1
|
Ramesh S, Cifci A, Javeri S, Minne R, Longhurst CA, Nickel KP, Kimple RJ, Baschnagel AM. MET Inhibitor Capmatinib Radiosensitizes MET Exon 14-Mutated and MET-Amplified Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys 2024; 118:1379-1390. [PMID: 37979706 PMCID: PMC12121486 DOI: 10.1016/j.ijrobp.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023]
Abstract
PURPOSE The objective of this study was to investigate the effects of inhibiting the MET receptor with capmatinib, a potent and clinically relevant ATP-competitive tyrosine kinase inhibitor, in combination with radiation in MET exon 14-mutated and MET-amplified non-small cell lung (NSCLC) cancer models. METHODS AND MATERIALS In vitro effects of capmatinib and radiation on cell proliferation, colony formation, MET signaling, apoptosis, and DNA damage repair were evaluated. In vivo tumor responses were assessed in cell line xenograft and patient-derived xenograft models. Immunohistochemistry was used to confirm the in vitro results. RESULTS In vitro clonogenic survival assays demonstrated radiosensitization with capmatinib in both MET exon 14-mutated and MET-amplified NSCLC cell lines. No radiation-enhancing effect was observed in MET wild-type NSCLC and a human bronchial epithelial cell line. Minimal apoptosis was detected with the combination of capmatinib and radiation. Capmatinib plus radiation compared with radiation alone resulted in inhibition of DNA double-strand break repair, as measured by prolonged expression of γH2AX. In vivo, the combination of capmatinib and radiation significantly delayed tumor growth compared with vehicle control, capmatinib alone, or radiation alone. Immunohistochemistry indicated inhibition of phospho-MET and phospho-S6 and a decrease in Ki67 with inhibition of MET. CONCLUSIONS Inhibition of MET with capmatinib enhances the effect of radiation in both MET exon 14-mutated and MET-amplified NSCLC models.
Collapse
Affiliation(s)
- Shrey Ramesh
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Ahmet Cifci
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Saahil Javeri
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Rachel Minne
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Colin A. Longhurst
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Kwangok P. Nickel
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Randall J. Kimple
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Andrew M. Baschnagel
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Ramesh S, Cifci A, Javeri S, Minne R, Longhurst CA, Nickel KP, Kimple RJ, Baschnagel AM. MET Inhibitor Capmatinib Radiosensitizes MET Exon 14-Mutated and MET-Amplified Non-Small Cell Lung Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564232. [PMID: 37961176 PMCID: PMC10634863 DOI: 10.1101/2023.10.26.564232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Purpose The objective of this study was to investigate the effects of inhibiting the MET receptor with capmatinib, a potent and clinically relevant ATP-competitive tyrosine kinase inhibitor, in combination with radiation in MET exon 14-mutated and MET-amplified non-small cell lung (NSCLC) cancer models. Methods and Materials In vitro effects of capmatinib and radiation on cell proliferation, colony formation, MET signaling, apoptosis, and DNA damage repair were evaluated. In vivo tumor responses were assessed in cell line xenograft and patient-derived xenograft models. Immunohistochemistry (IHC) was used to confirm in vitro results. Results In vitro clonogenic survival assays demonstrated radiosensitization with capmatinib in both MET exon 14-mutated and MET-amplified NSCLC cell lines. No radiation-enhancing effect was observed in MET wild-type NSCLC and human bronchial epithelial cell line. Minimal apoptosis was detected with the combination of capmatinib and radiation. Capmatinib plus radiation compared to radiation alone resulted in inhibition of DNA double-strand break repair as measured by prolonged expression of γH2AX. In vivo, the combination of capmatinib and radiation significantly delayed tumor growth compared to vehicle control, capmatinib alone, or radiation alone. IHC indicated inhibition of phospho-MET and phospho-S6 and a decrease in Ki67 with inhibition of MET. Conclusions Inhibition of MET with capmatinib enhanced the effect of radiation in both MET exon 14-mutated and MET-amplified NSCLC models.
Collapse
Affiliation(s)
- Shrey Ramesh
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Ahmet Cifci
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Saahil Javeri
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Rachel Minne
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Colin A. Longhurst
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Kwangok P. Nickel
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Randall J. Kimple
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Andrew M. Baschnagel
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Sabbah M, Najem A, Vanderkerkhove C, Kert F, Jourani Y, Journe F, Awada A, Van Gestel D, Ghanem GE, Krayem M. The benefit of co-targeting PARP-1 and c-Met on the efficacy of radiotherapy in wild type BRAF melanoma. Front Med (Lausanne) 2023; 10:1149918. [PMID: 37215708 PMCID: PMC10192576 DOI: 10.3389/fmed.2023.1149918] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
Melanoma is known to be a radioresistant cancer. Melanoma radioresistance can be due to several factors such as pigmentation, antioxidant defenses and high Deoxyribonucleic acid (DNA) repair efficacy. However, irradiation induces intracellular translocation of RTKs, including cMet, which regulates response to DNA damage activating proteins and promotes DNA repair. Accordingly, we hypothesized that co-targeting DNA repair (PARP-1) and relevant activated RTKs, c-Met in particular, may radiosensitize wild-type B-Raf Proto-Oncogene, Serine/Threonine Kinase (WTBRAF) melanomas where RTKs are often upregulated. Firstly, we found that PARP-1 is highly expressed in melanoma cell lines. PARP-1 inhibition by Olaparib or its KO mediates melanoma cell sensitivity to radiotherapy (RT). Similarly, specific inhibition of c-Met by Crizotinib or its KO radiosensitizes the melanoma cell lines. Mechanistically, we show that RT causes c-Met nuclear translocation to interact with PARP-1 promoting its activity. This can be reversed by c-Met inhibition. Accordingly, RT associated with the inhibition of both c-Met and PARP-1 resulted in a synergistic effect not only on tumor growth inhibition but also on tumor regrowth control in all animals following the stop of the treatment. We thus show that combining PARP and c-Met inhibition with RT appears a promising therapeutic approach in WTBRAF melanoma.
Collapse
Affiliation(s)
- Malak Sabbah
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Bruxelles, Belgium
| | - Ahmad Najem
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Bruxelles, Belgium
| | - Christophe Vanderkerkhove
- Medical Physics Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
| | - Fabien Kert
- Medical Physics Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
| | - Younes Jourani
- Medical Physics Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
| | - Fabrice Journe
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Bruxelles, Belgium
| | - Ahmad Awada
- Oncology Medicine Department, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
| | - Dirk Van Gestel
- Radiation Oncology Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
| | - Ghanem E. Ghanem
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Bruxelles, Belgium
| | - Mohammad Krayem
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Bruxelles, Belgium
- Radiation Oncology Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
| |
Collapse
|
4
|
Molecular Radiobiology in Non-Small Cell Lung Cancer: Prognostic and Predictive Response Factors. Cancers (Basel) 2022; 14:cancers14092202. [PMID: 35565331 PMCID: PMC9101029 DOI: 10.3390/cancers14092202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The identification of prognostic and predictive gene signatures of response to cancer treatment (radiotherapy) could help in making therapeutic decisions in patients affected by NSCLC. There are multiple proposals for gene signatures that attempt to predict survival or predict response to treatment (not radiotherapy), but they mainly focus on early stages or metastasis at diagnosis. In contrast, there have been few studies that raise these predictive and/or prognostic elements in nonmetastatic locally advanced stages, where treatment with ionizing radiation plays an important role. In this work, we review in depth previous works discovering the prognostic and predictive response factors in non-small cell lung cancer, specially focused on non-deeply studied radiation-based therapy. Abstract Non-small-cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide, generating huge economic and social impacts that have not slowed in recent years. Oncological treatment for this neoplasm usually includes surgery, chemotherapy, treatments on molecular targets and ionizing radiation. The prognosis in terms of overall survival (OS) and the different therapeutic responses between patients can be explained, to a large extent, by the existence of widely heterogeneous molecular profiles. The identification of prognostic and predictive gene signatures of response to cancer treatment, could help in making therapeutic decisions in patients affected by NSCLC. Given the published scientific evidence, we believe that the search for prognostic and/or predictive gene signatures of response to radiotherapy treatment can significantly help clinical decision-making. These signatures may condition the fractions, the total dose to be administered and/or the combination of systemic treatments in conjunction with radiation. The ultimate goal is to achieve better clinical results, minimizing the adverse effects associated with current cancer therapies.
Collapse
|
5
|
Jost T, Schuster B, Heinzerling L, Weissmann T, Fietkau R, Distel LV, Hecht M. Kinase inhibitors increase individual radiation sensitivity in normal cells of cancer patients. Strahlenther Onkol 2022; 198:838-848. [PMID: 35471558 PMCID: PMC9402507 DOI: 10.1007/s00066-022-01945-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/03/2022] [Indexed: 11/06/2022]
Abstract
Purpose Kinase inhibitors (KI) are known to increase radiosensitivity, which can lead to increased risk of side effects. Data about interactions of commonly used KI with ionizing radiation on healthy tissue are rare. Patients and methods Freshly drawn blood samples were analyzed using three-color FISH (fluorescence in situ hybridization) to measure individual radiosensitivity via chromosomal aberrations after irradiation (2 Gy). Thresholds of 0.5 and 0.6 breaks/metaphase (B/M) indicate moderate or clearly increased radiosensitivity. Results The cohorts consisted of healthy individuals (NEG, n = 219), radiosensitive patients (POS, n = 24), cancer patients (n = 452) and cancer patients during KI therapy (n = 49). In healthy individuals radiosensitivity (≥ 0.6 B/M) was clearly increased in 5% of all cases, while in the radiosensitive cohort 79% were elevated. KI therapy increased the rate of sensitive patients (≥ 0.6 B/M) to 35% significantly compared to 19% in cancer patients without KI (p = 0.014). Increased radiosensitivity of peripheral blood mononuclear cells (PBMCs) among patients occurred in six of seven KI subgroups. The mean B/M values significantly increased during KI therapy (0.47 ± 0.20 B/M without compared to 0.50 ± 0.19 B/M with KI, p = 0.047). Conclusions Kinase inhibitors can intensify individual radiosensitivity of PBMCs distinctly in 85% of tested drugs.
Collapse
Affiliation(s)
- Tina Jost
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany. .,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany.
| | - Barbara Schuster
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lucie Heinzerling
- Clinic and Polyclinic for Dermatology and Allergology, University Hospital München, Ludwig-Maximilian-Universität (LMU), Munich, Germany
| | - Thomas Weissmann
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Luitpold V Distel
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Markus Hecht
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| |
Collapse
|
6
|
Peinado-Serrano J, Quintanal-Villalonga Á, Muñoz-Galvan S, Verdugo-Sivianes EM, Mateos JC, Ortiz-Gordillo MJ, Carnero A. A Six-Gene Prognostic and Predictive Radiotherapy-Based Signature for Early and Locally Advanced Stages in Non-Small-Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14092054. [PMID: 35565183 PMCID: PMC9099638 DOI: 10.3390/cancers14092054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The search for prognostic and/or predictive gene signatures of the response to radiotherapy treatment can significantly aid clinical decision making. These signatures can condition the fractionation, the total dose to be administered, and/or the combination of systemic treatments and radiation. The ultimate goal is to achieve better clinical results, as well as to minimize the adverse effects associated with current cancer therapies. To this end, we analyzed the intrinsic radiosensitivity of 15 NSCLC lines and found the differences in gene expression levels between radiosensitive and radioresistant lines, resulting in a potentially applicable six-gene signature in NSCLC patients. The six-gene signature had the ability to predict overall survival and progression-free survival (PFS), which could translate into a prediction of the response to the cancer treatment received. Abstract Non-small-cell lung cancer (NSCLC) is the leading cause of cancer death worldwide, generating an enormous economic and social impact that has not stopped growing in recent years. Cancer treatment for this neoplasm usually includes surgery, chemotherapy, molecular targeted treatments, and ionizing radiation. The prognosis in terms of overall survival (OS) and the disparate therapeutic responses among patients can be explained, to a great extent, by the existence of widely heterogeneous molecular profiles. The main objective of this study was to identify prognostic and predictive gene signatures of response to cancer treatment involving radiotherapy, which could help in making therapeutic decisions in patients with NSCLC. To achieve this, we took as a reference the differential gene expression pattern among commercial cell lines, differentiated by their response profile to ionizing radiation (radiosensitive versus radioresistant lines), and extrapolated these results to a cohort of 107 patients with NSCLC who had received radiotherapy (among other therapies). We obtained a six-gene signature (APOBEC3B, GOLM1, FAM117A, KCNQ1OT1, PCDHB2, and USP43) with the ability to predict overall survival and progression-free survival (PFS), which could translate into a prediction of the response to the cancer treatment received. Patients who had an unfavorable prognostic signature had a median OS of 24.13 months versus 71.47 months for those with a favorable signature, and the median PFS was 12.65 months versus 47.11 months, respectively. We also carried out a univariate analysis of multiple clinical and pathological variables and a bivariate analysis by Cox regression without any factors that substantially modified the HR value of the proposed gene signature.
Collapse
Affiliation(s)
- Javier Peinado-Serrano
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (J.P.-S.); (S.M.-G.); (E.M.V.-S.)
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Radiation Oncology, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
| | | | - Sandra Muñoz-Galvan
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (J.P.-S.); (S.M.-G.); (E.M.V.-S.)
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Eva M. Verdugo-Sivianes
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (J.P.-S.); (S.M.-G.); (E.M.V.-S.)
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juan C. Mateos
- Radiation Physics Department, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
- Departamento de Fisiología Médica y Biofisica, Universidad de Sevilla, 41013 Seville, Spain
| | - María J. Ortiz-Gordillo
- Department of Radiation Oncology, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (J.P.-S.); (S.M.-G.); (E.M.V.-S.)
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
7
|
Antoni D, Burckel H, Noel G. Combining Radiation Therapy with ALK Inhibitors in Anaplastic Lymphoma Kinase-Positive Non-Small Cell Lung Cancer (NSCLC): A Clinical and Preclinical Overview. Cancers (Basel) 2021; 13:2394. [PMID: 34063424 PMCID: PMC8156706 DOI: 10.3390/cancers13102394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/25/2022] Open
Abstract
Over the past years, the identification of genetic alterations in oncogenic drivers in non-small cell lung cancer (NSCLC) has significantly and favorably transformed the outcome of patients who can benefit from targeted therapies such as tyrosine kinase inhibitors. Among these genetic alterations, anaplastic lymphoma kinase (ALK) rearrangements were discovered in 2007 and are present in 3-5% of patients with NSCLC. In addition, radiotherapy remains one of the cornerstones of NSCLC treatment. Moreover, improvements in the field of radiotherapy with the use of hypofractionated or ablative stereotactic radiotherapy have led to a better outcome for localized or oligometastatic NSCLC. To date, the effects of the combination of ALK inhibitors and radiotherapy are unclear in terms of safety and efficacy but could potently improve treatment. In this manuscript, we provide a clinical and preclinical overview of combining radiation therapy with ALK inhibitors in anaplastic lymphoma kinase-positive non-small cell lung cancer.
Collapse
Affiliation(s)
- Delphine Antoni
- Paul Strauss Comprehensive Cancer Center, Radiobiology Laboratory, Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg University, UNICANCER, 67000 Strasbourg, France; (H.B.); (G.N.)
- Department of Radiotherapy, ICANS, Institut de Cancérologie Strasbourg Europe, 17 rue Albert Calmette, CEDEX, 67200 Strasbourg, France
| | - Hélène Burckel
- Paul Strauss Comprehensive Cancer Center, Radiobiology Laboratory, Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg University, UNICANCER, 67000 Strasbourg, France; (H.B.); (G.N.)
| | - Georges Noel
- Paul Strauss Comprehensive Cancer Center, Radiobiology Laboratory, Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg University, UNICANCER, 67000 Strasbourg, France; (H.B.); (G.N.)
- Department of Radiotherapy, ICANS, Institut de Cancérologie Strasbourg Europe, 17 rue Albert Calmette, CEDEX, 67200 Strasbourg, France
| |
Collapse
|
8
|
Wrona A, Dziadziuszko R, Jassem J. Combining radiotherapy with targeted therapies in non-small cell lung cancer: focus on anti-EGFR, anti-ALK and anti-angiogenic agents. Transl Lung Cancer Res 2021; 10:2032-2047. [PMID: 34012812 PMCID: PMC8107745 DOI: 10.21037/tlcr-20-552] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The combination of radiotherapy (RT) with targeted agents in non-small cell lung cancer (NSCLC) has been expected to improve the therapeutic ratio and tumor control. The EGFR blockade enhances the antitumor effect of RT. The ALK inhibition elicits anti-proliferative, pro-apoptotic and antiangiogenic effects in ALK-positive NSCLC cell lines, enhanced by the exposure to RT. The antiangiogenic agents normalize pathological tumor vessels, thus decrease tumor cell hypoxia and improve radiosensitivity. To date, however, none of the targeted agents combined with RT has shown proven clinical benefit over standard chemoradiation (CRT) in locally advanced NSCLC. The risk of potential excessive toxicity related to the therapeutic combination of RT and targeted agents cannot be ignored. Well-designed clinical trials may allow development of more effective combination strategies. Another potential application of combined RT and targeted therapies in oncogene-driven NSCLC is metastatic oligoprogressive or oligopersistent disease. The use of RT in oligoprogressive oncogene-driven NSCLC, while continuing first line targeted therapy, can potentially eradicate resistant cell clones and provide survival benefit. Likewise, the consolidation of oligopersistent foci (molecularly resistant to first line targeted therapy) may potentially interfere with the natural course of the disease by avoiding or delaying progression. We discuss here the molecular and radiobiological mechanisms of combining RT and targeted agents, and summarize current clinical experience.
Collapse
Affiliation(s)
- Anna Wrona
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, 17 Smoluchowskiego St. 80-214 Gdańsk, Poland
| | - Rafał Dziadziuszko
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, 17 Smoluchowskiego St. 80-214 Gdańsk, Poland
| | - Jacek Jassem
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, 17 Smoluchowskiego St. 80-214 Gdańsk, Poland
| |
Collapse
|
9
|
Baschnagel AM, Kaushik S, Durmaz A, Goldstein S, Ong IM, Abel L, Clark PA, Gurel Z, Leal T, Buehler D, Iyer G, Scott JG, Kimple RJ. Development and characterization of patient-derived xenografts from non-small cell lung cancer brain metastases. Sci Rep 2021; 11:2520. [PMID: 33510214 PMCID: PMC7843608 DOI: 10.1038/s41598-021-81832-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/12/2021] [Indexed: 01/08/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) brain metastasis cell lines and in vivo models are not widely accessible. Herein we report on a direct-from patient-derived xenograft (PDX) model system of NSCLC brain metastases with genomic annotation useful for translational and mechanistic studies. Both heterotopic and orthotopic intracranial xenografts were established and RNA and DNA sequencing was performed on patient and matching tumors. Morphologically, strong retention of cytoarchitectural features was observed between original patient tumors and PDXs. Transcriptome and mutation analysis revealed high correlation between matched patient and PDX samples with more than more than 95% of variants detected being retained in the matched PDXs. PDXs demonstrated response to radiation, response to selumetinib in tumors harboring KRAS G12C mutations and response to savolitinib in a tumor with MET exon 14 skipping mutation. Savolitinib also demonstrated in vivo radiation enhancement in our MET exon 14 mutated PDX. Early passage cell strains showed high consistency between patient and PDX tumors. Together, these data describe a robust human xenograft model system for investigating NSCLC brain metastases. These PDXs and cell lines show strong phenotypic and molecular correlation with the original patient tumors and provide a valuable resource for testing preclinical therapeutics.
Collapse
Affiliation(s)
- Andrew M Baschnagel
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, 600 Highland Avenue, K4/B100-0600, Madison, WI, 53792, USA.
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.
| | - Saakshi Kaushik
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, 600 Highland Avenue, K4/B100-0600, Madison, WI, 53792, USA
| | - Arda Durmaz
- Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Steve Goldstein
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Irene M Ong
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Lindsey Abel
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, 600 Highland Avenue, K4/B100-0600, Madison, WI, 53792, USA
| | - Paul A Clark
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, 600 Highland Avenue, K4/B100-0600, Madison, WI, 53792, USA
| | - Zafer Gurel
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, 600 Highland Avenue, K4/B100-0600, Madison, WI, 53792, USA
| | - Ticiana Leal
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Division of Hematology/Oncology, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Darya Buehler
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Gopal Iyer
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, 600 Highland Avenue, K4/B100-0600, Madison, WI, 53792, USA
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Jacob G Scott
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, 10201 Carnegie Ave, Cleveland, OH, 44195, USA
| | - Randall J Kimple
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, 600 Highland Avenue, K4/B100-0600, Madison, WI, 53792, USA.
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.
- , 3107 WIMR, 1111 Highland Ave., Madison, WI, 53705, USA.
| |
Collapse
|
10
|
Bland AR, Bower RL, Nimick M, Hawkins BC, Rosengren RJ, Ashton JC. Cytotoxicity of curcumin derivatives in ALK positive non-small cell lung cancer. Eur J Pharmacol 2019; 865:172749. [DOI: 10.1016/j.ejphar.2019.172749] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/21/2022]
|
11
|
Bhattacharya P, Shetake NG, Pandey BN, Kumar A. Receptor tyrosine kinase signaling in cancer radiotherapy and its targeting for tumor radiosensitization. Int J Radiat Biol 2018; 94:628-644. [DOI: 10.1080/09553002.2018.1478160] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Poushali Bhattacharya
- Radiation Signaling and Cancer Biology Section, Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Neena G. Shetake
- Radiation Signaling and Cancer Biology Section, Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Badri N. Pandey
- Radiation Signaling and Cancer Biology Section, Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Amit Kumar
- Radiation Signaling and Cancer Biology Section, Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
12
|
Clémenson C, Chargari C, Liu W, Mondini M, Ferté C, Burbridge MF, Cattan V, Jacquet-Bescond A, Deutsch E. The MET/AXL/FGFR Inhibitor S49076 Impairs Aurora B Activity and Improves the Antitumor Efficacy of Radiotherapy. Mol Cancer Ther 2017; 16:2107-2119. [PMID: 28619752 DOI: 10.1158/1535-7163.mct-17-0112] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/21/2017] [Accepted: 06/05/2017] [Indexed: 11/16/2022]
Abstract
Several therapeutic agents targeting HGF/MET signaling are under clinical development as single agents or in combination, notably with anti-EGFR therapies in non-small cell lung cancer (NSCLC). However, despite increasing data supporting a link between MET, irradiation, and cancer progression, no data regarding the combination of MET-targeting agents and radiotherapy are available from the clinic. S49076 is an oral ATP-competitive inhibitor of MET, AXL, and FGFR1-3 receptors that is currently in phase I/II clinical trials in combination with gefitinib in NSCLC patients whose tumors show resistance to EGFR inhibitors. Here, we studied the impact of S49076 on MET signaling, cell proliferation, and clonogenic survival in MET-dependent (GTL16 and U87-MG) and MET-independent (H441, H460, and A549) cells. Our data show that S49076 exerts its cytotoxic activity at low doses on MET-dependent cells through MET inhibition, whereas it inhibits growth of MET-independent cells at higher but clinically relevant doses by targeting Aurora B. Furthermore, we found that S49076 improves the antitumor efficacy of radiotherapy in both MET-dependent and MET-independent cell lines in vitro and in subcutaneous and orthotopic tumor models in vivo In conclusion, our study demonstrates that S49076 has dual antitumor activity and can be used in combination with radiotherapy for the treatment of both MET-dependent and MET-independent tumors. These results support the evaluation of combined treatment of S49076 with radiation in clinical trials without patient selection based on the tumor MET dependency status. Mol Cancer Ther; 16(10); 2107-19. ©2017 AACR.
Collapse
Affiliation(s)
- Céline Clémenson
- Gustave Roussy, Université Paris-Saclay, UMR Radiothérapie Moléculaire, Villejuif, France.,INSERM, U1030, SIRIC Socrates, DHU TORINO, Villejuif, France
| | - Cyrus Chargari
- Gustave Roussy, Université Paris-Saclay, UMR Radiothérapie Moléculaire, Villejuif, France.,INSERM, U1030, SIRIC Socrates, DHU TORINO, Villejuif, France.,Gustave Roussy, Université Paris-Saclay, Département de Radiothérapie, Villejuif, France.,Institut de Recherche Biomédicale des Armées, Brétigny-Sur-Orge, France
| | - Winchygn Liu
- Gustave Roussy, Université Paris-Saclay, UMR Radiothérapie Moléculaire, Villejuif, France.,INSERM, U1030, SIRIC Socrates, DHU TORINO, Villejuif, France
| | - Michele Mondini
- Gustave Roussy, Université Paris-Saclay, UMR Radiothérapie Moléculaire, Villejuif, France.,INSERM, U1030, SIRIC Socrates, DHU TORINO, Villejuif, France
| | - Charles Ferté
- Gustave Roussy, Université Paris-Saclay, UMR Radiothérapie Moléculaire, Villejuif, France.,INSERM, U1030, SIRIC Socrates, DHU TORINO, Villejuif, France.,INSERM, U981, Villejuif, France
| | - Mike F Burbridge
- Oncology Unit, Institut de Recherches Internationales Servier, Suresnes, France
| | - Valérie Cattan
- Oncology Unit, Institut de Recherches Internationales Servier, Suresnes, France
| | | | - Eric Deutsch
- Gustave Roussy, Université Paris-Saclay, UMR Radiothérapie Moléculaire, Villejuif, France. .,INSERM, U1030, SIRIC Socrates, DHU TORINO, Villejuif, France.,Gustave Roussy, Université Paris-Saclay, Département de Radiothérapie, Villejuif, France.,Univ Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| |
Collapse
|
13
|
Chen GZ, Dai WS, Zhu HC, Song HM, Yang X, Wang YD, Min H, Lu Q, Liu S, Sun XC, Zeng XN. Foretinib Enhances the Radiosensitivity in Esophageal Squamous Cell Carcinoma by Inhibiting Phosphorylation of c-Met. J Cancer 2017; 8:983-992. [PMID: 28529610 PMCID: PMC5436250 DOI: 10.7150/jca.18135] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 12/23/2016] [Indexed: 12/13/2022] Open
Abstract
As a crucial event involved in the metastasis and relapse of esophageal cancer, c-Met overexpression has been considered as one of the culprits responsible for the failure in patients who received radiochemotherapy. Since c-Met has been confirmed to be pivotal for cell survival, proliferation and migration, little is known about its impact on the regulation of radiosensitivity in esophageal cancer. The present study investigated the radiosensitization effects of c-Met inhibitor foretinib in ECA-109 and TE-13 cell lines. Foretinib inhibited c-Met signaling in a dose-dependent manner resulting in decreases in the cell viability of ECA-109 and TE-13. Pretreatment with foretinib synergistically prompted cell apoptosis and G2/M arrest induced by irradiation. Moreover, decreases ability of DNA damage repair was also observed. In vivo studies confirmed that the combinatorial use of foretinib with irradiation significantly diminishes tumor burden compared to either treatment alone. The present findings implied a crucial role of c-Met in the modulation of radiosensitization in esophageal cancer, and foretinib increased the radiosensitivity in ECA-109 and TE-13 cells mainly via c-Met signaling, highlighting a novel profile of foretinib as a potential radiosensitizer for the treatment of esophageal cancer.
Collapse
Affiliation(s)
- Guang-Zong Chen
- Department of Radiation Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wang-Shu Dai
- Department of Radiation Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hong-Cheng Zhu
- Department of Radiation Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hong-Mei Song
- Department of Radiation Oncology, Lianyungang NO.2 People's Hospital Affiliated to Bengbu Medical College, Lianyungang 222000, China
| | - Xi Yang
- Department of Radiation Oncology, the Cancer Hospital of Fudan University, Shanghai 200000, China
| | - Yuan-Dong Wang
- Department of Radiation Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hua Min
- Department of Radiation Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qian Lu
- Department of Radiation Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shu Liu
- Department of Radiation Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xin-Chen Sun
- Department of Radiation Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiao-Ning Zeng
- Department of Respiratory & Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
14
|
Biswas K, Sarkar S, Du K, Brautigan DL, Abbas T, Larner JM. The E3 Ligase CHIP Mediates p21 Degradation to Maintain Radioresistance. Mol Cancer Res 2017; 15:651-659. [PMID: 28232384 DOI: 10.1158/1541-7786.mcr-16-0466] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 11/16/2022]
Abstract
Lung cancer resists radiotherapy, making it one of the deadliest forms of cancer. Here, we show that human lung cancer cell lines can be rendered sensitive to ionizing radiation (IR) by RNAi knockdown of C-terminus of Hsc70-interacting protein (CHIP/STUB1), a U-box-type E3 ubiquitin ligase that targets a number of stress-induced proteins. Mechanistically, ubiquitin-dependent degradation of the cyclin-dependent kinase (CDK) inhibitor, p21 protein, is reduced by CHIP knockdown, leading to enhanced senescence of cells in response to exposure to IR. Cellular senescence and sensitivity to IR is prevented by CRISPR/Cas9-mediated deletion of the p21 gene (CDKN1A) in CHIP knockdown cells. Conversely, overexpression of CHIP potentiates p21 degradation and promotes greater radioresistance of lung cancer cells. In vitro and cell-based assays demonstrate that p21 is a novel and direct ubiquitylation substrate of CHIP that also requires the CHIP-associated chaperone HSP70. These data reveal that the inhibition of the E3 ubiquitin ligase CHIP promotes radiosensitivity, thus suggesting a novel strategy for the treatment of lung cancer.Implications: The CHIP-HSP70-p21 ubiquitylation/degradation axis identified here could be exploited to enhance the efficacy of radiotherapy in patients with non-small cell lung cancer. Mol Cancer Res; 15(6); 651-9. ©2017 AACR.
Collapse
Affiliation(s)
- Kuntal Biswas
- Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia
| | - Sukumar Sarkar
- Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia
| | - Kangping Du
- Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia
| | - David L Brautigan
- Center for Cell Signaling and Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - Tarek Abbas
- Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia.,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
| | - James M Larner
- Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
15
|
McLaughlin KA, Nemeth Z, Bradley CA, Humphreys L, Stasik I, Fenning C, Majkut J, Higgins C, Crawford N, Holohan C, Johnston PG, Harrison T, Hanna GG, Butterworth KT, Prise KM, Longley DB. FLIP: A Targetable Mediator of Resistance to Radiation in Non–Small Cell Lung Cancer. Mol Cancer Ther 2016; 15:2432-2441. [DOI: 10.1158/1535-7163.mct-16-0211] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/06/2016] [Indexed: 11/16/2022]
|
16
|
|
17
|
Abstract
Cancer metastasis is highly inefficient and complex. Common features of metastatic cancer cells have been observed using cancer cell lines and genetically reconstituted mouse and human tumor xenograft models. These include cancer cell interaction with the tumor microenvironment and the ability of cancer cells to sense extracellular stimuli and adapt to adverse growth conditions. This review summarizes the coordinated response of cancer cells to soluble growth factors, such as RANKL, by a unique feed forward mechanism employing coordinated upregulation of RANKL and c-Met with downregulation of androgen receptor. The RANK-mediated signal network was found to drive epithelial to mesenchymal transition in prostate cancer cells, promote osteomimicry and the ability of prostate cancer cells to assume stem cell and neuroendocrine phenotypes, and confer the ability of prostate cancer cells to home to bone. Prostate cancer cells with activated RANK-mediated signal network were observed to recruit and even transform the non-tumorigenic prostate cancer cells to participate in bone and soft tissue colonization. The coordinated regulation of cancer cell invasion and metastasis by the feed forward mechanism involving RANKL, c-Met, transcription factors, and VEGF-neuropilin could offer new therapeutic opportunities to target prostate cancer bone and soft tissue metastases.
Collapse
Affiliation(s)
- Gina Chia-Yi Chu
- Departments of Medicine and Surgery, Samuel Orchin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA,
| | | |
Collapse
|
18
|
Dai Y, Wei Q, Schwager C, Moustafa M, Zhou C, Lipson KE, Weichert W, Debus J, Abdollahi A. Synergistic effects of crizotinib and radiotherapy in experimental EML4–ALK fusion positive lung cancer. Radiother Oncol 2015; 114:173-81. [DOI: 10.1016/j.radonc.2014.12.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 12/19/2014] [Accepted: 12/21/2014] [Indexed: 02/07/2023]
|
19
|
Pinto IG, Lee M, Graziano S, Lacombe M, Gajra A. Concurrent crizotinib and whole-brain radiation for brain metastases in ALK-positive lung adenocarcinoma. Lung Cancer Manag 2014. [DOI: 10.2217/lmt.14.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY Crizotinib is now used for ALK-positive adenocarcinoma of the lung. To the best of our knowledge it has not been used concurrently with radiation. We report the first case where a patient safely tolerated crizotinib with concurrent whole-brain radiation therapy for brain metastases in ALK-positive adenocarcinoma of the lung. The patient had a good response to the combination with improved performance status.
Collapse
Affiliation(s)
- Ian G Pinto
- SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY 13210, USA
| | - Mijung Lee
- SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY 13210, USA
| | - Stephen Graziano
- SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY 13210, USA
| | - Michael Lacombe
- SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY 13210, USA
| | - Ajeet Gajra
- SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY 13210, USA
| |
Collapse
|
20
|
Crizotinib: a review of its use in the treatment of anaplastic lymphoma kinase-positive, advanced non-small cell lung cancer. Drugs 2014; 73:2031-51. [PMID: 24288180 DOI: 10.1007/s40265-013-0142-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Crizotinib (Xalkori(®)) is an orally active, small molecule inhibitor of multiple receptor tyrosine kinases, including anaplastic lymphoma kinase (ALK), c-Met/hepatocyte growth factor receptor and c-ros oncogene 1. In the EU, crizotinib has been conditionally approved for the treatment of adults with previously treated, ALK-positive, advanced non-small cell lung cancer (NSCLC). This approval has been based on objective response rate and tolerability data from two ongoing phase I/II studies (PROFILE 1001 and PROFILE 1005); these results have been substantiated and extended by findings from an ongoing phase III study (PROFILE 1007) in patients with ALK-positive, advanced NSCLC who had received one prior platinum-based regimen. Those treated with crizotinib experienced significant improvements in progression-free survival, objective response rate, lung cancer symptoms and global quality of life, as compared with those treated with standard second-line chemotherapy (pemetrexed or docetaxel). The relative survival benefit with crizotinib is unclear, however, as the data are still immature and likely to be confounded by the high cross-over rate among chemotherapy recipients. Crizotinib treatment was generally well tolerated in the three PROFILE studies, with liver transaminase elevations and neutropenia being the most common grade 3 or 4 adverse events. Crizotinib is the standard of care in terms of the treatment of patients with ALK-positive, advanced NSCLC; while the current EU approval is for second (or subsequent)-line use only, the first-line use of the drug is being evaluated in ongoing phase III studies. Key issues relating to the use of crizotinib in clinical practice include identifying the small subset of eligible patients, the almost inevitable development of resistance and the high cost of treatment.
Collapse
|
21
|
Abstract
Approximately one third of patients with non-small cell lung cancer have unresectable stage IIIA or stage IIIB disease; combined cytotoxic chemotherapy and radiation therapy delivered concurrently has been established as the standard treatment for such patients. Despite many clinical trials that tested several different radiochemotherapy combinations, it seems that a plateau of efficiencies at the acceptable risk of complications has been reached. Clinical studies indicate that the improved efficacy of radiochemotherapy is associated with the radiosensitizing effects of chemotherapy. Improvement of outcomes of this combined modality by developing novel radiosensitizers is a viable therapeutic strategy. In addition to causing cell death, ionizing radiation also induces a many-faceted signaling response, which activates numerous prosurvival pathways that lead to enhanced proliferation in the endothelial cells and increased vascularization in tumors. Radiation at doses used in the clinic activates cytoplasmic phospholipase A2, leading to increased production of arachidonic acid and lysophosphatidylcholine. The former is the initial step in the generation of eicosanoids, while the later is the initial step in the formation of lysophosphatidic acid, leading to the activation of inflammatory pathways. The echinoderm microtubule-associated protein-like 4 anaplastic lymphoma kinase (EML4-ALK) is member of the insulin superfamily of receptor tyrosine kinases. The EML4-ALK fusion gene appears unique to lung cancer and signals through extracellular signal regulated kinase and phosphoinositide 3-kinase. Heat shock protein 90 (Hsp90) is often overexpressed and present in an activated multichaperone complex in cancer cells, and it is now regarded as essential for malignant transformation and progression. In this review we focus on radiosensitizing strategies involving the targeting of membrane phospholipids, EML4-ALK, and Hsp90 with specific inhibitors and briefly discuss the combination of radiation with antivascular agents.
Collapse
|
22
|
Roskoski R. The preclinical profile of crizotinib for the treatment of non-small-cell lung cancer and other neoplastic disorders. Expert Opin Drug Discov 2013; 8:1165-79. [DOI: 10.1517/17460441.2013.813015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
23
|
Xia P, Gou WF, Zhao S, Zheng HC. Crizotinib may be used in Lewis lung carcinoma: a novel use for crizotinib. Oncol Rep 2013; 30:139-48. [PMID: 23615728 DOI: 10.3892/or.2013.2424] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 03/19/2013] [Indexed: 11/06/2022] Open
Abstract
Lung cancer accounts for 13% (1.6 million) of the total cases and 18% (1.4 million) of the deaths in 2008. Crizotinib (PF-02341066) is identified as an ATP competitive small-molecular inhibitor for anaplastic lymphoma kinase (ALK). The US Food and Drug Administration (FDA) approved crizotinib to be used for the treatment of patients with locally advanced or metastatic ALK-positive NSCLC in 2011. In the present study, the side population (SP) and main population (MP) cells were obtained from Lewis lung carcinoma cells (LLC) and analyzed by DNA dye (Hoechst 33342) and flow cytometry. LLC SP and MP cells were confirmed as no ALK fusion gene by fluorescence in situ hybridization. The effects of crizotinib on LLC SP and MP cells both in vivo and in vitro were identified. Our results indicate that crizotinib can induce apoptosis and G1 phase arrest in LLC MP cells. Crizotinib used in combination with verapamil can inhibit proliferation of LLC SP cells. Moreover, crizotinib decreased tumor size and weight and inhibited angiogenesis in established xenografted tumors. To analyze the signaling pathway involved, computer simulation, Affymetrix microarray analysis and western blot analysis were performed. In these assays, crizotinib was found to dock into Smad3 and activate the Smad signaling pathway. Overall, these studies demonstrate the antitumor activity of crizotinib in LLC cell line, and provide a novel use for crizotinib.
Collapse
Affiliation(s)
- Pu Xia
- Department of Biochemistry and Molecular Biology, Institute of Pathology and Pathophysiology, School of Basic Medical Science, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | | | | | | |
Collapse
|