1
|
Jin SP, Oh JH, Kim NK, Chung JH. H Antigen expression modulates epidermal Keratinocyte Integrity and differentiation. Biol Res 2024; 57:72. [PMID: 39420441 PMCID: PMC11487879 DOI: 10.1186/s40659-024-00541-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/26/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND ABO blood group antigens (ABH antigens) are carbohydrate chains glycosylated on epithelial and red blood cells. Recent findings suggest reduced ABH expression in psoriasis and atopic dermatitis, a chronic inflammatory skin disease with retained scale. H antigen, a precursor for A and B antigens, is synthesized by fucosyltransferase 1 (FUT1). Desmosomes, critical for skin integrity, are known to require N-glycosylation for stability. We investigate the impact of H antigens, a specific type of glycosylation, on desmosomes in keratinocytes. METHOD Primary human keratinocytes were transfected with FUT1 siRNA or recombinant adenovirus for FUT1 overexpression. Cell adhesion and desmosome characteristics and their underlying mechanisms were analyzed. RESULT The knockdown of FUT1, responsible for H2 antigen expression in the skin, increased cell-cell adhesive strength and desmosome size in primary cultured keratinocytes without altering the overall desmosome structure. Desmosomal proteins, including desmogleins or plakophilin, were upregulated, suggesting enhanced desmosome assembly. Reduced H2 antigen expression via FUT1 knockdown led to increased keratinocyte differentiation, evidenced by elevated expression of differentiation markers. Epidermal growth factor receptor (EGFR) has been described to be associated with FUT1 and promotes cell migration and differentiation. The effects of FUT1 knockdown were recapitulated by an EGFR inhibitor concerning desmosomal proteins and cellular differentiation. Further investigation demonstrated that the FUT1 knockdown reduced EGFR signaling by lowering the levels of EGF ligands rather than directly regulating EGFR activity. Moreover, FUT1 overexpression reversed the effects observed in FUT1 knockdown, resulting in the downregulation of desmosomal proteins and differentiation markers while increasing both mRNA and protein levels of EGFR ligands. CONCLUSION The expression level of FUT1 in the epidermis appears to influence cell-cell adhesion and keratinocyte differentiation status, at least partly through regulation of H2 antigen and EGFR ligand expression. These observations imply that the fucosylation of the H2 antigen by FUT1 could play a significant role in maintaining the molecular composition and regulation of desmosomes and suggest a possible involvement of the altered H2 antigen expression in skin diseases, such as psoriasis and atopic dermatitis.
Collapse
Affiliation(s)
- Seon-Pil Jin
- Department of Dermatology, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jang-Hee Oh
- Department of Dermatology, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Namjoo Kaylee Kim
- Department of Dermatology, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University Hospital, Seoul, Republic of Korea.
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Hou H, Wang M, Yang S, Yang X, Sun W, Sun X, Guo Q, Debrah AA, Zhenxia D. Evaluation of Prebiotic Glycan Composition in Human Milk and Infant Formula: Profile of Galacto-Oligosaccharides and Absolute Quantification of Major Milk Oligosaccharides by UPLC-Cyclic IM-MS and UPLC-MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7980-7990. [PMID: 38562102 DOI: 10.1021/acs.jafc.4c00810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Prebiotic oligosaccharides have attracted immense interest in the infant formula (IF) industry due to their unique health benefits for infants. There is a need for the reasonable supplementation of prebiotics in premium IF products. Herein, we characterized the profile of galacto-oligosaccharides (GOS) in human milk (HM) and IF using ultrahigh-performance liquid chromatography-cyclic ion mobility-mass spectrometry (UPLC-cIM-MS) technique. Additionally, we further performed a targeted quantitative analysis of five essential HM oligosaccharides (HMOs) in HM (n = 196), IF (n = 50), and raw milk of IF (n = 10) by the high-sensitivity UPLC-MS/MS method. HM exhibited a more abundant and variable HMO composition (1183.19 to 2892.91 mg/L) than IF (32.91 to 56.31 mg/L), whereas IF contained extra GOS species and non-negligible endogenous 3'-sialyllactose. This also facilitated the discovery of secretor features within the Chinese population. Our study illustrated the real disparity in the prebiotic glycome between HM and IF and provided crucial reference for formula improvement.
Collapse
Affiliation(s)
- Haiyue Hou
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengyu Wang
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuya Yang
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xuexin Yang
- Waters Technology (Beijing) Co., Ltd., Jinghai Industrial Park, 156 Jinghai 4th Road, Beijing Economic-Technological Development Area, Beijing 100076, China
| | - Wenjun Sun
- Waters Technology (Beijing) Co., Ltd., Jinghai Industrial Park, 156 Jinghai 4th Road, Beijing Economic-Technological Development Area, Beijing 100076, China
| | - Xuechun Sun
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qiaozhen Guo
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Augustine Atta Debrah
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Du Zhenxia
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
3
|
Nuruzzaman M, Colella BM, Uzoewulu CP, Meo AE, Gross EJ, Ishizawa S, Sana S, Zhang H, Hoff ME, Medlock BTW, Joyner EC, Sato S, Ison EA, Li Z, Ohata J. Hexafluoroisopropanol as a Bioconjugation Medium of Ultrafast, Tryptophan-Selective Catalysis. J Am Chem Soc 2024; 146:6773-6783. [PMID: 38421958 DOI: 10.1021/jacs.3c13447] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The past decade has seen a remarkable growth in the number of bioconjugation techniques in chemistry, biology, material science, and biomedical fields. A core design element in bioconjugation technology is a chemical reaction that can form a covalent bond between the protein of interest and the labeling reagent. Achieving chemoselective protein bioconjugation in aqueous media is challenging, especially for generally less reactive amino acid residues, such as tryptophan. We present here the development of tryptophan-selective bioconjugation methods through ultrafast Lewis acid-catalyzed reactions in hexafluoroisopropanol (HFIP). Structure-reactivity relationship studies have revealed a combination of thiophene and ethanol moieties to give a suitable labeling reagent for this bioconjugation process, which enables modification of peptides and proteins in an extremely rapid reaction unencumbered by noticeable side reactions. The capability of the labeling method also facilitated radiofluorination application as well as antibody functionalization. Enhancement of an α-helix by HFIP leads to its compatibility with a certain protein, and this report also demonstrates a further stabilization strategy achieved by the addition of an ionic liquid to the HFIP medium. The nonaqueous bioconjugation approaches allow access to numerous chemical reactions that are unavailable in traditional aqueous processes and will further advance the chemistry of proteins.
Collapse
Affiliation(s)
- Mohammad Nuruzzaman
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Brandon M Colella
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Chiamaka P Uzoewulu
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Alissa E Meo
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Elizabeth J Gross
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Seiya Ishizawa
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Sravani Sana
- Department of Radiology and Biomedical Research Imaging Center, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Raleigh, North Carolina 27599, United States
| | - He Zhang
- Department of Radiology and Biomedical Research Imaging Center, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Raleigh, North Carolina 27599, United States
| | - Meredith E Hoff
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Bryce T W Medlock
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Emily C Joyner
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Shinichi Sato
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Elon A Ison
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Zibo Li
- Department of Radiology and Biomedical Research Imaging Center, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Raleigh, North Carolina 27599, United States
| | - Jun Ohata
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
4
|
Hsu HT, Kuo TM, Wei CY, Huang JY, Liu TW, Hsing MT, Lai MT, Chen CT. Investigation of the impact of Globo-H expression on the progression of gastric cancer. Am J Cancer Res 2023; 13:2969-2983. [PMID: 37560002 PMCID: PMC10408484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/28/2023] [Indexed: 08/11/2023] Open
Abstract
Globo-H (GH), a globo-series glycosphingolipid antigen that is synthesized by key enzymes β1,3-galactosyltransferase V (β3GalT5), fucosyltransferase (FUT) 1 and 2, is highly expressed on a variety of epithelial cancers rendering it a promising target for cancer immunotherapy. GH-targeting antibody-drug conjugate has been demonstrated an excellent tumor growth inhibition potency in animal models across multiple cancer types including Gastric cancer (GC). This study aims to further investigate the GH roles in GC. Significant correlations were observed between high mRNA expression of GH-synthetic key enzymes and worse overall survival (OS)/post-progression survival for GC patients based on the data from "Kaplan-Meier plotter" database (n=498). The level of GH expression was evaluated in clinical adenocarcinoma samples from 105 patients with GC by immunohistochemistry based on H-score. GH expression (H score ≥ 20; 33.3%) was significantly associated with a poor disease specific survival (DSS) and invasiveness in all samples with P=0.029 and P=0.013, respectively. In addition, it is also associated with shorter DSS and OS in poorly differentiated tumors with P=0.033 and P=0.045, respectively. Particularly, with patients ≥ 65 years of age, GH expression is also significantly associated with the stages (P=0.023), differentiation grade (P=0.038), and invasiveness (P=0.026) of the cancer. Sorted GC NCI-N87 cells with high level of endogenous GH showed higher proliferative activity compared with low-GH-expressing cells based on PCNA expression. Micro-western array analysis on high-GH-expressing GC cells indicated an upregulation in HER2-related signaling proteins including phospho-AKT/P38/JNK and Cyclin D1/Cyclin E1 proteins. Moreover, GH level was shown to be correlated with expression of total HER2 and caveolin-1 in GC cells. Immunoprecipitation study suggested that there are potential interactions among GH, caveolin-1, and HER2. In conclusions, GH level was significantly associated with the worse survival and disease progression in GC patients, especially in older patients. Enhanced cell proliferation activity through interactions among GH, HER2, and caveolin-1 interactions may contribute to GH induced tumor promotion signaling in GC. GH-targeting therapy may be a viable option for the treatment of GC patients.
Collapse
Affiliation(s)
- Hui-Ting Hsu
- Department of Pathology, Changhua Christian HospitalChanghua, Taiwan
- Institute of Medicine, Chung Shan Medical UniversityTaichung, Taiwan
- School of Medicine, Chung Shan Medical UniversityTaichung, Taiwan
- Department of Pathology, China Medical University HospitalTaichung, Taiwan
| | | | | | | | | | - Ming-Tai Hsing
- Department of Neurosurgery, Changhua Christian HospitalChanghua, Taiwan
| | | | | |
Collapse
|
5
|
Lv Y, Zhang Z, Tian S, Wang W, Li H. Therapeutic potential of fucosyltransferases in cancer and recent development of targeted inhibitors. Drug Discov Today 2023; 28:103394. [PMID: 36223858 DOI: 10.1016/j.drudis.2022.103394] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/05/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
Fucosyltransferases (FUTs) have significant roles in various pathophysiological events. Their high expression is a signature of malignant cell transformation, contributing to many abnormal events during cancer development, such as uncontrolled cell proliferation, tumor cell invasion, angiogenesis, metastasis, immune evasion, and therapy resistance. Therefore, FUTs have evolved as an attractive therapeutic target for treating solid cancers, and many substrate analogs have been discovered with potential as FUT inhibitors for cancer therapy. Meanwhile, the development of FUT protein structures represents a significant advance in the design of FUT inhibitors with nonsubstrate structures. In this review, we summarize the role of FUTs in cancers, the resolved protein crystal structures and progress in the development of FUT inhibitors as cancer therapeutics.
Collapse
Affiliation(s)
- Yixin Lv
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, Jiangsu, China
| | - Zhoudong Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, Jiangsu, China
| | - Sheng Tian
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, Jiangsu, China
| | - Weipeng Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, Jiangsu, China.
| | - Huanqiu Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, Jiangsu, China.
| |
Collapse
|
6
|
Gao Z, Wu Z, Han Y, Zhang X, Hao P, Xu M, Huang S, Li S, Xia J, Jiang J, Yang S. Aberrant Fucosylation of Saliva Glycoprotein Defining Lung Adenocarcinomas Malignancy. ACS OMEGA 2022; 7:17894-17906. [PMID: 35664632 PMCID: PMC9161393 DOI: 10.1021/acsomega.2c01193] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Aberrant glycosylation is a hallmark of cancer found during tumorigenesis and tumor progression. Lung cancer (LC) induced by oncogene mutations has been detected in the patient's saliva, and saliva glycosylation has been altered. Saliva contains highly glycosylated glycoproteins, the characteristics of which may be related to various diseases. Therefore, elucidating cancer-specific glycosylation in the saliva of healthy, non-cancer, and cancer patients can reveal whether tumor glycosylation has unique characteristics for early diagnosis. In this work, we used a solid-phase chemoenzymatic method to study the glycosylation of saliva glycoproteins in clinical specimens. The results showed that the α1,6-core fucosylation of glycoproteins was increased in cancer patients, whereas α1,2 or α1,3 fucosylation was significantly increased. We further analyzed the expression of fucosyltransferases responsible for α1,2, α1,3, and α1,6 fucosylation. The fucosylation of the saliva of cancer patients is drastically different from that of non-cancer or health controls. These results indicate that the glycoform of saliva fucosylation distinguishes LC from other diseases, and this feature has the potential to diagnose lung adenocarcinoma.
Collapse
Affiliation(s)
- Ziyuan Gao
- Center
for Clinical Mass Spectrometry, School of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
- Department
of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Pinghai Road No. 899, Suzhou 215000, China
| | - Zhen Wu
- State
Key Laboratory of Genetic Engineering, Department of Biochemistry,
School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ying Han
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210, China
| | - Xumin Zhang
- State
Key Laboratory of Genetic Engineering, Department of Biochemistry,
School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Piliang Hao
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210, China
| | - Mingming Xu
- Center
for Clinical Mass Spectrometry, School of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shan Huang
- Center
for Clinical Mass Spectrometry, School of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shuwei Li
- Nanjing
Apollomics Biotech, Inc., Nanjing, Jiangsu 210033, China
| | - Jun Xia
- Department
of Clinical Laboratory Center, Zhejiang Provincial People’s
Hospital, People’s Hospital of Hangzhou
Medical College, Hangzhou, Zhejiang 310014, China
| | - Junhong Jiang
- Department
of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Pinghai Road No. 899, Suzhou 215000, China
- Department
of Pulmonary and Critical Care Medicine, Dushu Lake Hospital, Affiliated to Soochow University, Chongwen Road No. 9, Suzhou 215000, China
| | - Shuang Yang
- Center
for Clinical Mass Spectrometry, School of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
7
|
Aziz F, Khan I, Shukla S, Dey DK, Yan Q, Chakraborty A, Yoshitomi H, Hwang SK, Sonwal S, Lee H, Haldorai Y, Xiao J, Huh YS, Bajpai VK, Han YK. Partners in crime: The Lewis Y antigen and fucosyltransferase IV in Helicobacter pylori-induced gastric cancer. Pharmacol Ther 2022; 232:107994. [PMID: 34571111 DOI: 10.1016/j.pharmthera.2021.107994] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 02/05/2023]
Abstract
Helicobacter pylori (H. pylori) is a major causative agent of chronic gastritis, gastric ulcer and gastric carcinoma. H. pylori cytotoxin associated antigen A (CagA) plays a crucial role in the development of gastric cancer. Gastric cancer is associated with glycosylation alterations in glycoproteins and glycolipids on the cell surface. H. pylori cytotoxin associated antigen A (CagA) plays a significant role in the progression of gastric cancer through post-translation modification of fucosylation to develop gastric cancer. The involvement of a variety of sugar antigens in the progression and development of gastric cancer has been investigated, including type II blood group antigens. Lewis Y (LeY) is overexpressed on the tumor cell surface either as a glycoprotein or glycolipid. LeY is a difucosylated oligosaccharide, which is catalyzed by fucosyltransferases such as FUT4 (α1,3). FUT4/LeY overexpression may serve as potential correlative biomarkers for the prognosis of gastric cancer. We discuss the various aspects of H. pylori in relation to fucosyltransferases (FUT1-FUT9) and its fucosylated Lewis antigens (LeY, LeX, LeA, and LeB) and gastric cancer. In this review, we summarize the carcinogenic effect of H. pylori CagA in association with LeY and its synthesis enzyme FUT4 in the development of gastric cancer as well as discuss its importance in the prognosis and its inhibition by combination therapy of anti-LeY antibody and celecoxib through MAPK signaling pathway preventing gastric carcinogenesis.
Collapse
Affiliation(s)
- Faisal Aziz
- The Hormel Institute-University of Minnesota, Austin, MN 55912, USA; Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, PR China.
| | - Imran Khan
- The Hormel Institute-University of Minnesota, Austin, MN 55912, USA
| | - Shruti Shukla
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gwal Pahari, Gurugram, Haryana 122003, India
| | - Debasish Kumar Dey
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan 38453, Republic of Korea
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, PR China
| | | | - Hisae Yoshitomi
- The Hormel Institute-University of Minnesota, Austin, MN 55912, USA
| | - Seung-Kyu Hwang
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea
| | - Sonam Sonwal
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea
| | - Hoomin Lee
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea
| | - Yuvaraj Haldorai
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, Tamilnadu 641046, India
| | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China; University of Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| | - Yun Suk Huh
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea.
| | - Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul 04620, Republic of Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul 04620, Republic of Korea.
| |
Collapse
|
8
|
A Novel Bispecific Antibody Targeting CD3 and Lewis Y with Potent Therapeutic Efficacy against Gastric Cancer. Biomedicines 2021; 9:biomedicines9081059. [PMID: 34440263 PMCID: PMC8393954 DOI: 10.3390/biomedicines9081059] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/06/2021] [Accepted: 08/18/2021] [Indexed: 01/14/2023] Open
Abstract
Lewis Y antigen, a glycan highly expressed on most epithelial cancers, was targeted for cancer treatment but lacked satisfactory results in some intractable and refractory cancers. Thus, it is highly desirable to develop an effective therapy against these cancers, hopefully based on this target. In this work, we constructed a novel T cell-engaging bispecific antibody targeting Lewis Y and CD3 (m3s193 BsAb) with the IgG-[L]-scfv format. In vitro activity of m3s193 BsAb was evaluated by affinity assay to target cells, cytotoxicity assay, cytokines releasing assay, and T cells proliferation and recruiting assays. Anti-tumor activity against gastric cancer was evaluated in vivo by subcutaneous huPBMCs/tumor cells co-grafting model and huPBMCs intravenous injecting model. In vitro, m3s193 BsAb appeared to have a high binding affinity to Lewis Y positive cells and Jurkat cells. The BsAb showed stronger activity than its parent mAb in T cell recruiting, activation, proliferation, cytokine release, and cytotoxicity. In vivo, m3s193 BsAb not only demonstrated higher therapeutic efficacy in the huPBMCs/tumor co-grafting gastric carcinoma model than the parent mAb but also eliminated tumors in the model of intravenous injection with huPBMCs. Strong anti-tumor activity of m3s193 BsAb revealed that Lewis Y could be targeted in T cell-engaging BsAb for gastric cancer therapy.
Collapse
|
9
|
Role of Glycans on Key Cell Surface Receptors That Regulate Cell Proliferation and Cell Death. Cells 2021; 10:cells10051252. [PMID: 34069424 PMCID: PMC8159107 DOI: 10.3390/cells10051252] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Cells undergo proliferation and apoptosis, migration and differentiation via a number of cell surface receptors, most of which are heavily glycosylated. This review discusses receptor glycosylation and the known roles of glycans on the functions of receptors expressed in diverse cell types. We included growth factor receptors that have an intracellular tyrosine kinase domain, growth factor receptors that have a serine/threonine kinase domain, and cell-death-inducing receptors. N- and O-glycans have a wide range of functions including roles in receptor conformation, ligand binding, oligomerization, and activation of signaling cascades. A better understanding of these functions will enable control of cell survival and cell death in diseases such as cancer and in immune responses.
Collapse
|
10
|
Li Z, Wang J, Yang J. TUG1 knockdown promoted viability and inhibited apoptosis and cartilage ECM degradation in chondrocytes via the miR-17-5p/FUT1 pathway in osteoarthritis. Exp Ther Med 2020; 20:154. [PMID: 33093892 PMCID: PMC7571376 DOI: 10.3892/etm.2020.9283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 07/14/2020] [Indexed: 12/19/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative disease characterized by cartilage destruction. Previous research has demonstrated that long non-coding RNAs serve a role in OA progression. The current study aimed to determine the function and mechanism of taurine upregulated gene (TUG) 1 in OA. The results of reverse transcription quantitative PCR revealed that TUG1 was elevated in OA cartilage tissues and interleukin (IL)-1β-induced chondrocytes. Cell Counting kit-8 and flow cytometry analysis revealed that TUG1 knockdown promoted cell viability and inhibited cell apoptosis. Furthermore, matrix metalloprotein (MMP) 13, collagen II and aggrecan expression was determined by western blotting, of which the results demonstrated that TUG1 knockdown significantly decreased MMP13 expression and increased collagen II and aggrecan expression in IL-1β-stimulated chondrocytes, indicating that extracellular matrix (ECM) damage was inhibited. Additionally, using bioinformatics analysis, dual-luciferase reporter and RNA immunoprecipitation assays, TUG1 was revealed to upregulate fucosyltransferase (FUT) 1 by targeting miR-17-5p. Furthermore, miR-17-5p was downregulated and FUT1 upregulated in OA cartilage tissues and IL-1β-induced chondrocytes. TUG1 overexpression reversed the aforementioned effects on cell viability, cell apoptosis and ECM degradation mediated by miR-17-5p in IL-1β-activated chondrocytes. Additionally, the effects of FUT1 knockdown on cell viability, apoptosis and ECM degradation mediated by FUT1 knockdown were reversed by miR-17-5p inhibition. In conclusion, TUG1 knockdown inhibited OA progression by downregulating FUT1 via miR-17-5p.
Collapse
Affiliation(s)
- Zhichao Li
- Department of Hand, Foot and Vascular Surgery, Hanyang Hospital, Wuhan University of Science and Technology, Wuhan, Hubei 430050, P.R. China
| | - Jin Wang
- Department of Hand, Foot and Vascular Surgery, Hanyang Hospital, Wuhan University of Science and Technology, Wuhan, Hubei 430050, P.R. China
| | - Jing Yang
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
11
|
Gutiérrez-Huante K, Salinas-Marín R, Mora-Montes HM, Gonzalez RA, Martínez-Duncker I. Human adenovirus type 5 increases host cell fucosylation and modifies Ley antigen expression. Glycobiology 2020; 29:469-478. [PMID: 30869134 DOI: 10.1093/glycob/cwz017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 01/08/2023] Open
Abstract
Certain viral infections are known to modify the glycosylation profile of infected cells through the overexpression of specific host cell fucosyltransferases (FUTs). Infection with CMV (cytomegalovirus), HCV (hepatitis C virus), HSV-1 (herpes simplex virus type-1) and VZV (varicella-zoster virus) increase the expression of fucosylated epitopes, including antigens sLex (Siaα2-3 Galβ1-4(Fucα1-3)GlcNAcβ1-R) and Ley (Fucα1-2 Galβ1-4(Fucα1-3)GlcNAcβ1-R). The reorganization of the glycocalyx induced by viral infection may favor the spread of viral progeny, and alter diverse biological functions mediated by glycans, including recognition by the adaptive immune system. In this work, we aimed to establish whether infection with human adenovirus type 5 (HAd5), a well-known viral vector and infectious agent, causes changes in the glycosylation profile of A549 cells, used as a model of lung epithelium, a natural target of HAd5. We demonstrate for the first time that HAd5 infection causes a significant increase in the cell surface de novo fucosylation, as assessed by metabolic labeling, and that such modification is dependent on the expression of viral genes. The main type of increased fucosylation was determined to be in α1-2 linkage, as assessed by UEA-I lectin binding and supported by the overexpression of FUT1 and FUT2. Also, HAd5-infected cells showed a heterogeneous change in the expression profile of the bi-fucosylated Ley antigen, an antigen associated with enhanced cell proliferation and inhibition of apoptosis.
Collapse
Affiliation(s)
- Kathya Gutiérrez-Huante
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular; Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001, Cuernavaca, México
| | - Roberta Salinas-Marín
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular; Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001, Cuernavaca, México
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Col. Noria Alta, Guanajuato, México
| | - Ramón A Gonzalez
- Laboratorio de Virología Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001, Cuernavaca, México
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular; Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001, Cuernavaca, México
| |
Collapse
|
12
|
Indramanee S, Sawanyawisuth K, Silsirivanit A, Dana P, Phoomak C, Kariya R, Klinhom-On N, Sorin S, Wongkham C, Okada S, Wongkham S. Terminal fucose mediates progression of human cholangiocarcinoma through EGF/EGFR activation and the Akt/Erk signaling pathway. Sci Rep 2019; 9:17266. [PMID: 31754244 PMCID: PMC6872661 DOI: 10.1038/s41598-019-53601-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022] Open
Abstract
Aberrant glycosylation is recognized as a cancer hallmark that is associated with cancer development and progression. In this study, the clinical relevance and significance of terminal fucose (TFG), by fucosyltransferase-1 (FUT1) in carcinogenesis and progression of cholangiocarcinoma (CCA) were demonstrated. TFG expression in human and hamster CCA tissues were determined using Ulex europaeus agglutinin-I (UEA-I) histochemistry. Normal bile ducts rarely expressed TFG while 47% of CCA human tissues had high TFG expression and was correlated with shorter survival of patients. In the CCA-hamster model, TFG was elevated in hyperproliferative bile ducts and gradually increased until CCA was developed. This evidence indicates the involvement of TFG in carcinogenesis and progression of CCA. The mechanistic insight was performed in 2 CCA cell lines. Suppression of TFG expression using siFUT1 or neutralizing the surface TFG with UEA-I significantly reduced migration, invasion and adhesion of CCA cells in correlation with the reduction of Akt/Erk signaling and epithelial-mesenchymal transition. A short pulse of EGF could stimulate Akt/Erk signaling via activation of EGF-EGFR cascade, however, decreasing TFG using siFUT1 or UEA-I treatment reduced the EGF-EGFR activation and Akt/Erk signaling. This evidence provides important insight into the relevant role and molecular mechanism of TFG in progression of CCA.
Collapse
Grants
- -Cholangiocarcinoma Research Institute, Khon Kaen University, (05/2556) -JASSO program for short training in Kumamoto University, Japan. -Faculty of Medicine, Khon Kaen University, Thailand (IN58234)
- The Mekong Health Science Research Institute (MeHSRI), Khon Kaen University.
- -Khon Kaen University, Thailand (601801) -Faculty of Medicine, Khon Kaen University, Thailand (IN58234),
Collapse
Affiliation(s)
- Somsiri Indramanee
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kanlayanee Sawanyawisuth
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Atit Silsirivanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Paweena Dana
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chatchai Phoomak
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Ryusho Kariya
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Nathakan Klinhom-On
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Supannika Sorin
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chaisiri Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Center for Translational Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
13
|
Passariello M, Camorani S, Vetrei C, Cerchia L, De Lorenzo C. Novel Human Bispecific Aptamer-Antibody Conjugates for Efficient Cancer Cell Killing. Cancers (Basel) 2019; 11:E1268. [PMID: 31470510 PMCID: PMC6770524 DOI: 10.3390/cancers11091268] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/19/2019] [Accepted: 08/23/2019] [Indexed: 12/26/2022] Open
Abstract
Monoclonal antibodies have been approved by the Food and Drug Administration for the treatment of various human cancers. More recently, oligonucleotide aptamers have risen increasing attention for cancer therapy thanks to their low size (efficient tumor penetration) and lack of immunogenicity, even though the short half-life and lack of effector functions still hinder their clinical applications. Here, we demonstrate, for the first time, that two novel bispecific conjugates, consisting of an anti-epidermal growth factor receptor (EGFR) aptamer linked either with an anti-epidermal growth factor receptor 2 (ErbB2) compact antibody or with an immunomodulatory (anti-PD-L1) antibody, were easily and rapidly obtained. These novel aptamer-antibody conjugates retain the targeting ability of both the parental moieties and acquire a more potent cancer cell killing activity by combining their inhibitory properties. Furthermore, the conjugation of the anti-EGFR aptamer with the immunomodulatory antibody allowed for the efficient redirection and activation of T cells against cancer cells, thus dramatically enhancing the cytotoxicity of the two conjugated partners. We think that these bispecific antibody-aptamer conjugates could have optimal biological features for therapeutic applications, such as increased specificity for tumor cells expressing both targets and improved pharmacokinetic and pharmacodynamic properties due to the combined advantages of the aptamer and antibody.
Collapse
Affiliation(s)
- Margherita Passariello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131 Napoli, Italy
- Ceinge-Biotecnologie Avanzate s.c. a.r.l., via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Simona Camorani
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), CNR, Via S. Pansini 5, 80131 Napoli, Italy
| | - Cinzia Vetrei
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131 Napoli, Italy
- Ceinge-Biotecnologie Avanzate s.c. a.r.l., via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Laura Cerchia
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), CNR, Via S. Pansini 5, 80131 Napoli, Italy.
| | - Claudia De Lorenzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131 Napoli, Italy.
- Ceinge-Biotecnologie Avanzate s.c. a.r.l., via Gaetano Salvatore 486, 80145 Naples, Italy.
| |
Collapse
|
14
|
Sun L, Yu J, Wang P, Shen M, Ruan S. HIT000218960 promotes gastric cancer cell proliferation and migration through upregulation of HMGA2 expression. Oncol Lett 2019; 17:4957-4963. [PMID: 31186705 PMCID: PMC6507353 DOI: 10.3892/ol.2019.10176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to elucidate whether the long non-coding RNA (lncRNA) HIT000218960 could accelerate the proliferative and migratory ability of gastric cancer (GC) cells by regulating high-mobility group AT-hook 2 (HMGA2) gene. The reverse transcription-quantitative polymerase chain reaction was used to determine HIT000218960 and HMGA2 expression levels in GC tissues and cells. The HMGA2 protein level was detected by western blotting. A χ2 test was used to determine the association between the HIT000218960 expression level and the clinical characteristics of patients with GC. GC cells were transfected with small interfering (si)-negative control, si-HIT000218960 and si-HIT000218960+pcDNA-HMGA2, prior to assessing the cell proliferative and migratory ability using the Cell Counting Kit-8 and Transwell assays, respectively. HIT000218960 and HMGA2 were highly expressed in GC tissues compared with in healthy tissues. In addition, HIT000218960 and HMGA2 were positively correlated in GC tissues. The HIT000218960 expression level was associated with tumor size, Tumor-Node-Metastasis staging and lymph node metastasis in patients with GC. HIT000218960 silencing decreased the proliferative and migratory ability of HGC27 and NCI-N87 cells; however, HMGA2 overexpression partly reversed this inhibitory effect. The results of the present study indicated that HIT000218960 could promote HGC27 and NCI-N87 cell proliferation and migration, which may be mediated by HMGA2.
Collapse
Affiliation(s)
- Leitao Sun
- First Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, Zhejiang 310006, P.R. China
| | - Jieru Yu
- College of Basic Medical Science, Zhejiang Chinese Medicine University, Hangzhou, Zhejiang 310006, P.R. China
| | - Peipei Wang
- First Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, Zhejiang 310006, P.R. China
| | - Minhe Shen
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Shanming Ruan
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
15
|
Lai TY, Chen IJ, Lin RJ, Liao GS, Yeo HL, Ho CL, Wu JC, Chang NC, Lee ACL, Yu AL. Fucosyltransferase 1 and 2 play pivotal roles in breast cancer cells. Cell Death Discov 2019; 5:74. [PMID: 30854233 PMCID: PMC6403244 DOI: 10.1038/s41420-019-0145-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/01/2019] [Accepted: 01/08/2019] [Indexed: 12/15/2022] Open
Abstract
FUT1 and FUT2 encode alpha 1, 2-fucosyltransferases which catalyze the addition of alpha 1, 2-linked fucose to glycans. Glycan products of FUT1 and FUT2, such as Globo H and Lewis Y, are highly expressed on malignant tissues, including breast cancer. Herein, we investigated the roles of FUT1 and FUT2 in breast cancer. Silencing of FUT1 or FUT2 by shRNAs inhibited cell proliferation in vitro and tumorigenicity in mice. This was associated with diminished properties of cancer stem cell (CSC), including mammosphere formation and CSC marker both in vitro and in xenografts. Silencing of FUT2, but not FUT1, significantly changed the cuboidal morphology to dense clusters of small and round cells with reduced adhesion to polystyrene and extracellular matrix, including laminin, fibronectin and collagen. Silencing of FUT1 or FUT2 suppressed cell migration in wound healing assay, whereas FUT1 and FUT2 overexpression increased cell migration and invasion in vitro and metastasis of breast cancer in vivo. A decrease in mesenchymal like markers such as fibronectin, vimentin, and twist, along with increased epithelial like marker, E-cadherin, was observed upon FUT1/2 knockdown, while the opposite was noted by overexpression of FUT1 or FUT2. As expected, FUT1 or FUT2 knockdown reduced Globo H, whereas FUT1 or FUT2 overexpression showed contrary effects. Exogenous addition of Globo H-ceramide reversed the suppression of cell migration by FUT1 knockdown but not the inhibition of cell adhesion by FUT2 silencing, suggesting that at least part of the effects of FUT1/2 knockdown were mediated by Globo H. Our results imply that FUT1 and FUT2 play important roles in regulating growth, adhesion, migration and CSC properties of breast cancer, and may serve as therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Tai-Yu Lai
- Institute of Stem cell and Translational Cancer Research, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - I-Ju Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ruey-Jen Lin
- Institute of Stem cell and Translational Cancer Research, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Guo-Shiou Liao
- Tri-service General Hospital, Department of Surgery, National Defense Medical Center, Taipei, Taiwan
| | - Hui-Ling Yeo
- Institute of Stem cell and Translational Cancer Research, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Ching-Liang Ho
- Tri-service General Hospital, Department of Surgery, National Defense Medical Center, Taipei, Taiwan
| | - Jen-Chine Wu
- Institute of Stem cell and Translational Cancer Research, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Nai-Chuan Chang
- Institute of Stem cell and Translational Cancer Research, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Andy Chi-Lung Lee
- Institute of Stem cell and Translational Cancer Research, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Alice L. Yu
- Institute of Stem cell and Translational Cancer Research, Chang Gung Memorial Hospital, Linkou, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Department of Pediatrics, University of California in San Diego, San Diego, USA
| |
Collapse
|
16
|
Carrascal MA, Silva M, Ramalho JS, Pen C, Martins M, Pascoal C, Amaral C, Serrano I, Oliveira MJ, Sackstein R, Videira PA. Inhibition of fucosylation in human invasive ductal carcinoma reduces E-selectin ligand expression, cell proliferation, and ERK1/2 and p38 MAPK activation. Mol Oncol 2018; 12:579-593. [PMID: 29215790 PMCID: PMC5928367 DOI: 10.1002/1878-0261.12163] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 10/09/2017] [Accepted: 11/13/2017] [Indexed: 01/08/2023] Open
Abstract
Breast cancer tissue overexpresses fucosylated glycans, such as sialyl-Lewis X/A (sLeX/A ), and α-1,3/4-fucosyltransferases (FUTs) in relation to increased disease progression and metastasis. These glycans in tumor circulating cells mediate binding to vascular E-selectin, initiating tumor extravasation. However, their role in breast carcinogenesis is still unknown. Here, we aimed to define the contribution of the fucosylated structures, including sLeX/A , to cell adhesion, cell signaling, and cell proliferation in invasive ductal carcinomas (IDC), the most frequent type of breast cancer. We first analyzed expression of E-selectin ligands in IDC tissue and established primary cell cultures from the tissue. We observed strong reactivity with E-selectin and anti-sLeX/A antibodies in both IDC tissue and cell lines, and expression of α-1,3/4 FUTs FUT4, FUT5, FUT6, FUT10, and FUT11. To further assess the role of fucosylation in IDC biology, we immortalized a primary IDC cell line with human telomerase reverse transcriptase to create the 'CF1_T cell line'. Treatment with 2-fluorofucose (2-FF), a fucosylation inhibitor, completely abrogated its sLeX/A expression and dramatically reduced adherence of CF1_T cells to E-selectin under hemodynamic flow conditions. In addition, 2-FF-treated CF1_T cells showed a reduced migratory ability, as well as decreased cell proliferation rate. Notably, 2-FF treatment lowered the growth factor expression of CF1_T cells, prominently for FGF2, vascular endothelial growth factor, and transforming growth factor beta, and negatively affected activation of signal-regulating protein kinases 1 and 2 and p38 mitogen-activated protein kinase signaling pathways. These data indicate that fucosylation licenses several malignant features of IDC, such as cell adhesion, migration, proliferation, and growth factor expression, contributing to tumor progression.
Collapse
Affiliation(s)
- Mylène A. Carrascal
- UCIBIODepartamento Ciências da VidaFaculdade de Ciências e TecnologiaUniversidade Nova de LisboaPortugal
- CEDOCChronic Diseases Research CenterNOVA Medical School/Faculdade de Ciências MédicasUniversidade Nova de LisboaPortugal
| | - Mariana Silva
- CEDOCChronic Diseases Research CenterNOVA Medical School/Faculdade de Ciências MédicasUniversidade Nova de LisboaPortugal
- Departments of Dermatology and MedicineBrigham & Women's HospitalBostonMAUSA
- Harvard Medical SchoolProgram of Excellence in GlycosciencesBostonMAUSA
| | - José S. Ramalho
- CEDOCChronic Diseases Research CenterNOVA Medical School/Faculdade de Ciências MédicasUniversidade Nova de LisboaPortugal
| | - Cláudia Pen
- Centro Hospitalar de Lisboa CentralEPE – Serviço de Anatomia PatológicaLisbonPortugal
| | - Manuela Martins
- Centro Hospitalar de Lisboa CentralEPE – Serviço de Anatomia PatológicaLisbonPortugal
| | - Carlota Pascoal
- UCIBIODepartamento Ciências da VidaFaculdade de Ciências e TecnologiaUniversidade Nova de LisboaPortugal
| | - Constança Amaral
- UCIBIODepartamento Ciências da VidaFaculdade de Ciências e TecnologiaUniversidade Nova de LisboaPortugal
| | | | - Maria José Oliveira
- New Therapies GroupINEB‐Institute for Biomedical EngineeringPortoPortugal
- Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortugal
| | - Robert Sackstein
- Departments of Dermatology and MedicineBrigham & Women's HospitalBostonMAUSA
- Harvard Medical SchoolProgram of Excellence in GlycosciencesBostonMAUSA
| | - Paula A. Videira
- UCIBIODepartamento Ciências da VidaFaculdade de Ciências e TecnologiaUniversidade Nova de LisboaPortugal
- CEDOCChronic Diseases Research CenterNOVA Medical School/Faculdade de Ciências MédicasUniversidade Nova de LisboaPortugal
- CDG & Allies – PPAIN Congenital Disorders of Glycosylation Professionals and Patient Associations International NetworkCaparicaPortugal
| |
Collapse
|
17
|
Ferreira IG, Pucci M, Venturi G, Malagolini N, Chiricolo M, Dall'Olio F. Glycosylation as a Main Regulator of Growth and Death Factor Receptors Signaling. Int J Mol Sci 2018; 19:ijms19020580. [PMID: 29462882 PMCID: PMC5855802 DOI: 10.3390/ijms19020580] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 12/22/2022] Open
Abstract
Glycosylation is a very frequent and functionally important post-translational protein modification that undergoes profound changes in cancer. Growth and death factor receptors and plasma membrane glycoproteins, which upon activation by extracellular ligands trigger a signal transduction cascade, are targets of several molecular anti-cancer drugs. In this review, we provide a thorough picture of the mechanisms bywhich glycosylation affects the activity of growth and death factor receptors in normal and pathological conditions. Glycosylation affects receptor activity through three non-mutually exclusive basic mechanisms: (1) by directly regulating intracellular transport, ligand binding, oligomerization and signaling of receptors; (2) through the binding of receptor carbohydrate structures to galectins, forming a lattice thatregulates receptor turnover on the plasma membrane; and (3) by receptor interaction with gangliosides inside membrane microdomains. Some carbohydrate chains, for example core fucose and β1,6-branching, exert a stimulatory effect on all receptors, while other structures exert opposite effects on different receptors or in different cellular contexts. In light of the crucial role played by glycosylation in the regulation of receptor activity, the development of next-generation drugs targeting glyco-epitopes of growth factor receptors should be considered a therapeutically interesting goal.
Collapse
Affiliation(s)
- Inês Gomes Ferreira
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Michela Pucci
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Giulia Venturi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Nadia Malagolini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Mariella Chiricolo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Fabio Dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
18
|
Hao Y, Zhu L, Yan L, Liu J, Liu D, Gao N, Tan M, Gao S, Lin B. c-Fos mediates α1, 2-fucosyltransferase 1 and Lewis y expression in response to TGF-β1 in ovarian cancer. Oncol Rep 2017; 38:3355-3366. [PMID: 29130097 PMCID: PMC5783580 DOI: 10.3892/or.2017.6052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 10/06/2017] [Indexed: 12/16/2022] Open
Abstract
FUT1 is a key rate-limiting enzyme in the synthesis of Lewis y, a membrane-associated carbohydrate antigen. The aberrant upregulation of FUT1 and Lewis y antigen is related to proliferation, invasion and prognosis in malignant epithelial tumors. A c-Fos/activator protein-1 (AP-1) binding site was found in the FUT1 promoter. However, the mechanisms of transcriptional regulation of FUT1 remain poorly understood. TGF-β1 is positively correlated to Lewis y. In the present study, we investigated the molecular mechanism of FUT1 gene expression in response to TGF-β1. We demonstrated that c-Fos was highly expressed in 77.50% of ovarian epithelial carcinoma cases and was significantly correlated with Lewis y. Using luciferase activity and chromatin immunoprecipitation (ChIP) assay, we further revealed that c-Fos interacted with the FUT1 promoter in ovarian cancer cells and transcriptional capacity of the heterodimer formed by c-Fos and c-Jun was stronger than that of the c-Fos or c-Jun homodimers. Then, we demonstrated that TGF-β1 induced dose-dependent c-Fos expression, which was involved in TGF-β1-induced ovarian cancer cell proliferation. In addition, inhibition of MAPK activation or TGF-β1 receptor by pharmacological agents prevented TGF-β1-induced c-Fos and Lewis y expression. Silencing of c-Fos prevented TGF-β1-induced Lewis y expression. Collectively, the results of these studies demonstrated that TGF-β1 regulated FUT1 and Lewis y expression by activating the MAPK/c-Fos pathway.
Collapse
Affiliation(s)
- Yingying Hao
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Liancheng Zhu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Limei Yan
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Juanjuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Dawo Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Na Gao
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Mingzi Tan
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Song Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
19
|
miR-200b inhibits proliferation and metastasis of breast cancer by targeting fucosyltransferase IV and α1,3-fucosylated glycans. Oncogenesis 2017; 6:e358. [PMID: 28692034 PMCID: PMC5541710 DOI: 10.1038/oncsis.2017.58] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 05/03/2017] [Accepted: 06/05/2017] [Indexed: 12/16/2022] Open
Abstract
Aberrant protein fucosylation is associated with cancer malignancy. Fucosyltransferase IV (FUT4) is the key enzyme catalyzing the biosynthesis of α1,3-linkage fucosylated glycans carried by glycoproteins on the cell surface, such as the tumor-associated sugar antigen Lewis Y (LeY). An abnormal increase in the levels of FUT4 and LeY is observed in many cancers and correlated with cell proliferation and metastasis. Some microRNAs (miRNAs) are known to negatively regulate gene expression. FUT4 is an oncogenic glycogene, and thus it is important to identify the specific miRNA targeting FUT4. In current study, we first identified miR-200b as a specific miRNA that inhibited FUT4 expression. We found that miR-200b level was decreased, whereas that of FUT4 was increased in tissues and serum of breast cancer compared with that in the control by real-time PCR, western blotting and enzyme-linked immunosorbent assay. The alterations of miR-200b and FUT4 level were recovered after chemotherapy. The results also showed that miR-200b suppressed FUT4 expression and inhibited tumor growth and metastasis in MCF-7 and MDA-MB-231 breast cancer cells, as well as in the xenografted tumor tissues and metastatic lung tissues. miR-200b decreased the α1,3-fucosylation and LeY biosynthesis on epidermal growth factor receptor (EGFR), as well as inactivation of EGFR and downstream phosphoinositide-3 kinase/Akt signaling pathway. In conclusion, the study highlights that FUT4 could apply as a novel target for miR-200b that suppress the proliferation and metastasis of breast cancer cells by reducing α1,3-fucosylation and LeY biosynthesis of glycoproteins. miR-200b and FUT4 are potential diagnostic and therapeutic targets for breast cancer.
Collapse
|
20
|
Tan KP, Ho MY, Cho HC, Yu J, Hung JT, Yu ALT. Fucosylation of LAMP-1 and LAMP-2 by FUT1 correlates with lysosomal positioning and autophagic flux of breast cancer cells. Cell Death Dis 2016; 7:e2347. [PMID: 27560716 PMCID: PMC5108328 DOI: 10.1038/cddis.2016.243] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/19/2016] [Accepted: 06/22/2016] [Indexed: 12/11/2022]
Abstract
Alpha1,2-fucosyltransferases, FUT1 and FUT2, which transfer fucoses onto the terminal galactose of N-acetyl-lactosamine via α1,2-linkage have been shown to be highly expressed in various types of cancers. A few studies have shown the involvement of FUT1 substrates in tumor cell proliferation and migration. Lysosome-associated membrane protein 1, LAMP-1, has been reported to carry alpha1,2-fucosylated Lewis Y (LeY) antigens in breast cancer cells, however, the biological functions of LeY on LAMP-1 remain largely unknown. Whether or not its family member, LAMP-2, displays similar modifications and functions as LAMP-1 has not yet been addressed. In this study, we have presented evidence supporting that both LAMP-1 and 2 are substrates for FUT1, but not FUT2. We have also demonstrated the presence of H2 and LeY antigens on LAMP-1 by a targeted nanoLC-MS(3) and the decreased levels of fucosylation on LAMP-2 by MALDI-TOF analysis upon FUT1 knockdown. In addition, we found that the expression of LeY was substantial in less invasive ER+/PR+/HER- breast cancer cells (MCF-7 and T47D) but negligible in highly invasive triple-negative MDA-MB-231 cells, of which LeY levels were correlated with the levels of LeY carried by LAMP-1 and 2. Intriguingly, we also observed a striking change in the subcellular localization of lysosomes upon FUT1 knockdown from peripheral distribution of LAMP-1 and 2 to a preferential perinuclear accumulation. Besides that, knockdown of FUT1 led to an increased rate of autophagic flux along with diminished activity of mammalian target of rapamycin complex 1 (mTORC1) and enhanced autophagosome-lysosome fusion. This may be associated with the predominantly perinuclear distribution of lysosomes mediated by FUT1 knockdown as lysosomal positioning has been reported to regulate mTOR activity and autophagy. Taken together, our results suggest that downregulation of FUT1, which leads to the perinuclear localization of LAMP-1 and 2, is correlated with increased rate of autophagic flux by decreasing mTOR signaling and increasing autolysosome formation.
Collapse
Affiliation(s)
- Keng-Poo Tan
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ming-Yi Ho
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Huan-Chieh Cho
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Chang Gung University, Taoyuan, Taiwan
| | - Jung-Tung Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Alice Lin-Tsing Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Chang Gung University, Taoyuan, Taiwan
- Department of Pediatrics, University of California in San Diego, San Diego, CA, USA
| |
Collapse
|
21
|
Li N, Liu Y, Miao Y, Zhao L, Zhou H, Jia L. MicroRNA-106b targets FUT6 to promote cell migration, invasion, and proliferation in human breast cancer. IUBMB Life 2016; 68:764-75. [PMID: 27519168 DOI: 10.1002/iub.1541] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 07/16/2016] [Indexed: 12/29/2022]
Abstract
It is demonstrated that the maladjustment of microRNA (miRNA) plays significant roles in the occurrence and development of tumors. MicroRNA-106b-5p (miR-106b), a carcinogenic miRNA, is identified as a dysregulated miRNA in human breast cancer. In this article, the expression levels of miR-106b were discovered to be particularly higher in breast cancer tissues than that in the corresponding adjacent tissues. Accordingly, miR-106b was higher expressed in the breast cancer cell lines compared with that in the normal breast cell lines. Moreover, according to the data previously reported, increased expression of miR-106b was significantly associated with advanced clinical stages and poor prognosis in breast cancer. Fucosyltransferase 6 (FUT6), a member of the fucosyltransferase (FUT) family, was found to have a reduced expression in tissues or cells with higher level of miR-106b in breast cancer. Additionally, down-regulation of miR-106b increased the expression of FUT6 and resulted in an obvious decrease of cell migration, invasion, and proliferation in MDA-MB-231 cells. Furthermore, over-expressed FUT6 reversed the impacts of up-regulated miR-106b on cell migration, invasion, and proliferation in MCF-7 cells, indicating that FUT6 might be directly targeted by miR-106b and serve as therapeutic targets for breast cancer. In brief, our results strongly showed that the low expression of FUT6 regulated by miR-106b contributed to cell migration, invasion, and proliferation in human breast cancer. © 2016 IUBMB Life, 68(9):764-775, 2016.
Collapse
Affiliation(s)
- Nana Li
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | - Yuejian Liu
- Department of Central Laboratory, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, China
| | - Yuan Miao
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | - Lifen Zhao
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | - Huimin Zhou
- Department of Microbiology, Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | - Li Jia
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, 116044, China
| |
Collapse
|
22
|
Che Y, Ren X, Xu L, Ding X, Zhang X, Sun X. Critical involvement of the α(1,2)-fucosyltransferase in multidrug resistance of human chronic myeloid leukemia. Oncol Rep 2016; 35:3025-33. [PMID: 26986216 DOI: 10.3892/or.2016.4673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 01/11/2016] [Indexed: 11/05/2022] Open
Abstract
The fucosyltransferases are key enzymes in cell surface antigen synthesis during multidrug resistance (MDR) development. The aim of the present study was to analyze the alteration of α(1,2)-fucosyltransferase involved in MDR development in human chronic myeloid leukemia (CML). FUT1 was overexpressed in three CML/MDR cell lines and peripheral blood mononuclear cells (PBMC) of CML patients. However, no significant changes of FUT2 were observed. The altered levels of FUT1 had a significant impact on the phenotypic variation of MDR of K562 and K562/ADR cells, the activity of EGFR/MAPK pathway and P-glycoprotein (P-gp) expression. Blocking the EGFR/MAPK pathway by its specific inhibitor PD153035 or EGFR small interfering RNA (siRNA) resulted in the reduced MDR of K562/ADR cells. This study indicated that α(1,2)-fucosyltransferase involved in the development of MDR of CML cells probably through FUT1 regulated the activity of EGFR/MAPK signaling pathway and the expression of P-gp.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Down-Regulation
- Drug Resistance, Multiple
- Drug Resistance, Neoplasm
- ErbB Receptors/metabolism
- Fucosyltransferases/physiology
- Gene Expression
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Neoplastic
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Mitogen-Activated Protein Kinases/metabolism
- Galactoside 2-alpha-L-fucosyltransferase
Collapse
Affiliation(s)
- Yuxuan Che
- Department of Medical Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Xing Ren
- College of Stomatology, Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Liye Xu
- Department of Medical Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Xiaolei Ding
- Department of Medical Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Xuan Zhang
- Department of Medical Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Xiuhua Sun
- Department of Medical Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| |
Collapse
|
23
|
The role of the histoblood ABO group in cancer. Future Sci OA 2016; 2:FSO107. [PMID: 28031957 PMCID: PMC5137991 DOI: 10.4155/fsoa-2015-0012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/15/2016] [Indexed: 12/20/2022] Open
Abstract
Since the first link between blood type and cancer was described in 1953, numerous studies have sought to determine whether the histoblood ABO group is associated with tumorigenesis. In 2009, the first significant association between a SNP located within the ABO glycosyltransferase gene and increased risk of pancreatic cancer was reported. Here, we describe the history and possible functions of the histoblood ABO group and then provide evidence for a role of blood group antigens in the most common cancer types worldwide using both blood type and SNP data. We also explore whether confusion regarding the role of blood type in cancer risk may be attributable to heterogeneity within tumor types. Lay abstract: ABO encodes the protein responsible for defining blood groups as A, B, AB or O. Despite over a century of investigation, it is not well known whether the blood group antigens have a function or if they contribute to human health. Over the last 60 years, associations between blood type and cancer risk have been reported, although the data have often been conflicting. To better understand the possible role of the ABO blood group in tumorigenesis, we review the data for the most common tumor types worldwide.
Collapse
|
24
|
Vasconcelos-Dos-Santos A, Oliveira IA, Lucena MC, Mantuano NR, Whelan SA, Dias WB, Todeschini AR. Biosynthetic Machinery Involved in Aberrant Glycosylation: Promising Targets for Developing of Drugs Against Cancer. Front Oncol 2015; 5:138. [PMID: 26161361 PMCID: PMC4479729 DOI: 10.3389/fonc.2015.00138] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/02/2015] [Indexed: 12/22/2022] Open
Abstract
Cancer cells depend on altered metabolism and nutrient uptake to generate and keep the malignant phenotype. The hexosamine biosynthetic pathway is a branch of glucose metabolism that produces UDP-GlcNAc and its derivatives, UDP-GalNAc and CMP-Neu5Ac and donor substrates used in the production of glycoproteins and glycolipids. Growing evidence demonstrates that alteration of the pool of activated substrates might lead to different glycosylation and cell signaling. It is already well established that aberrant glycosylation can modulate tumor growth and malignant transformation in different cancer types. Therefore, biosynthetic machinery involved in the assembly of aberrant glycans are becoming prominent targets for anti-tumor drugs. This review describes three classes of glycosylation, O-GlcNAcylation, N-linked, and mucin type O-linked glycosylation, involved in tumor progression, their biosynthesis and highlights the available inhibitors as potential anti-tumor drugs.
Collapse
Affiliation(s)
| | - Isadora A Oliveira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brasil
| | - Miguel Clodomiro Lucena
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brasil
| | - Natalia Rodrigues Mantuano
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brasil
| | - Stephen A Whelan
- Department of Biochemistry, Cardiovascular Proteomics Center, Boston University School of Medicine , Boston, MA , USA
| | - Wagner Barbosa Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brasil
| | - Adriane Regina Todeschini
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brasil
| |
Collapse
|
25
|
Saraiva-Pava K, Navabi N, Skoog EC, Lindén SK, Oleastro M, Roxo-Rosa M. New NCI-N87-derived human gastric epithelial line after human telomerase catalytic subunit over-expression. World J Gastroenterol 2015; 21:6526-6542. [PMID: 26074691 PMCID: PMC4458763 DOI: 10.3748/wjg.v21.i21.6526] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/07/2015] [Accepted: 03/31/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To establish a cellular model correctly mimicking the gastric epithelium to overcome the limitation in the study of Helicobacter pylori (H. pylori) infection.
METHODS: Aiming to overcome this limitation, clones of the heterogenic cancer-derived NCI-N87 cell line were isolated, by stably-transducing it with the human telomerase reverse-transcriptase (hTERT) catalytic subunit gene. The clones were first characterized regarding their cell growth pattern and phenotype. For that we measured the clones’ adherence properties, expression of cell-cell junctions’ markers (ZO-1 and E-cadherin) and ability to generate a sustained transepithelial electrical resistance. The gastric properties of the clones, concerning expression of mucins, zymogens and glycan contents, were then evaluated by haematoxylin and eosin staining, Periodic acid Schiff (PAS) and PAS/Alcian Blue-staining, immunocytochemistry and Western blot. In addition, we assessed the usefulness of the hTERT-expressing gastric cell line for H. pylori research, by performing co-culture assays and measuring the IL-8 secretion, by ELISA, upon infection with two H. pylori strains differing in virulence.
RESULTS: Compared with the parental cell line, the most promising NCI-hTERT-derived clones (CL5 and CL6) were composed of cells with homogenous phenotype, presented higher relative telomerase activities, better adhesion properties, ability to be maintained in culture for longer periods after confluency, and were more efficient in PAS-reactive mucins secretion. Both clones were shown to produce high amounts of MUC1, MUC2 and MUC13. NCI-hTERT-CL5 mucins were shown to be decorated with blood group H type 2 (BG-H), Lewis-x (Lex), Ley and Lea and, in a less extent, with BG-A antigens, but the former two antigens were not detected in the NCI-hTERT-CL6. None of the clones exhibited detectable levels of MUC6 nor sialylated Lex and Lea glycans. Entailing good gastric properties, both NCI-hTERT-clones were found to produce pepsinogen-5 and human gastric lipase. The progenitor-like phenotype of NCI-hTERT-CL6 cells was highlighted by large nuclei and by the apical vesicular-like distribution of mucin 5AC and Pg5, supporting the accumulation of mucus-secreting and zymogens-chief mature cells functions.
CONCLUSION: These traits, in addition to resistance to microaerobic conditions and good responsiveness to H. pylori co-culture, in a strain virulence-dependent manner, make the NCI-hTERT-CL6 a promising model for future in vitro studies.
Collapse
|
26
|
Hayashi T, Yasueda Y, Tamura T, Takaoka Y, Hamachi I. Analysis of Cell-Surface Receptor Dynamics through Covalent Labeling by Catalyst-Tethered Antibody. J Am Chem Soc 2015; 137:5372-80. [DOI: 10.1021/jacs.5b02867] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Takahiro Hayashi
- Department
of Synthetic Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Yuki Yasueda
- Department
of Synthetic Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Tomonori Tamura
- Department
of Synthetic Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Yousuke Takaoka
- Department
of Synthetic Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department
of Synthetic Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
- Core
Research for Evolutional Science and Technology, Japan Science and Technology Agency, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
27
|
Biswas S, Medina SH, Barchi JJ. Synthesis and cell-selective antitumor properties of amino acid conjugated tumor-associated carbohydrate antigen-coated gold nanoparticles. Carbohydr Res 2015; 405:93-101. [PMID: 25556664 PMCID: PMC4354769 DOI: 10.1016/j.carres.2014.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 11/26/2022]
Abstract
The Thomsen Friedenreich antigen (TFag) disaccharide is a tumor-associated carbohydrate antigen (TACA) found primarily on carcinoma cells and rarely expressed in normal tissue. The TFag has been shown to interact with Galectin-3 (Gal-3), one in a family of β-galactoside binding proteins. Galectins have a variety of cellular functions, and Gal-3 has been shown to be the sole galectin with anti-apoptotic activity. We have previously prepared gold nanoparticles (AuNP) coated with the TFag in various presentations as potential anti-adhesive therapeutic tools or antitumor vaccine platforms. Here we describe the synthesis of TFag-glycoamino acid conjugates attached to gold nanoparticles through a combined alkane/PEG linker, where the TFag was attached to either a serine or threonine amino acid. Particles were fully characterized by a host of biophysical techniques, and along with a control particle carrying hydroxyl-terminated linker units, were evaluated in both Gal-3 positive and negative cell lines. We show that the particles bearing the saccharides selectively inhibited tumor cell growth of the Gal-3 positive cells significantly more than the Gal-3 negative cells. In addition, the threonine-attached TF particles were more potent than the serine-attached constructs. These results support the use of AuNP as antitumor therapeutic platforms, targeted against cell lines that express specific lectins that interact with TFag.
Collapse
Affiliation(s)
- Souvik Biswas
- Chemical Biology Laboratory, The Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States
| | - Scott H Medina
- Chemical Biology Laboratory, The Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States
| | - Joseph J Barchi
- Chemical Biology Laboratory, The Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States.
| |
Collapse
|