1
|
Hu H, Chen WJ, Sun C, Xie JP. Progress in the development of cancer vaccines for lung cancer utilizing dendritic cells (Review). Oncol Lett 2025; 29:298. [PMID: 40276084 PMCID: PMC12018796 DOI: 10.3892/ol.2025.15044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/20/2024] [Indexed: 04/26/2025] Open
Abstract
Lung cancer is a major global health concern in terms of both incidence and mortality. Despite substantial advancements in targeted therapy and immune checkpoint inhibitor treatments, their overall effectiveness is limited. Dendritic cells (DCs) are crucial in innate and acquired immune responses due to their effective presentation of antigens. DC-based cancer vaccines have been identified as promising strategies for personalized cancer immunotherapy. The present review presents a thorough examination of the immunomodulation and associated mechanisms of DC vaccines in lung cancer, with a specific emphasis on the presentation of clinical trial data concerning the safety, feasibility and effectiveness of DC vaccines in the treatment of patients with lung cancer. The objective of this review is to highlight strategies and provide insights that may improve the development and clinical efficacy of DC vaccines for the treatment lung cancer.
Collapse
Affiliation(s)
- Hui Hu
- Department of Respiratory and Critical Care, The Second Affiliated Hospital of Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wen-Jun Chen
- Department of Oncology, PLA Navy Anqing Hospital, Anqing, Anhui 246004, P.R. China
| | - Chuang Sun
- Department of Respiratory and Critical Care, Xinyu People's Hospital, Xinyu, Jiangxi 338099, P.R. China
| | - Jun-Ping Xie
- Department of Respiratory and Critical Care, The Second Affiliated Hospital of Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
2
|
Mohajeri Khorasani A, Mohammadi S, Raghibi A, Haj Mohammad Hassani B, Bazghandi B, Mousavi P. miR-17-92a-1 cluster host gene: a key regulator in colorectal cancer development and progression. Clin Exp Med 2024; 24:85. [PMID: 38662056 PMCID: PMC11045601 DOI: 10.1007/s10238-024-01331-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/14/2024] [Indexed: 04/26/2024]
Abstract
Colorectal cancer (CRC), recognized among the five most prevalent malignancies and most deadly cancers, manifests multifactorial influences stemming from environmental exposures, dietary patterns, age, and genetic predisposition. Although substantial progress has been made in comprehending the etiology of CRC, the precise genetic components driving its pathogenesis remain incompletely elucidated. Within the expansive repertoire of non-coding RNAs, particular focus has centered on the miR-17-92a-1 cluster host gene (MIR17HG) and its associated miRNAs, which actively participate in diverse cellular processes and frequently exhibit heightened expression in various solid tumors, notably CRC. Therefore, the primary objective of this research is to undertake an extensive inquiry into the regulatory mechanisms, structural features, functional attributes, and potential diagnostic and therapeutic implications associated with this cluster in CRC. Furthermore, the intricate interplay between this cluster and the development and progression of CRC will be explored. Our findings underscore the upregulation of the miR-17-92a-1 cluster host gene (MIR17HG) and its associated miRNAs in CRC compared to normal tissues, thus implying their profound involvement in the progression of CRC. Collectively, these molecules are implicated in critical oncogenic processes, encompassing metastatic activity, regulation of apoptotic pathways, cellular proliferation, and drug resistance. Consequently, these findings shed illuminating insights into the potential of MIR17HG and its associated miRNAs as promising targets for therapeutic interventions in the management of CRC.
Collapse
Affiliation(s)
- Amirhossein Mohajeri Khorasani
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Samane Mohammadi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Alireza Raghibi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behzad Haj Mohammad Hassani
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Behina Bazghandi
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
3
|
Touchaei AZ, Vahidi S, Samadani AA. Decoding the interaction between miR-19a and CBX7 focusing on the implications for tumor suppression in cancer therapy. Med Oncol 2023; 41:21. [PMID: 38112798 DOI: 10.1007/s12032-023-02251-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/12/2023] [Indexed: 12/21/2023]
Abstract
Cancer is a complex and multifaceted disease characterized by uncontrolled cell growth, genetic alterations, and disruption of normal cellular processes, leading to the formation of malignant tumors with potentially devastating consequences for patients. Molecular research is important in the diagnosis and treatment, one of the molecular mechanisms involved in various cancers is the fluctuation of gene expression. Non-coding RNAs, especially microRNAs, are involved in different stages of cancer. MicroRNAs are small RNA molecules that are naturally produced within cells and bind to the 3'-UTR of target mRNA, repressing gene expression by regulating translation. Overexpression of miR-19a has been reported in human malignancies. Upregulation of miR-19a as a member of the miR-17-92 cluster is key to tumor formation, cell proliferation, survival, invasion, metastasis, and drug resistance. Furthermore. bioinformatics and in vitro data reveal that the miR-19a-3p isoform binds to the 3'UTR of CBX7 and was identified as the miR-19a-3p target gene. CBX7 is known as a tumor suppressor. This review initially describes the regulation of mir-19a in multiple cancers. Accordingly, the roles of miR-19 in affecting its target gene expression CBX7 in carcinoma also be discussed.
Collapse
Affiliation(s)
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
4
|
Hsu JL, Clark N, Hill K, Rowland-Goldsmith M. Investigating the Influence of Assessment Question Framing on Undergraduate Biology Student Preference and Affect. CBE LIFE SCIENCES EDUCATION 2023; 22:ar45. [PMID: 37816212 PMCID: PMC10756033 DOI: 10.1187/cbe.22-12-0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 10/12/2023]
Abstract
Nearly all undergraduate biology courses rely on quizzes and exams. Despite their prevalence, very little work has been done to explore how the framing of assessment questions may influence student performance and affect. Here, we conduct a quasi-random experimental study where students in different sections of the same course were given isomorphic questions that varied in their framing of experimental scenarios. One section was provided a description using the self-referential term "you", placing the student in the experiment; another section received the same scenario that used classmate names; while a third section's scenario integrated counterstereotypical scientist names. Our results demonstrate that there was no difference in performance throughout the semester between the sections, nor were there differences in students' self-reported stress and identity. However, students in all three sections indicated that they most preferred the self-referential framing, providing a variety of reasons that suggest that these variants may influence how well a student reads and processes the question. In addition, our results also indicate that the framing of these scenarios can also have a large impact on some students' affect and attitude toward the question. We conclude by discussing implications for the biology education research community and biology instructors.
Collapse
Affiliation(s)
- Jeremy L. Hsu
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866
| | - Noelle Clark
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866
| | - Kate Hill
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866
| | | |
Collapse
|
5
|
Ye Z, Pan J, Yin Z, Wang S, Li Y, Cai X, Zheng H, Cao Z. Dendritic cells infected with recombinant adenoviral vector encoding mouse fibroblast activation protein-α and human livin α exert an antitumor effect against Lewis lung carcinoma in mice. Immun Inflamm Dis 2023; 11:e1011. [PMID: 37773704 PMCID: PMC10523997 DOI: 10.1002/iid3.1011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Fibroblast activation protein-α (FAP) and livin α are considered as cancer-associated fibroblasts (CAFs) and tumor-specific targets, respectively, for immunogenic tumor vaccines. This study is designed to decipher the antitumor effect of double-gene modified dendritic cells (DCs) on Lewis lung carcinoma (LLC). METHODS By encoding mouse FAP cDNA and human livin α (i.e., hlivin α) cDNA into recombinant adenoviral vector (rAd), rAd-FAP, rAd-hlivin α, and rAd-FAP/hlivin α were constructed, which were then transduced into mouse DCs. LLC-bearinig mice were immunized with the infected DCs (5 × 105 cells/mouse), followed by calculation of tumor volume and survival rate. The identification of CAFs from mouse LLC as well as the determination on expressions of FAP and livin α, was accomplished by western blot. Cytotoxic T lymphocyte assay was harnessed to assess the effect of the infected DCs on inducing splenic lymphocytes to lyse CAFs. RESULTS DCs were successfully transduced with rAd-FAP/hlivin α in vitro. FAP was highly expressed in CAFs. CAFs were positive for α-SMA and negative for CD45 and CD31. Livin α level was upregulated in mouse LLC. Immunization with rAd-FAP/hlivin α-transduced DCs suppressed LLC volume and improved the survival of tumor-bearing mice. Immunization with rAd-FAP/hlivin α-transduced DCs enhanced the cytotoxic effect of splenic lymphocytes on LLC tumor-derived CAFs. CONCLUSION Injection with rAd-FAP/hlivin α-transduced DCs promotes immune-enhanced tumor microenvironment by decreasing CAFs and suppresses tumor growth in LLC mouse models.
Collapse
Affiliation(s)
- Zaiting Ye
- Department of RadiologyThe Sixth Affiliated Hospital of Wenzhou Medical UniversityLishuiZhejiangChina
| | - Jiongwei Pan
- Department of RespiratoryThe Sixth Affiliated Hospital of Wenzhou Medical UniversityLishuiZhejiangChina
| | - Zhangyong Yin
- Department of RespiratoryThe Sixth Affiliated Hospital of Wenzhou Medical UniversityLishuiZhejiangChina
| | - Shuanghu Wang
- Department of MedicineLishui People's HospitalLishuiZhejiangChina
| | - Yuling Li
- Department of RespiratoryThe Sixth Affiliated Hospital of Wenzhou Medical UniversityLishuiZhejiangChina
| | - Xiaoping Cai
- Department of RespiratoryThe Sixth Affiliated Hospital of Wenzhou Medical UniversityLishuiZhejiangChina
| | - Hao Zheng
- Department of RespiratoryThe Sixth Affiliated Hospital of Wenzhou Medical UniversityLishuiZhejiangChina
| | - Zhuo Cao
- Department of RespiratoryThe Sixth Affiliated Hospital of Wenzhou Medical UniversityLishuiZhejiangChina
| |
Collapse
|
6
|
Badr D, Fouad MA, Hussein M, Salem S, Zekri A, Shouman S. Rebound increase in microRNA levels at the end of 5-FU-based therapy in colorectal cancer patients. Sci Rep 2023; 13:14237. [PMID: 37648713 PMCID: PMC10469181 DOI: 10.1038/s41598-023-41030-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
Treatment with 5-fluorouracil (5-FU) based therapy is still used for colorectal cancer (CRC). Epigenetics has become a focus of study in cancer because of its reversibility besides its known regulatory functions. In this study, we will monitor the change in microRNAs (miRNAs) levels with 5-FU-based therapy at baseline and after 3 and 6 months of treatment to be correlated with their prognostic potential. The expression levels of 5 miRNAs, namely miRNA223-3p, miRNA20a-5p, miRNA17-5p, miRNA19a-3p, and miRNA7-5p, were measured in the peripheral blood of 77 CRC patients, along with the expression of 3 proteins PTEN, ERK, and EGFR. At baseline, CRC patients had significantly higher levels of circulating miRNAs than healthy controls. This level was reduced after 3 months of 5-FU-based therapy, then increased after 6 months significantly in responder patients compared to non-responders. MiRNA19a-3p showed that significant pattern of change in the subgroups of patients with high ERK, EGFR, and PTEN protein levels, and its 6 months level after 5-FU-based therapy showed significance for the hazard of increased risk of disease recurrence and progression.
Collapse
Affiliation(s)
- Doaa Badr
- Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mariam A Fouad
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center. 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
| | - Marwa Hussein
- Medical Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Salem Salem
- Medical Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Abdelrahman Zekri
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Samia Shouman
- Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Fan H, Ai R, Mu S, Niu X, Guo Z, Liu L. MiR-19a suppresses ferroptosis of colorectal cancer cells by targeting IREB2. Bioengineered 2022; 13:12021-12029. [PMID: 35599631 PMCID: PMC9275930 DOI: 10.1080/21655979.2022.2054194] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is the most common malignant tumor occurred in digestive system. However, the prognosis of CRC patients is poor. Therefore, it is urgent to illuminate the mechanism suppressing CRC and explore novel targets or therapies for CRC treatment. MicroRNAs (miRNAs) are a class of non-coding RNAs with a length of 20–23 nucleotides encoded by endogenous genes, which are associated with the development of a variety of cancers, including CRC. Studies have shown that miR-19a is identified as oncogenic miRNA and promotes the proliferation, migration and invasion of CRC cells. However, the relationship between miR-19a and ferroptosis in CRC remains unknown. Here, we reported that iron-responsive element-binding protein 2 (IREB2), as an inducer of ferroptosis, was negatively regulated by miR-19a. IREB2 is a direct target of miR-19a. In addition, ferroptosis was suppressed by miR-19a through inhibiting IREB2. Thus, we proposed a novel mechanism of ferroptosis mediated by miR-19a in CRC cells, which could give rise to a new strategy for the therapy of CRC.
Collapse
Affiliation(s)
- Hongwei Fan
- Department of Gastroenterology, Shijiazhuang People’s Hospital, Shijiazhuang, Hebei, China
| | - Rong Ai
- Department of Gastroenterology, Shijiazhuang People’s Hospital, Shijiazhuang, Hebei, China
| | - Suen Mu
- Department of Gastroenterology, Shijiazhuang People’s Hospital, Shijiazhuang, Hebei, China
| | - Xuemin Niu
- Department of Gastroenterology, Shijiazhuang People’s Hospital, Shijiazhuang, Hebei, China
| | - Zhengrong Guo
- Department of Gastroenterology, Shijiazhuang People’s Hospital, Shijiazhuang, Hebei, China
| | - Lin Liu
- Department of Pathology, Shijiazhuang People’s Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
8
|
Tang Y, Zong S, Zeng H, Ruan X, Yao L, Han S, Hou F. MicroRNAs and angiogenesis: a new era for the management of colorectal cancer. Cancer Cell Int 2021; 21:221. [PMID: 33865381 PMCID: PMC8052662 DOI: 10.1186/s12935-021-01920-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/07/2021] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNA molecules containing only 20–22 nucleotides. MiRNAs play a role in gene silencing and translation suppression by targeting and binding to mRNA. Proper control of miRNA expression is very important for maintaining a normal physiological environment because miRNAs can affect most cellular pathways, including cell cycle checkpoint, cell proliferation, and apoptosis pathways, and have a wide range of target genes. With these properties, miRNAs can modulate multiple signalling pathways involved in cancer development, such as cell proliferation, apoptosis, and migration pathways. MiRNAs that activate or inhibit the molecular pathway related to tumour angiogenesis are common topics of research. Angiogenesis promotes tumorigenesis and metastasis by providing oxygen and diffusible nutrients and releasing proangiogenic factors and is one of the hallmarks of tumour progression. CRC is one of the most common tumours, and metastasis has always been a difficult issue in its treatment. Although comprehensive treatments, such as surgery, radiotherapy, chemotherapy, and targeted therapy, have prolonged the survival of CRC patients, the overall response is not optimistic. Therefore, there is an urgent need to find new therapeutic targets to improve CRC treatment. In a series of recent reports, miRNAs have been shown to bidirectionally regulate angiogenesis in colorectal cancer. Many miRNAs can directly act on VEGF or inhibit angiogenesis through other pathways (HIF-1a, PI3K/AKT, etc.), while some miRNAs, specifically many exosomal miRNAs, are capable of promoting CRC angiogenesis. Understanding the mechanism of action of miRNAs in angiogenesis is of great significance for finding new targets for the treatment of tumour angiogenesis. Deciphering the exact role of specific miRNAs in angiogenesis is a challenge due to the high complexity of their actions. Here, we describe the latest advances in the understanding of miRNAs and their corresponding targets that play a role in CRC angiogenesis and discuss possible miRNA-based therapeutic strategies.
Collapse
Affiliation(s)
- Yufei Tang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Shaoqi Zong
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.,Graduate School of Shanghai, University of Traditional Chinese Medicine, Shanghai, China
| | - Hailun Zeng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Xiaofeng Ruan
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Liting Yao
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Susu Han
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Fenggang Hou
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| |
Collapse
|
9
|
Shen P, Qu L, Wang J, Ding Q, Zhou C, Xie R, Wang H, Ji G. LncRNA LINC00342 contributes to the growth and metastasis of colorectal cancer via targeting miR-19a-3p/NPEPL1 axis. Cancer Cell Int 2021; 21:105. [PMID: 33588834 PMCID: PMC7885559 DOI: 10.1186/s12935-020-01705-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
Background Long intergenic non-protein coding RNA 00342 (LINC00342) has been identified as a novel oncogene. However, the functional role of LINC00342 in colorectal cancer (CRC) remains unclear. Methods The expression of LINC00342 is detected by real-time PCR (RT-PCR) analysis. Cell proliferation, migration and invasion and xenograft model are examined to analyze the biological functions of LINC00342 in vitro and in vivo using colony formation, would healing and transwell analyses. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays are used to identify the target interactions between LINC00342, miR-19a-3p and aminopeptidase like 1 (NPEPL1). Results LINC00342 was highly expressed in CRC. Down-regulation of LINC00342 inhibited cell proliferation and metastasis of CRC cells. Moreover, knocking down LINC00342 inhibited the tumor growth in vivo. Mechanistic investigation revealed that LINC00342 might sponge miR-19a-3p to regulate NPEPL1 expression. Further investigation indicated that the ontogenesis facilitated by LINC00342 was inhibited due to the depletion of NPEPL1. Conclusion LINC00342 promotes CRC progression by competitively binding miR-19a-3p with NPEPL1.
Collapse
Affiliation(s)
- Peng Shen
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Lili Qu
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Jingjing Wang
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Quchen Ding
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Chuanwen Zhou
- The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China
| | - Rui Xie
- The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China
| | - Honggang Wang
- The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China
| | - Guozhong Ji
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China.
| |
Collapse
|
10
|
Ghafouri-Fard S, Shoorei H, Mohaqiq M, Taheri M. Non-coding RNAs regulate angiogenic processes. Vascul Pharmacol 2020; 133-134:106778. [PMID: 32784009 DOI: 10.1016/j.vph.2020.106778] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023]
Abstract
Angiogenesis has critical roles in numerous physiologic processes during embryonic and adult life such as wound healing and tissue regeneration. However, aberrant angiogenic processes have also been involved in the pathogenesis of several disorders such as cancer and diabetes mellitus. Vascular endothelial growth factor (VEGF) is implicated in the regulation of this process in several physiologic and pathologic conditions. Notably, several non-coding RNAs (ncRNAs) have been shown to influence angiogenesis through modulation of expression of VEGF or other angiogenic factors. In the current review, we summarize the function and characteristics of microRNAs and long non-coding RNAs which regulate angiogenic processes. Understanding the role of these transcripts in the angiogenesis can facilitate design of therapeutic strategies to defeat the pathogenic events during this process especially in the human malignancies. Besides, angiogenesis-related mechanisms can improve tissue regeneration after conditions such as arteriosclerosis, myocardial infarction and limb ischemia. Thus, ncRNA-regulated angiogenesis can be involved in the pathogenesis of several disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahdi Mohaqiq
- Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Ahadi A. The significance of microRNA deregulation in colorectal cancer development and the clinical uses as a diagnostic and prognostic biomarker and therapeutic agent. Noncoding RNA Res 2020; 5:125-134. [PMID: 32954092 PMCID: PMC7476809 DOI: 10.1016/j.ncrna.2020.08.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most widely recognized and deadly malignancies worldwide. Although death rates have declined over the previous decade, mainly because of enhanced screening or potential treatment alternatives, CRC remains the third leading cause of cancer-related mortality globally, with an estimated incidence of over 1 million new cases and approximately 600 000 deaths estimated yearly. Therefore, many scientific efforts are put into the development of new diagnostic biomarkers for CRC. MicroRNAs (miRNAs), one of the epigenetics categories, have demonstrated significant roles in carcinogenesis and progression through regulating epithelial-mesenchymal transition (EMT), oncogenic signaling pathways, and metastasis. Dysregulation of miRNAs expression has been reported in many cancers, including CRC. The expression profile of miRNAs is reproducibly altered in CRC, and their expression patterns are associated with diagnosis, prognosis, and therapeutic outcomes in CRC. Recently, many studies were conducted on the dysregulation of miRNAs as a diagnostic and prognostic biomarker in CRC. Among them, some miRNAs, which include miR-21, miR-34 family, miR-155, miR-224, and miR-378, have been more studied in CRC with more prominent roles in diagnosis, prognosis, and therapy. In the present review, we summarized the latest information regarding the dysregulated miRNAs in CRC and the advantages of using miRNAs as a biomarker for CRC diagnosis, treatment, and their function in different signaling pathways involved in CRC progression. Moreover, we described the translation of miRNA research to potential therapeutic applications in the management of CRC in clinical settings.
Collapse
Affiliation(s)
- Alireza Ahadi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Calvo N, Carriere P, Martín MJ, Gigola G, Gentili C. PTHrP treatment of colon cancer cells promotes tumor associated-angiogenesis by the effect of VEGF. Mol Cell Endocrinol 2019; 483:50-63. [PMID: 30639585 DOI: 10.1016/j.mce.2019.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/30/2018] [Accepted: 01/07/2019] [Indexed: 02/06/2023]
Abstract
We showed that Parathyroid Hormone-related Peptide (PTHrP) induces proliferation, migration, survival and chemoresistance via MAPKs and PI3K/AKT pathways in colorectal cancer (CRC) cells. The objective of this study was to investigate if PTHrP is also involved in tumor angiogenesis. PTHrP increased VEGF expression and the number of structures with characteristics of neoformed vessels in xenografts tumor. Also, PTHrP increased mRNA levels of VEGF, HIF-1α and MMP-9 via ERK1/2 and PI3K/Akt pathways in Caco-2 and HCT116 cells. Tumor conditioned media (TCMs) from both cell lines treated with PTHrP increases the number of cells, the migration and the tube formation in the endothelial HMEC-1 cells, whereas the neutralizing antibody against VEGF diminished this response. In contrast, PTHrP by direct treatment only increased ERK1/2 phosphorylation and the HMEC-1 cells number. These results provide the first evidence related to the mode of action of PTHrP that leads to its proangiogenic effects in the CRC.
Collapse
Affiliation(s)
- Natalia Calvo
- Dept. Biología Bioquímica y Farmacia-INBIOSUR, Universidad Nacional del Sur, Bahía Blanca, Argentina.
| | - Pedro Carriere
- Dept. Biología Bioquímica y Farmacia-INBIOSUR, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - María Julia Martín
- Dept. Biología Bioquímica y Farmacia-INBIOSUR, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Graciela Gigola
- Dept. Biología Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Claudia Gentili
- Dept. Biología Bioquímica y Farmacia-INBIOSUR, Universidad Nacional del Sur, Bahía Blanca, Argentina
| |
Collapse
|
13
|
Du M, Wang Y, Zhao W, Wang Z, Yuan J, Bai H. Study on the relationship between livin expression and osteosarcoma. J Bone Oncol 2018; 12:27-32. [PMID: 30073139 PMCID: PMC6069704 DOI: 10.1016/j.jbo.2018.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE The aim of this meta-analysis was to analysis the expression of livin in human osteosarcoma. METHODS We searched the Pubmed, Science Direct, Embase and Web of Science, CNKI, Wanfang and VIP for relevant original studies. Statistical analysis was performed by Stata 11.0 software. RESULTS Our study indicated that livin expressed in the osteosarcoma tissue was significantly higher than the control group (OR = 18.814, P c = 0.000, 95% CI: 10.973-32.257), and the positive expression of livin was correlated with the size of osteosarcoma tumor and Enncking staging (OR = 4.832, 95% CI: 2.198-10.621; OR = 4.851, 95% CI: 3.053-7.709, respectively). CONCLUSION Livin was highly expressed in osteosarcoma, and osteosarcoma Enncking staging and tumor size were positively correlated, both may be involved in the occurrence and development of osteosarcoma, and be closely related to the prognosis of osteosarcoma patients.
Collapse
Affiliation(s)
- Meng Du
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Henan, China
| | - Yongfeng Wang
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Wei Zhao
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhiquan Wang
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jie Yuan
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongying Bai
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Henan, China
| |
Collapse
|
14
|
Anguille S, Smits EL, Bryant C, Van Acker HH, Goossens H, Lion E, Fromm PD, Hart DN, Van Tendeloo VF, Berneman ZN. Dendritic Cells as Pharmacological Tools for Cancer Immunotherapy. Pharmacol Rev 2015; 67:731-53. [PMID: 26240218 DOI: 10.1124/pr.114.009456] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Although the earliest—rudimentary—attempts at exploiting the immune system for cancer therapy can be traced back to the late 18th Century, it was not until the past decade that cancer immunotherapeutics have truly entered mainstream clinical practice. Given their potential to stimulate both adaptive and innate antitumor immune responses, dendritic cells (DCs) have come under intense scrutiny in recent years as pharmacological tools for cancer immunotherapy. Conceptually, the clinical effectiveness of this form of active immunotherapy relies on the completion of three critical steps: 1) the DCs used as immunotherapeutic vehicles must properly activate the antitumor immune effector cells of the host, 2) these immune effector cells must be receptive to stimulation by the DCs and be competent to mediate their antitumor effects, which 3) requires overcoming the various immune-inhibitory mechanisms used by the tumor cells. In this review, following a brief overview of the pivotal milestones in the history of cancer immunotherapy, we will introduce the reader to the basic immunobiological and pharmacological principles of active cancer immunotherapy using DCs. We will then discuss how current research is trying to define the optimal parameters for each of the above steps to realize the full clinical potential of DC therapeutics. Given its high suitability for immune interventions, acute myeloid leukemia was chosen here to showcase the latest research trends driving the field of DC-based cancer immunotherapy.
Collapse
Affiliation(s)
- Sébastien Anguille
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | - Evelien L Smits
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | - Christian Bryant
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | - Heleen H Van Acker
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | - Herman Goossens
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | - Eva Lion
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | - Phillip D Fromm
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | | | - Viggo F Van Tendeloo
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | - Zwi N Berneman
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| |
Collapse
|