression compared those with low HMGB1 expression and the pooled HR was 1.31 with 95% CI 1.20–1.44, Z = 5.82, p<0.0001. Two additional studies showed that there were higher serum HMGB1 levels in patients with chronic hepatitis than those in healthy people (p<0.05). Conclusions The results of this meta-analysis suggest that HMGB1 mRNA and protein tissue levels in the patients with HCC are significantly higher than those in para-tumor and normal liver tissues respectively. Tissue HMGB1 overexpression is a potential biomarker for HCC diagnosis, and it is significantly associated with the prognosis of patients with HCC.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Gynecologic Oncology, Shandong Cancer Hospital and Institute, School of Medicine and life Science, University of Jinan-Shandong Academy of Medical Science, Jinan, Shandong, P.R. China
| | - Jianjun Han
- Department of Cancer Interventional Radiology, Shandong Cancer Hospital and Institute, Jinan, Shandong, P.R. China
| | - Huiyong Wu
- Department of Cancer Interventional Radiology, Shandong Cancer Hospital and Institute, Jinan, Shandong, P.R. China
| | - Xiaohong Liang
- Department of Immunology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Jianxin Zhang
- Department of Cancer Interventional Radiology, Shandong Cancer Hospital and Institute, Jinan, Shandong, P.R. China
| | - Jian Li
- Department of Cancer Interventional Radiology, Shandong Cancer Hospital and Institute, Jinan, Shandong, P.R. China
| | - Li Xie
- Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong, P.R. China
| | - Yinfa Xie
- Department of Cancer Interventional Radiology, Shandong Cancer Hospital and Institute, Jinan, Shandong, P.R. China
| | - Xiugui Sheng
- Department of Gynecologic Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong, P.R. China
- * E-mail: (XS); (JY)
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong, P.R. China
- * E-mail: (XS); (JY)
| |
Collapse
|
40
|
HMGB1 promotes cellular proliferation and invasion, suppresses cellular apoptosis in osteosarcoma. Tumour Biol 2014; 35:12265-74. [PMID: 25168370 DOI: 10.1007/s13277-014-2535-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/20/2014] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma is the most common primary malignant bone tumor in children and adolescents. Unfortunately, treatment failures are common due to the metastasis and chemoresistance, but the underlying molecular mechanism remains unclear. Accumulating evidence indicated that the deregulation of DNA-binding protein high-mobility group box 1 (HMGB1) was associated with the development of cancer. This study aimed to explore the expression of HMGB1 in osteosarcoma tissues and its correlation to the clinical pathology of osteosarcoma and to discuss the role of HMGB1 in the development of osteosarcoma. The results from RT-PCR and Western blot showed that the expression rate of HMGB1 messenger RNA (mRNA) and the expression of HMGB1 in the osteosarcoma tissues were significantly higher than those in normal bone tissue (p < 0.05), the expression rate of HMGB1 mRNA and the expression of HMGB1 in the carcinoma tissues with positive lung metastasis were significantly higher than those without lung metastasis (p < 0.05), and with increasing Enneking stage, the expression rate of HMGB1 mRNA and the expression of HMGB1 also increased (p < 0.05). In order to explore the role of HMGB1 in osteosarcoma, the expression of HMGB1 in the human osteosarcoma MG-63 cell line was downregulated by the technique of RNA interference. Western blot results showed that the protein expression of HMGB1 was significantly decreased in the MG-63 cells from HMGB1-siRNA transfection group (p < 0.05), which suggested that HMGB1 was successfully downregulated in the MG-63 cells. Then the changes in proliferation, apoptosis, and invasion of MG-63 cells were examined by MTT test, PI staining, annexin V staining, and transwell chamber assay. Results showed that the abilities of proliferation and invasion were suppressed in HMGB1 knockdown MG-63 cells, and the abilities of apoptosis were enhanced in HMGB1 knockdown MG-63 cells. The expression of cyclin D1, MMP-9 was downregulated in HMGB1 knockdown MG-63 cells, and the expression of caspase-3 was upregulated in HMGB1 knockdown MG-63 cells. Taken together, the overexpression of HMGB1 in osteosarcoma might be related to the tumorigenesis, invasion, and metastasis of osteosarcoma, which might be a potential target for the treatment of osteosarcoma.
Collapse
|
41
|
Chao J, Zhang XF, Pan QZ, Zhao JJ, Jiang SS, Wang Y, Zhang JH, Xia JC. Decreased expression of TRIM3 is associated with poor prognosis in patients with primary hepatocellular carcinoma. Med Oncol 2014; 31:102. [PMID: 24994609 DOI: 10.1007/s12032-014-0102-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 06/23/2014] [Indexed: 02/07/2023]
Abstract
Tripartite motif-containing 3 (TRIM3) is a member of the tripartite motif (TRIM) protein family and is reported to be involved in the pathogenesis of various cancers. The role of TRIM3 in hepatocellular carcinoma (HCC) is unknown; thus, the goal of this study was to explore the expression level and prognostic value of TRIM3 in HCC. The expression level of TRIM3 in HCC surgically resected tumors and corresponding nontumorous samples was detected by real-time quantitative RT-PCR, Western blotting, and immunohistochemistry. The correlation between TRIM3 expression level and the clinicopathological features and prognosis of HCC patients was also analyzed. We observed that TRIM3 expression was remarkably decreased in tumor tissue samples from HCC patients, relative to matched nontumorous tissue samples, at the mRNA (p = 0.018) and protein level (p = 0.02). Similarly, immunohistochemical analysis showed that 53.4 % of samples had low TRIM3 protein expression. Clinicopathological analysis revealed that low TRIM3 expression was significantly correlated with tumor size (p = 0.034), histological grade (p < 0.001), serum AFP (p = 0.025), and TNM stage (p = 0.021). Furthermore, Kaplan-Meier survival analysis revealed that low TRIM3 expression was associated with poor survival in HCC patients. Finally, our multivariate Cox regression analysis showed that TRIM3 expression was an independent prognostic factor for overall survival of HCC patients. In conclusion, this study suggests that TRIM3 may play a significant role in HCC progression and acts as a valuable prognostic marker and potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Jie Chao
- Department of Epidemiology and Health Statistics, Guangdong Key Laboratory of Molecular Epidemiology, Guangdong Pharmaceutical University, 280 Waihuan Road East, Guangzhou, 510010, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhang J, Kou YB, Zhu JS, Chen WX, Li S. Knockdown of HMGB1 inhibits growth and invasion of gastric cancer cells through the NF-κB pathway in vitro and in vivo. Int J Oncol 2014; 44:1268-76. [PMID: 24481712 DOI: 10.3892/ijo.2014.2285] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/20/2013] [Indexed: 12/27/2022] Open
Abstract
High mobility group box 1 (HMGB1) as a novel inflammatory molecule has been shown to be involved in a variety of cell physiological and pathological behaviors including immune response, inflammation and cancer. Evidence suggests that HMGB1 plays a critical role in the development and progression of multiple malignancies. However, the underlying molecular mechanisms for the HMGB1-mediated growth and invasion of gastric cancer have not yet been elucidated. The present study investigated the expression of HMGB1 in gastric adenocarcinoma (GAC) and the mechanisms by which it contributes to tumor growth and invasion. The correlation between HMGB1 expression and clinicopathological characteristics of GAC patients was assessed by immunohistochemical assay through tissue microarray procedures. The RNA and protein expressions of HMGB1 and downstream factors were detected by quantitative PCR and western blot assays; cell proliferation and invasion were determined by MTT, wound-healing and 3D-Matregel assays, subcutaneous SGC-7901 tumor models were established to verify tumor growth in vivo. We demonstrated that, the expression of HMGB1 was significantly increased in the nucleus of GAC tissues compared with that in adjacent non-cancer tissues (88.6 vs.70.5%, P<0.001), and correlated with the metastatic lymph node of GAC (P=0.018). Furthermore, knockdown of HMGB1 by shRNA inhibited cell proliferative activities and invasive potential, and downregulated the expression of NF-κB p65, PCNA and MMP-9 in GAC cells (SGC-7901 and AGS). The tumor volumes in SGC7901 subcutaneous nude mouse models treated with Lv-shHMGB1 was significantly smaller than those of the nonsense sequence group. Taken together, these findings suggest that increased expression of HMGB1 is associated with tumor metastasis of GAC, and knockdown of HMGB1 suppresses growth and invasion of GAC cells through the NF-κB pathway in vitro and in vivo, suggesting that HMGB1 may serve as a potential therapeutic target for GAC.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P.R. China
| | - Yu-Bin Kou
- Department of Gastroenterology, Baoshan Branch Hospital, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Jin-Shui Zhu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P.R. China
| | - Wei-Xiong Chen
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P.R. China
| | - Shuang Li
- Department of Gastroenterology, Baoshan Branch Hospital, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| |
Collapse
|
43
|
Zhang C, Ge S, Hu C, Yang N, Zhang J. MiRNA-218, a new regulator of HMGB1, suppresses cell migration and invasion in non-small cell lung cancer. Acta Biochim Biophys Sin (Shanghai) 2013; 45:1055-61. [PMID: 24247270 DOI: 10.1093/abbs/gmt109] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MicroRNAs (miRNAs) function as negative regulators of gene expression involved in cancer metastasis. The aim of this study is to investigate the potential roles of miR-218 in non-small cell lung cancer and validate its regulation mechanism. Functional studies showed that miR-218 overexpression inhibited cell migration and invasion, but had no effect on cell viability. Enhanced green fluorescent protein reporter assay, real-time polymerase chain reaction and western blot analysis confirmed that miR-218 suppressed the expression of high mobility group box-1 (HMGB1) by directly targeting its 3'-untranslated region. Accordingly, silencing of HMGB1 accorded with the effects of miR-218 on cell migration and invasion, and overexpression of HMGB1 can restore cell migration and invasion which were reduced by miR-218. In conclusion, these findings demonstrate that miR-218 functions as a tumor suppressor in lung cancer. Furthermore, miR-218 may act as a potential therapeutic biomarker for metastatic lung cancer patients.
Collapse
Affiliation(s)
- Cailian Zhang
- Department of Geriatrics, The Affiliated Hospital of Yan'an University, Yan'an 716000, China
| | | | | | | | | |
Collapse
|
44
|
Marcucci F, Bellone M, Caserta CA, Corti A. Pushing tumor cells towards a malignant phenotype: stimuli from the microenvironment, intercellular communications and alternative roads. Int J Cancer 2013; 135:1265-76. [PMID: 24174383 DOI: 10.1002/ijc.28572] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 09/26/2013] [Accepted: 10/24/2013] [Indexed: 12/13/2022]
Abstract
The tumor microenvironment produces different types of stimuli capable of endowing tumor cells with an aggressive behavior that is characterized by increased motility, invasiveness and propensity to metastasize, gain of a tumor-initiating phenotype, and drug resistance. The following classes of stimuli have been reported to promote such a malignant phenotype: (i) solid- or fluid-induced stress; (ii) altered composition of the extracellular matrix; (iii) hypoxia and low pH; (iv) innate and adaptive immune responses; (v) antitumor drugs. The simultaneous presence of more than one of these stimuli, as likely occurs in vivo, may lead to synergistic interactions in the induction of malignant traits. In many cases, the gain of a malignant phenotype is not the result of a direct effect of the stimuli on tumor cells but, rather, a stimulus-promoted cross-talk between tumor cells and other cell types within the tumor microenvironment. This cross-talk is mainly mediated by two classes of molecules: paracrine factors and adhesion receptors. Stimuli that promote a malignant phenotype can promote additional outcomes in tumor cells, including autophagy and cell death. We summarize here the available evidence about the variables that induce tumor cells to take one or the other of these roads in response to the same stimuli. At the end of this review, we address some unanswered questions in this domain and indicate future directions of research.
Collapse
Affiliation(s)
- Fabrizio Marcucci
- Centro Nazionale di Epidemiologia Sorveglianza e Promozione della Salute (CNESPS), Istituto Superiore di Sanita' (ISS), Roma, Italy; Hepatology Association of Calabria (ACE), Reggio Calabria, Italy
| | | | | | | |
Collapse
|
45
|
Chen R, Hou W, Zhang Q, Kang R, Fan XG, Tang D. Emerging role of high-mobility group box 1 (HMGB1) in liver diseases. Mol Med 2013; 19:357-66. [PMID: 24306421 DOI: 10.2119/molmed.2013.00099] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 11/05/2013] [Indexed: 12/13/2022] Open
Abstract
Damage-associated molecular pattern (DAMP) molecules are essential for the initiation of innate inflammatory responses to infection and injury. The prototypic DAMP molecule, high-mobility group box 1 (HMGB1), is an abundant architectural chromosomal protein that has location-specific biological functions: within the nucleus as a DNA chaperone, within the cytosol to sustain autophagy and outside the cell as a DAMP molecule. Recent research indicates that aberrant activation of HMGB1 signaling can promote the onset of inflammatory and autoimmune diseases, raising interest in the development of therapeutic strategies to control their function. The importance of HMGB1 activation in various forms of liver disease in relation to liver damage, steatosis, inflammation, fibrosis, tumorigenesis and regeneration is discussed in this review.
Collapse
Affiliation(s)
- Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America Department of Infectious Diseases and State Key Lab of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Xue-Gong Fan
- Department of Infectious Diseases and State Key Lab of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
46
|
The multifunctional alarmin HMGB1 with roles in the pathophysiology of sepsis and cancer. Immunol Cell Biol 2013; 91:443-50. [PMID: 23797067 DOI: 10.1038/icb.2013.25] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/11/2013] [Accepted: 05/12/2013] [Indexed: 12/20/2022]
Abstract
Although originally described as a highly conserved nuclear protein involved in DNA replication, transcription and repair, high-mobility group box-1 protein (HMGB1) has emerged as a key mediator in the regulation of immune responses to infection and sterile injury by exhibiting all the properties of a prototypic 'alarmin'. These include rapid passive release in response to pathogenic infection and/or traumatic injury, active secretion providing for chemotactic and cytokine-like function and an ability to resolve inflammation, including tissue repair and remodelling. In this review, we will give an overview of the post-translational modifications necessary for such diversity in biological activity, concentrating particularly on how differences in oxidation of highly conserved redox-sensitive cysteine residues can potentiate inflammatory responses and dictate cellular fate. We will also review the most recent literature on HMGB1 and its involvement in the pathophysiology of sepsis and cancer, as well as cancer therapy-induced mucositis.
Collapse
|