1
|
Luo Y, Tan L, Meng C, Gao J, Chen H, Fang R, Wu X. Integrating bulk RNA-seq and scRNA-seq data to explore diverse cell death patterns and develop a programmed cell death-related relapse prediction model in pediatric B-ALL. Sci Rep 2025; 15:5620. [PMID: 39955305 PMCID: PMC11829959 DOI: 10.1038/s41598-025-86148-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/08/2025] [Indexed: 02/17/2025] Open
Abstract
Acute B-lymphoblastic leukemia (B-ALL) is a hematologic malignancy with diverse mechanisms of PCD influencing its progression. This study aimed to identify PCD-related biomarkers and develop a predictive model for relapse in pediatric B-ALL patients. Initially, we examined the activity of 16 PCD patterns in B-ALL patients using scRNA-seq. Following this, we employed both univariate and multivariate Cox regression analyses to identify relapse-related PCD patterns and constructed a relapse prediction model comprising seven key PCD-related genes: Bcl-2-interacting killer (BIK), translocator protein (TSPO), BCL2L2, PIP4K2C, mixed-lineage kinase-like (MLKL), STAT2, and WW domain-containing oxidoreductase (WWOX). Based on the optimal cut-off value derived from the cell death index(CDI) model, patients were categorized into high-CDI and low-CDI groups. Additionally, we evaluated the association between CDI scores and immune cell infiltration, tumor microenvironment (TME) characteristics, and drug sensitivity. Nine PCD patterns, encompassing ferroptosis, autophagy, necroptosis, entotic cell death, alkaliptosis, apoptosis, netotic cell death, oxeiptosis, and NETosis, exhibited strong associations with relapse in B-cell acute lymphoblastic leukemia (B-ALL). The CDI model, validated across multiple cohorts, demonstrated substantial predictive power for relapse-free survival (RFS) and was identified as an independent risk factor. This study offers a comprehensive analysis of PCD patterns in pediatric B-ALL, yielding valuable insights into potential novel therapeutic strategies and opportunities for personalized treatment approaches.
Collapse
Affiliation(s)
- Yaxin Luo
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lin Tan
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chuikai Meng
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingyu Gao
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongxin Chen
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruihan Fang
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuedong Wu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Leitão LPC, de Carvalho DC, Rodrigues JCG, Fernandes MR, Wanderley AV, Vinagre LWMS, da Silva NM, Pastana LF, Gellen LPA, Assunção MCE, Fernandes SSM, Pereira EEB, Ribeiro-Dos-Santos AM, Guerreiro JF, Ribeiro-dos-Santos Â, de Assumpção PP, dos Santos SEB, dos Santos NPC. Identification of Genomic Variants Associated with the Risk of Acute Lymphoblastic Leukemia in Native Americans from Brazilian Amazonia. J Pers Med 2022; 12:jpm12060856. [PMID: 35743641 PMCID: PMC9224820 DOI: 10.3390/jpm12060856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 12/04/2022] Open
Abstract
A number of genomic variants related to native American ancestry may be associated with an increased risk of developing Acute Lymphoblastic Leukemia (ALL), which means that Latin American and hispanic populations from the New World may be relatively susceptible to this disease. However, there has not yet been any comprehensive investigation of the variants associated with susceptibility to ALL in traditional Amerindian populations from Brazilian Amazonia. We investigated the exomes of the 18 principal genes associated with susceptibility to ALL in samples of 64 Amerindians from this region, including cancer-free individuals and patients with ALL. We compared the findings with the data on populations representing five continents available in the 1000 Genomes database. The variation in the allele frequencies found between the different groups was evaluated using Fisher’s exact test. The analyses of the exomes of the Brazilian Amerindians identified 125 variants, seven of which were new. The comparison of the allele frequencies between the two Amerindian groups analyzed in the present study (ALL patients vs. cancer-free individuals) identified six variants (rs11515, rs2765997, rs1053454, rs8068981, rs3764342, and rs2304465) that may be associated with susceptibility to ALL. These findings contribute to the identification of genetic variants that represent a potential risk for ALL in Amazonian Amerindian populations and might favor precision oncology measures.
Collapse
Affiliation(s)
- Luciana P. C. Leitão
- Oncology Research Nucleus, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (L.P.C.L.); (D.C.d.C.); (J.C.G.R.); (M.R.F.); (L.W.M.S.V.); (N.M.d.S.); (L.F.P.); (L.P.A.G.); (M.C.E.A.); (P.P.d.A.)
- Faculdade de Ciências Médicas do Pará (FACIMPA), Marabá 68508-030, PA, Brazil
| | - Darlen C. de Carvalho
- Oncology Research Nucleus, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (L.P.C.L.); (D.C.d.C.); (J.C.G.R.); (M.R.F.); (L.W.M.S.V.); (N.M.d.S.); (L.F.P.); (L.P.A.G.); (M.C.E.A.); (P.P.d.A.)
| | - Juliana C. G. Rodrigues
- Oncology Research Nucleus, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (L.P.C.L.); (D.C.d.C.); (J.C.G.R.); (M.R.F.); (L.W.M.S.V.); (N.M.d.S.); (L.F.P.); (L.P.A.G.); (M.C.E.A.); (P.P.d.A.)
| | - Marianne R. Fernandes
- Oncology Research Nucleus, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (L.P.C.L.); (D.C.d.C.); (J.C.G.R.); (M.R.F.); (L.W.M.S.V.); (N.M.d.S.); (L.F.P.); (L.P.A.G.); (M.C.E.A.); (P.P.d.A.)
| | - Alayde V. Wanderley
- Pediatrics Department, Ophir Loyola Hospital, Belém 66063-240, PA, Brazil; (A.V.W.); (S.S.M.F.)
| | - Lui W. M. S. Vinagre
- Oncology Research Nucleus, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (L.P.C.L.); (D.C.d.C.); (J.C.G.R.); (M.R.F.); (L.W.M.S.V.); (N.M.d.S.); (L.F.P.); (L.P.A.G.); (M.C.E.A.); (P.P.d.A.)
| | - Natasha M. da Silva
- Oncology Research Nucleus, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (L.P.C.L.); (D.C.d.C.); (J.C.G.R.); (M.R.F.); (L.W.M.S.V.); (N.M.d.S.); (L.F.P.); (L.P.A.G.); (M.C.E.A.); (P.P.d.A.)
| | - Lucas F. Pastana
- Oncology Research Nucleus, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (L.P.C.L.); (D.C.d.C.); (J.C.G.R.); (M.R.F.); (L.W.M.S.V.); (N.M.d.S.); (L.F.P.); (L.P.A.G.); (M.C.E.A.); (P.P.d.A.)
| | - Laura P. A. Gellen
- Oncology Research Nucleus, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (L.P.C.L.); (D.C.d.C.); (J.C.G.R.); (M.R.F.); (L.W.M.S.V.); (N.M.d.S.); (L.F.P.); (L.P.A.G.); (M.C.E.A.); (P.P.d.A.)
| | - Matheus C. E. Assunção
- Oncology Research Nucleus, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (L.P.C.L.); (D.C.d.C.); (J.C.G.R.); (M.R.F.); (L.W.M.S.V.); (N.M.d.S.); (L.F.P.); (L.P.A.G.); (M.C.E.A.); (P.P.d.A.)
| | - Sweny S. M. Fernandes
- Pediatrics Department, Ophir Loyola Hospital, Belém 66063-240, PA, Brazil; (A.V.W.); (S.S.M.F.)
| | - Esdras E. B. Pereira
- Human and Medical Genetics Laboratory, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil; (E.E.B.P.); (A.M.R.-D.-S.); (J.F.G.); (Â.R.-d.-S.); (S.E.B.d.S.)
- Instituto Tocantinense Presidente Antônio Carlos (ITPAC), Abaetetuba 68440-000, PA, Brazil
| | - André M. Ribeiro-Dos-Santos
- Human and Medical Genetics Laboratory, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil; (E.E.B.P.); (A.M.R.-D.-S.); (J.F.G.); (Â.R.-d.-S.); (S.E.B.d.S.)
| | - João F. Guerreiro
- Human and Medical Genetics Laboratory, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil; (E.E.B.P.); (A.M.R.-D.-S.); (J.F.G.); (Â.R.-d.-S.); (S.E.B.d.S.)
| | - Ândrea Ribeiro-dos-Santos
- Human and Medical Genetics Laboratory, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil; (E.E.B.P.); (A.M.R.-D.-S.); (J.F.G.); (Â.R.-d.-S.); (S.E.B.d.S.)
| | - Paulo P. de Assumpção
- Oncology Research Nucleus, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (L.P.C.L.); (D.C.d.C.); (J.C.G.R.); (M.R.F.); (L.W.M.S.V.); (N.M.d.S.); (L.F.P.); (L.P.A.G.); (M.C.E.A.); (P.P.d.A.)
| | - Sidney E. B. dos Santos
- Human and Medical Genetics Laboratory, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil; (E.E.B.P.); (A.M.R.-D.-S.); (J.F.G.); (Â.R.-d.-S.); (S.E.B.d.S.)
| | - Ney P. C. dos Santos
- Oncology Research Nucleus, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (L.P.C.L.); (D.C.d.C.); (J.C.G.R.); (M.R.F.); (L.W.M.S.V.); (N.M.d.S.); (L.F.P.); (L.P.A.G.); (M.C.E.A.); (P.P.d.A.)
- Correspondence: ; Tel.: +55-(91)-3201-6778
| |
Collapse
|
3
|
Kołat D, Kałuzińska Ż, Bednarek AK, Płuciennik E. WWOX Loses the Ability to Regulate Oncogenic AP-2γ and Synergizes with Tumor Suppressor AP-2α in High-Grade Bladder Cancer. Cancers (Basel) 2021; 13:2957. [PMID: 34204827 PMCID: PMC8231628 DOI: 10.3390/cancers13122957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/03/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023] Open
Abstract
The cytogenic locus of the WWOX gene overlaps with the second most active fragile site, FRA16D, which is present at a higher frequency in bladder cancer (BLCA) patients with smoking habit, a known risk factor of this tumor. Recently, we demonstrated the relevance of the role of WWOX in grade 2 BLCA in collaboration with two AP-2 transcription factors whose molecular actions supported or opposed pro-cancerous events, suggesting a distinct character. As further research is needed on higher grades, the aim of the present study was to examine WWOX-AP-2 functionality in grade 3 and 4 BLCA using equivalent in vitro methodology with additional transcriptome profiling of cellular variants. WWOX and AP-2α demonstrated similar anti-cancer functionality in most biological processes with subtle differences in MMP-2/9 regulation; this contradicted that of AP-2γ, whose actions potentiated cancer progression. Simultaneous overexpression of WWOX and AP-2α/AP-2γ revealed that single discrepancies appear in WWOX-AP-2α collaboration but only at the highest BLCA grade; WWOX-AP-2α collaboration was considered anti-cancer. However, WWOX only appeared to have residual activity against oncogenic AP-2γ in grade 3 and 4: variants with either AP-2γ overexpression alone or combined WWOX and AP-2γ overexpression demonstrated similar pro-tumoral behavior. Transcriptome profiling with further gene ontology certified biological processes investigated in vitro and indicated groups of genes consisting of AP-2 targets and molecules worth investigation as biomarkers. In conclusion, tumor suppressor synergism between WWOX and AP-2α is unimpaired in high-grade BLCA compared to intermediate grade, yet the ability of WWOX to guide oncogenic AP-2γ is almost completely lost.
Collapse
Affiliation(s)
- Damian Kołat
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752 Lodz, Poland; (Ż.K.); (A.K.B.); (E.P.)
| | | | | | | |
Collapse
|
4
|
Kołat D, Kałuzińska Ż, Bednarek AK, Płuciennik E. Fragile Gene WWOX Guides TFAP2A/ TFAP2C-Dependent Actions Against Tumor Progression in Grade II Bladder Cancer. Front Oncol 2021; 11:621060. [PMID: 33718178 PMCID: PMC7947623 DOI: 10.3389/fonc.2021.621060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/18/2021] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION The presence of common fragile sites is associated with no-accidental chromosomal instability which occurs prior to carcinogenesis. The WWOX gene spans the second most active fragile site: FRA16D. Chromosomal breakage at this site is more common in bladder cancer patients who are tobacco smokers which suggests the importance of WWOX gene loss regarding bladder carcinogenesis. Tryptophan domains of WWOX are known to recognize motifs of other proteins such as AP-2α and AP-2γ allowing protein-protein interactions. While the roles of both AP-2 transcription factors are important for bladder carcinogenesis, their nature is different. Based on the literature, AP-2γ appears to be oncogenic, whereas AP-2α mainly exhibits tumor suppressor character. Presumably, the interaction between WWOX and both transcription factors regulates thousands of genes, hence the aim of the present study was to determine WWOX, AP-2α, and AP-2γ function in modulating biological processes of bladder cancer. METHODS RT-112 cell line (grade II bladder cancer) was subjected to two stable lentiviral transductions. Overall, this resulted in six variants to investigate distinct WWOX, AP-2α, or AP-2γ function as well as WWOX in collaboration with a particular transcription factor. Cellular models were examined with immunocytochemical staining and in terms of differences in biological processes using assays investigating cell viability, proliferation, apoptosis, adhesion, clonogenicity, migration, activity of metalloproteinases and 3D culture growth. RESULTS WWOX overexpression increased apoptosis but decreased cell viability, migration and large spatial colonies. AP-2α overexpression decreased tumor cell viability, migratory potential, matrix metalloproteinase-2 activity and clonogenicity. AP-2γ overexpression decreased matrix metalloproteinase-2 activity but increased wound healing, adhesion, clonogenicity and spatial colony formation. WWOX and AP-2α overexpression induced apoptosis but decreased cell viability, adhesion, matrix metalloproteinase-2 activity, overall number of cultured colonies and migration rate. WWOX and AP-2γ overexpression decreased tumor cell viability, proliferation potential, adhesion, clonogenicity and the ability to create spatial structures, but also increased apoptosis or migration rate. CONCLUSION Co-overexpression of WWOX with AP-2α or WWOX with AP-2γ resulted in a net anti-tumor effect. However, considering this research findings and the difference between AP-2α and AP-2γ, we suggest that this similarity is due to a divergent behavior of WWOX.
Collapse
Affiliation(s)
- Damian Kołat
- Department of Molecular Carcinogenesis, Medical University of Lodz, Łódź, Poland
| | | | | | | |
Collapse
|
5
|
Li J, Cui J, Li Z, Fu X, Li J, Li H, Wang S, Zhang M. ORP8 induces apoptosis by releasing cytochrome c from mitochondria in non‑small cell lung cancer. Oncol Rep 2020; 43:1516-1524. [PMID: 32323800 PMCID: PMC7108022 DOI: 10.3892/or.2020.7517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/18/2019] [Indexed: 12/25/2022] Open
Abstract
Non‑small cell lung cancer (NSCLC) is the most common type of lung cancer, and numerous oncogenes are associated with this disease. Oxysterol‑binding protein‑related protein 8 (ORP8) is essential for cell growth, migration and the modulation of mitochondrial respiration and morphology. However, the underlying role of ORP8 in NSCLC remains unclear. In the present study, it was reported that the expression of ORP8 was low in NSCLC cells and tissues. The ORP8 expression levels were analyzed by immunohistochemistry (IHC), quantitative real‑time PCR (qPCR) and western blot analysis. ORP8 overexpression inhibited cell growth and induced apoptosis in NSCLC cells with MTS, anchorage‑independent growth and Hoechst 33342 staining assay. Further experiments demonstrated that ORP8 overexpression induced the apoptosis of NSCLC cells via the release of cytochrome c from mitochondria into the cytoplasm with western blot analysis and confocal microscopy results. In addition, qPCR analysis showed that miR‑421 was upregulated in NSCLC cell lines, with the bioinformatics analysis, western blot analysis and Dual‑Luciferase reporter assay, it was determined that miR‑421 could target ORP8. The inhibition of cell proliferation via ORP8 overexpression was rescued by a miR‑421 mimic, which aided in maintaining the proliferative potential of the cells. Overall, the present study revealed that ORP8 may be a candidate target in the prevention and treatment of NSCLC.
Collapse
Affiliation(s)
- Jiwei Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jieke Cui
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiaorui Fu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jing Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Hongwen Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shilei Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
6
|
Jordaens S, Cooksey L, Bonney S, Orchard L, Coutinho M, Van Tendeloo V, Mills KI, Orchard K, Guinn BA. Serum profiling identifies ibrutinib as a treatment option for young adults with B-cell acute lymphoblastic leukaemia. Br J Haematol 2020; 189:500-512. [PMID: 32064588 DOI: 10.1111/bjh.16407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/10/2019] [Indexed: 12/19/2022]
Abstract
Acute lymphoblastic leukaemia (ALL) is a haematological malignancy that is characterized by the uncontrolled proliferation of immature lymphocytes. 80% of cases occur in children where ALL is well understood and treated. However it has a devastating affects on adults, where multi-agent chemotherapy is the standard of care with allogeneic stem cell transplantation for those who are eligible. New treatments are required to extend remission and prevent relapse to improve patient survival rates. We used serum profiling to compare samples from presentation adult B-ALL patients with age- and sex-matched healthy volunteer (HV) sera and identified 69 differentially recognised antigens (P ≤ 0·02). BMX, DCTPP1 and VGLL4 showed no differences in transcription between patients and healthy donors but were each found to be present at higher levels in B-ALL patient samples than HVs by ICC. BMX plays a crucial role in the Bruton's Tyrosine Kinase (BTK) pathway which is bound by the BTK inhibitor, ibrutinib, suggesting adult B-ALL would also be a worthy target patient group for future clinical trials. We have shown the utility of proto-array analysis of B-ALL patient sera, predominantly from young adults, to help characterise the B-ALL immunome and identified a new target patient population for existing small molecule therapy.
Collapse
Affiliation(s)
- Stephanie Jordaens
- Department of Biomedical Sciences, University of Hull, Hull, UK.,Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, University of Antwerp, Antwerpen, Belgium
| | - Leah Cooksey
- Department of Biomedical Sciences, University of Hull, Hull, UK
| | - Stephanie Bonney
- Cancer Sciences Unit, Somers Cancer Sciences Building, University of Southampton, Southampton, UK
| | - Laurence Orchard
- Cancer Sciences Unit, Somers Cancer Sciences Building, University of Southampton, Southampton, UK
| | | | - Viggo Van Tendeloo
- Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, University of Antwerp, Antwerpen, Belgium
| | - Ken I Mills
- Centre for Cancer Research and Cell Biology, Queens University Belfast, Belfast, UK
| | - Kim Orchard
- Department of Haematology, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Barbara-Ann Guinn
- Department of Biomedical Sciences, University of Hull, Hull, UK.,Cancer Sciences Unit, Somers Cancer Sciences Building, University of Southampton, Southampton, UK
| |
Collapse
|
7
|
Huang SS, Chang NS. Phosphorylation/de-phosphorylation in specific sites of tumor suppressor WWOX and control of distinct biological events. Exp Biol Med (Maywood) 2018; 243:137-147. [PMID: 29310447 DOI: 10.1177/1535370217752350] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Abnormal differentiation and growth of hematopoietic stem cells cause the development of hematopoietic diseases and hematopoietic malignancies. However, the molecular events underlying leukemia development are not well understood. In our recent study, we have demonstrated that calcium ionophore and phorbol ester force the differentiation of T lymphoblastic leukemia. The event involves a newly identified IκBα/WWOX/ERK signaling, in which WWOX is Ser14 phosphorylated. Additional evidence also reveals that pS14-WWOX is involved in enhancing cancer progression and metastasis and facilitating neurodegeneration. In this mini-review, we update the current knowledge for the functional roles of WWOX under physiological and pathological settings, and provide new insights regarding pS14-WWOX in T leukemia cell maturation, and switching the anticancer pY33-WWOX to pS14-WWOX for cancer promotion and disease progression. Impact statement WWOX was originally designated as a tumor suppressor. However, human newborns deficient in WWOX do not spontaneously develop tumors. Activated WWOX with Tyr33 phosphorylation is present in normal tissues and organs. However, when pY33-WWOX is overly induced under stress conditions, it becomes apoptotic to eliminate damaged cells. Notably, WWOX with Ser14 phosphorylation is upregulated in the lesions of cancer, as well as in the brain hippocampus and cortex with Alzheimer's disease. Suppression of pS14-WWOX by Zfra reduces cancer growth and mitigates Alzheimer's disease progression, suggesting that pS14-WWOX facilitates disease progression. pS14-WWOX can be regarded as a marker of disease progression.
Collapse
Affiliation(s)
- Shenq-Shyang Huang
- 1 Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC.,2 Graduate Program of Biotechnology in Medicine, Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Nan-Shan Chang
- 1 Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC.,3 Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA.,4 Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan, ROC
| |
Collapse
|
8
|
Luo L, Chen Y, Cheng X, Lin Y, Fu X, Li D, Cui Z, Lin D. Reduced expression of the WW domain-containing oxidoreductase in human hematopoietic malignancies. Oncol Lett 2016; 11:4083-4088. [PMID: 27313745 DOI: 10.3892/ol.2016.4495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/19/2016] [Indexed: 12/27/2022] Open
Abstract
The role of the WW domain-containing oxidoreductase (WWOX) gene in multiple types of solid human cancers has been documented extensively thus far. Recently, we investigated the in vitro effects of WWOX overexpression and observed marked growth arrest in human leukemia cells; however, the clinical characterization of WWOX in leukemia remains poorly investigated. The present study evaluated the WWOX expression profiles of 182 patients with leukemia of different types and 5 leukemic cell lines, using reverse transcription-polymerase chain reaction and immunofluorescence analysis. The results found that WWOX mRNA and WWOX protein expression was significantly reduced or absent in the leukemia cases and cell lines compared with paired controls. The WWOX-positive rate was also lower in the leukemia cases compared with the rate of the normal controls. Notably, the WWOX level was reduced in newly diagnosed and relapsed cases, or in chronic myelogenous leukemia in the blastic phase, yet elevated in remission samples. Moreover, WWOX-negative cases exhibited WWOX expression restoration following induced remission. These findings suggest that WWOX may contribute to the occurrence and development of leukemia, and that it has potential to be a good biomarker or predictor for leukemia therapy.
Collapse
Affiliation(s)
- Lingqing Luo
- Department of Clinical Laboratory, Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Provincial Cancer Hospital, Teaching Hospital of Fujian Medical University, Fuzhou, Fujian 350014, P.R. China
| | - Yan Chen
- Department of Clinical Laboratory, Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Provincial Cancer Hospital, Teaching Hospital of Fujian Medical University, Fuzhou, Fujian 350014, P.R. China
| | - Xiao Cheng
- Department of Cardiovasology, Affiliated Mindong Hospital, Fujian Medical University, Fuan, Fujian 355000, P.R. China
| | - Yazhen Lin
- Department of Clinical Laboratory, Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Provincial Cancer Hospital, Teaching Hospital of Fujian Medical University, Fuzhou, Fujian 350014, P.R. China; Department of Clinical Laboratory, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Xiaodan Fu
- Department of Clinical Laboratory, Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Provincial Cancer Hospital, Teaching Hospital of Fujian Medical University, Fuzhou, Fujian 350014, P.R. China; Department of Clinical Laboratory, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Dan Li
- Department of Clinical Laboratory, Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Provincial Cancer Hospital, Teaching Hospital of Fujian Medical University, Fuzhou, Fujian 350014, P.R. China
| | - Zhaolei Cui
- Department of Clinical Laboratory, Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Provincial Cancer Hospital, Teaching Hospital of Fujian Medical University, Fuzhou, Fujian 350014, P.R. China; Department of Clinical Laboratory, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Donghong Lin
- Department of Clinical Laboratory, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| |
Collapse
|
9
|
Shi Y, Du M, Fang Y, Tong N, Zhai X, Sheng X, Li Z, Xue Y, Li J, Chu H, Chen J, Song Z, Shen J, Ji J, Li X, Hu Z, Shen H, Xu J, Wang M, Zhang Z. Identification of a novel susceptibility locus at 16q23.1 associated with childhood acute lymphoblastic leukemia in Han Chinese. Hum Mol Genet 2016; 25:2873-2880. [PMID: 27094129 DOI: 10.1093/hmg/ddw112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/13/2016] [Accepted: 04/11/2016] [Indexed: 12/11/2022] Open
Abstract
Recently, genome-wide association studies (GWAS) have identified several susceptibility loci for childhood acute lymphoblastic leukemia (ALL) in populations of European descent; only a few loci could be confirmed in Asian populations because of those populations' genetic heterogeneity. To identify genetic factors associated with childhood ALL risk in the Chinese population, we performed a three-stage GWAS of 1184 childhood ALL cases and 3219 non-ALL controls. The combined analysis identified a new locus (rs1121404 in WWOX) at 16q23.1 associated with childhood ALL susceptibility (odds ratio (OR) = 1.38, P = 5.29 × 10-10), especially in the subtype of B-ALL (OR = 1.39, P = 2.47 × 10-9). The functional studies subsequently revealed that the expression of WWOX in ALL bone marrow was significantly lower than that in normal bone marrow. The G allele of rs1121404 displayed significantly decreased levels of mRNA expression of WWOX These results suggest that WWOX plays an important role in the development of childhood ALL and provide new insights into the etiology of childhood ALL.
Collapse
Affiliation(s)
- Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China .,The Affiliated Hospital of Qingdao University, Qingdao 266003, China.,Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mulong Du
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yongjun Fang
- Department of Hematology and Oncology, Nanjing Children's Hospital Affiliated with Nanjing Medical University, Nanjing 210000, China
| | - Na Tong
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Xiaowen Zhai
- Department of Hematology and Oncology, Children's hospital of Fudan University, Shanghai 200032, China
| | - Xiaojing Sheng
- Department of Children's healthcare, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Zhiqiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China.,Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yao Xue
- Department of Hematology and Oncology, Nanjing Children's Hospital Affiliated with Nanjing Medical University, Nanjing 210000, China
| | - Jie Li
- Department of Hematology and Oncology, The Affiliated Children's Hospital of Soochow University, Suzhou 215025, China
| | - Haiyan Chu
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Jianhua Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China.,Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhijian Song
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China.,Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiawei Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China.,Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jue Ji
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xingwang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jianfeng Xu
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois 60201, USA
| | - Meilin Wang
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China .,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Zhengdong Zhang
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China .,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
10
|
Płuciennik E, Nowakowska M, Gałdyszyńska M, Popęda M, Bednarek AK. The influence of the WWOX gene on the regulation of biological processes during endometrial carcinogenesis. Int J Mol Med 2016; 37:807-15. [PMID: 26820701 DOI: 10.3892/ijmm.2016.2469] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/11/2016] [Indexed: 11/06/2022] Open
Abstract
The purpose of the present study was to investigate the role of WW domain containing oxidoreductase (WWOX) downregulation in biological cancer-related processes in normal (non-malignant) and cancer endometrial cell lines. We created an in vitro model using the normal endometrial cell line, THESC, and 2 endometrial cancer cell lines with varying degrees of differentiation, the Ishikawa (well-differentiated) and the MFE296 (moderately differentiated) cells, in which the WWOX tumor suppressor gene was silenced using Gipz lentiviral shRNA. In this model, we examined the changes in invasiveness via biological assays, such as zymography, migration through a basement membrane, the adhesion of cells to extracellular matrix proteins, anchorage-independent growth and colony formation assay. We also evaluated the correlation between the mRNA expression of the WWOX gene and genes involved in the processes of carcinogenesis, namely catenin beta-1 (CTNNB1) and zinc finger E-box binding homeobox 1 (ZEB1) (gene transcription), cadherin 1 (CDH1) and ezrin (EZR) (cell adhesion), vimentin (VIM) (structural proteins), as well as phosphatase and tensin homolog (PTEN) (tumor suppression) and secreted protein, acidic, cysteine-rich (osteonectin) (SPARC) (SPARC) (cell growth regulation) by RT-qPCR. Downregulation of the WWOX gene in the moderately differentiated MFE296 cell line caused decreased migratory capacity, and a reduction of matrix metalloproteinase-2 (MMP-2) activity. However, these cells grew in semisolid medium and exhibited higher expression of CDH1 and EZR (cell adhesion) and secreted protein, acidic, cysteine-rich (osteonectin) (SPARC) (cell growth regulation). Moreover, in the well-differentiated endometrial cancer (Ishikawa) cell line, WWOX gene silencing resulted in an increased ability of the cells to proliferate indefinitely. Additionally, WWOX regulated changes in adhesion potential in both the normal and cancer cell lines. Our results suggest that the WWOX tumor suppressor gene modulated the processes of cell motility, cell adhesion, gene expression and remodeling in endometrial cell lines.
Collapse
Affiliation(s)
- E Płuciennik
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752 Lodz, Poland
| | - M Nowakowska
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752 Lodz, Poland
| | - M Gałdyszyńska
- Department of Comparative Endocrinology, Medical University of Lodz, 90-752 Lodz, Poland
| | - M Popęda
- Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, 90-752 Lodz, Poland
| | - A K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752 Lodz, Poland
| |
Collapse
|
11
|
Choo A, O'Keefe LV, Lee CS, Gregory SL, Shaukat Z, Colella A, Lee K, Denton D, Richards RI. Tumor suppressor WWOX moderates the mitochondrial respiratory complex. Genes Chromosomes Cancer 2015; 54:745-61. [PMID: 26390919 DOI: 10.1002/gcc.22286] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/26/2015] [Indexed: 01/11/2023] Open
Abstract
Fragile site FRA16D exhibits DNA instability in cancer, resulting in diminished levels of protein from the WWOX gene that spans it. WWOX suppresses tumor growth by an undefined mechanism. WWOX participates in pathways involving aerobic metabolism and reactive oxygen species. WWOX comprises two WW domains as well as a short-chain dehydrogenase/reductase enzyme. Herein is described an in vivo genetic analysis in Drosophila melanogaster to identify functional interactions between WWOX and metabolic pathways. Altered WWOX levels modulate variable cellular outgrowths caused by genetic deficiencies of components of the mitochondrial respiratory complexes. This modulation requires the enzyme active site of WWOX, and the defective respiratory complex-induced cellular outgrowths are mediated by reactive oxygen species, dependent upon the Akt pathway and sensitive to levels of autophagy and hypoxia-inducible factor. WWOX is known to contribute to homeostasis by regulating the balance between oxidative phosphorylation and glycolysis. Reduction of WWOX levels results in diminished ability to respond to metabolic perturbation of normal cell growth. Thus, the ability of WWOX to facilitate escape from mitochondrial damage-induced glycolysis (Warburg effect) is, therefore, a plausible mechanism for its tumor suppressor activity.
Collapse
Affiliation(s)
- Amanda Choo
- Department of Genetics and Evolution and Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Louise V O'Keefe
- Department of Genetics and Evolution and Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Cheng Shoou Lee
- Department of Genetics and Evolution and Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Stephen L Gregory
- Department of Genetics and Evolution and Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Zeeshan Shaukat
- Department of Genetics and Evolution and Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Alexander Colella
- Department of Genetics and Evolution and Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Kristie Lee
- Department of Genetics and Evolution and Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Donna Denton
- Department of Genetics and Evolution and Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Robert I Richards
- Department of Genetics and Evolution and Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
12
|
O’Keefe LV, Lee CS, Choo A, Richards RI. Tumor Suppressor WWOX Contributes to the Elimination of Tumorigenic Cells in Drosophila melanogaster. PLoS One 2015; 10:e0136356. [PMID: 26302329 PMCID: PMC4547717 DOI: 10.1371/journal.pone.0136356] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/31/2015] [Indexed: 01/27/2023] Open
Abstract
WWOX is a >1Mb gene spanning FRA16D Common Chromosomal Fragile Site, a region of DNA instability in cancer. Consequently, altered WWOX levels have been observed in a wide variety of cancers. In vitro studies have identified a large number and variety of potential roles for WWOX. Although its normal role in vivo and functional contribution to cancer have not been fully defined, WWOX does have an integral role in metabolism and can suppress tumor growth. Using Drosophila melanogaster as an in vivo model system, we find that WWOX is a modulator of TNFα/Egr-mediated cell death. We found that altered levels of WWOX can modify phenotypes generated by low level ectopic expression of TNFα/Egr and this corresponds to altered levels of Caspase 3 activity. These results demonstrate an in vivo role for WWOX in promoting cell death. This form of cell death is accompanied by an increase in levels of reactive oxygen species, the regulation of which we have previously shown can also be modified by altered WWOX activity. We now hypothesise that, through regulation of reactive oxygen species, WWOX constitutes a link between alterations in cellular metabolism observed in cancer cells and their ability to evade normal cell death pathways. We have further shown that WWOX activity is required for the efficient removal of tumorigenic cells from a developing epithelial tissue. Together these results provide a molecular basis for the tumor suppressor functions of WWOX and the better prognosis observed in cancer patients with higher levels of WWOX activity. Understanding the conserved cellular pathways to which WWOX contributes provides novel possibilities for the development of therapeutic approaches to restore WWOX function in cancer.
Collapse
Affiliation(s)
- Louise V. O’Keefe
- Department of Genetics and Evolution, Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Cheng Shoou Lee
- Department of Genetics and Evolution, Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Amanda Choo
- Department of Genetics and Evolution, Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Robert I. Richards
- Department of Genetics and Evolution, Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
- * E-mail:
| |
Collapse
|
13
|
Kluth M, Runte F, Barow P, Omari J, Abdelaziz ZM, Paustian L, Steurer S, Christina Tsourlakis M, Fisch M, Graefen M, Tennstedt P, Huland H, Michl U, Minner S, Sauter G, Simon R, Adam M, Schlomm T. Concurrent deletion of 16q23 and PTEN is an independent prognostic feature in prostate cancer. Int J Cancer 2015; 137:2354-63. [PMID: 26009879 DOI: 10.1002/ijc.29613] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 03/13/2015] [Accepted: 04/22/2015] [Indexed: 01/14/2023]
Abstract
The deletion of 16q23-q24 belongs to the most frequent chromosomal changes in prostate cancer, but the clinical consequences of this alteration have not been studied in detail. We performed fluorescence in situ hybridization analysis using a 16q23 probe in more than 7,400 prostate cancers with clinical follow-up data assembled in a tissue microarray format. Chromosome 16q deletion was found in 21% of cancers, and was linked to advanced tumor stage, high Gleason grade, accelerated cell proliferation, the presence of lymph node metastases (p < 0.0001 each) and positive surgical margin (p = 0.0004). 16q Deletion was more frequent in ERG fusion-positive (27%) as compared to ERG fusion-negative cancers (16%, p < 0.0001), and was linked to other ERG-associated deletions including phosphatase and tensin homolog (PTEN) (p < 0.0001) and 3p13 (p = 0.0303). In univariate analysis, the deletion of 16q was linked to early biochemical recurrence independently from the ERG status (p < 0.0001). Tumors with codeletions of 16q and PTEN had a worse prognosis (p = 0.0199) than those with PTEN or the deletion of 16q alone. Multivariate modeling revealed that the prognostic value of 16q/PTEN deletion patterns was independent from the established prognostic factors. In summary, the results of our study demonstrate that the deletion of 16q and PTEN cooperatively drives prostate cancer progression, and suggests that deletion analysis of 16q and PTEN could be of important clinical value particularly for preoperative risk assessment of the clinically most challenging group of low- and intermediated grade prostate cancers.
Collapse
Affiliation(s)
- Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frederic Runte
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Philipp Barow
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jazan Omari
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Zaid M Abdelaziz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lisa Paustian
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Margit Fisch
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Pierre Tennstedt
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Uwe Michl
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Meike Adam
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schlomm
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Urology, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
14
|
Abstract
WWOX, the WW domain-containing oxidoreductase gene at chromosome region 16q23.3-q24.1, spanning chromosomal fragile site FRA16D, encodes the 46 kDa Wwox protein, a tumor suppressor that is lost or reduced in expression in a wide variety of cancers, including breast, prostate, ovarian, and lung. The function of Wwox as a tumor suppressor implies that it serves a function in the prevention of carcinogenesis. Indeed, in vitro studies show that Wwox protein interacts with many binding partners to regulate cellular apoptosis, proliferation, and/or maturation. It has been reported that newborn Wwox knockout mice exhibit nascent osteosarcomas while Wwox(+/-) mice exhibit increased incidence of spontaneous and induced tumors. Furthermore, absence or reduction of Wwox expression in mouse xenograft models results in increased tumorigenesis, which can be rescued by Wwox re-expression, though there is not universal agreement among investigators regarding the role of Wwox loss in these experimental models. Despite this proposed tumor suppressor function, the overlap of the human WWOX locus with FRA16D sensitizes the gene to protein-inactivating deletions caused by replication stress. The high frequency of deletions within the WWOX locus in cancers of various types, without the hallmark protein inactivation-associated mutations of "classical" tumor suppressors, has led to the proposal that WWOX deletions in cancers are passenger events that occur in early cancer progenitor cells due to fragility of the genetic locus, rather than driver events which provide the cancer cell a selective advantage. Recently, a proposed epigenetic cause of chromosomal fragility has suggested a novel mechanism for early fragile site instability and has implications regarding the involvement of tumor suppressor genes at chromosomal fragile sites in cancer. In this review, we provide an overview of the evidence for WWOX as a tumor suppressor gene and put this into the context of fragility associated with the FRA16D locus.
Collapse
Affiliation(s)
- Morgan S Schrock
- Biomedical Sciences Graduate Program, Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Kay Huebner
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| |
Collapse
|
15
|
Baryła I, Styczeń-Binkowska E, Bednarek AK. Alteration of WWOX in human cancer: a clinical view. Exp Biol Med (Maywood) 2015; 240:305-14. [PMID: 25681467 DOI: 10.1177/1535370214561953] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
WWOX gene is located in FRA16D, the highly affected chromosomal fragile site. Its tumor suppressor activity has been proposed on a basis of numerous genomic alterations reported in chromosome 16q23.3-24.1 locus. WWOX is affected in many cancers, showing as high as 80% loss of heterozygosity in breast tumors. Unlike most tumor suppressors impairing of both alleles of WWOX is very rare. Despite cellular and animal models information on a WWOX role in cancer tissue is limited and sometimes confusing. This review summarizes information on WWOX in human tumors.
Collapse
Affiliation(s)
- Izabela Baryła
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752 Lodz, Poland
| | - Ewa Styczeń-Binkowska
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752 Lodz, Poland
| | - Andrzej K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752 Lodz, Poland
| |
Collapse
|
16
|
Affiliation(s)
- Ramin Nazarian
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | |
Collapse
|
17
|
Stewart DJ, Nunez MI, Jelinek J, Hong D, Gupta S, Aldaz M, Issa JP, Kurzrock R, Wistuba II. Impact of decitabine on immunohistochemistry expression of the putative tumor suppressor genes FHIT, WWOX, FUS1 and PTEN in clinical tumor samples. Clin Epigenetics 2014; 6:13. [PMID: 25024751 PMCID: PMC4094901 DOI: 10.1186/1868-7083-6-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 06/02/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Since tumor suppressor gene function may be lost through hypermethylation, we assessed whether the demethylating agent decitabine could increase tumor suppressor gene expression clinically. For fragile histidine triad (FHIT), WW domain-containing oxidoreductase (WWOX), fused in sarcoma-1 (FUS1) and phosphatase and tensin homolog (PTEN), immunohistochemistry scores from pre- and post-decitabine tumor biopsies (25 patients) were correlated with methylation of the long interspersed nuclear element-1 (LINE-1) repetitive DNA element (as a surrogate for global DNA methylation) and with tumor regression. RESULTS With negative staining pre-decitabine (score = 0), the number of patients converting to positive staining post-decitabine was 1 of 1 for FHIT, 3 of 6 for WWOX, 2 of 3 for FUS1 and 1 of 10 for PTEN. In tumors with low pre-decitabine tumor suppressor gene scores (≤150), expression was higher post-treatment in 8 of 8 cases for FHIT (P = 0.014), 7 of 17 for WWOX (P = 0.0547), 7 of 12 for FUS1 (P = 0.0726), and 1 of 16 for PTEN (P = 0.2034). If FHIT, WWOX and FUS1 were considered together, median pre- versus post-decitabine scores were 60 versus 100 (P = 0.0002). Overall, tumor suppressor gene expression change did not correlate with LINE-1 demethylation, although tumors converting from negative to positive had a median decrease in LINE-1 methylation of 24%, compared to 6% in those not converting (P = 0.069). Five of 15 fully evaluable patients had reductions in tumor diameter (range 0.2% to 33.4%). Of these, three had simultaneous increases in three tumor suppressor genes (including the two patients with the greatest tumor regression) compared to 2 of 10 with tumor growth (P = 0.25). CONCLUSIONS In tumors with low tumor suppressor gene expression, decitabine may be associated with increased expression of the tumor suppressor genes FHIT, FUS1, and WWOX, but not PTEN.
Collapse
Affiliation(s)
- David J Stewart
- University of Ottawa, 501 Smyth Rd, Ottawa, ON K1H 8 L6, Canada
| | - Maria I Nunez
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Jaroslav Jelinek
- Fels Institute for Cancer Research and Molecular Biology, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - David Hong
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Sanjay Gupta
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Marcelo Aldaz
- UT MD Anderson Cancer Center, 1808 Park Road 1C, Smithville, TX 78957, USA
| | - Jean-Pierre Issa
- Fels Institute for Cancer Research and Molecular Biology, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Razelle Kurzrock
- University of California San Diego, 3855 Health Sciences Dr, La Jolla, CA 92093, USA
| | - Ignacio I Wistuba
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
18
|
Zhang H, Kong L, Cui Z, Du W, He Y, Yang Z, Wang L, Chen X. The WWOX gene inhibits the growth of U266 multiple myeloma cells by triggering the intrinsic apoptotic pathway. Int J Mol Med 2014; 34:804-9. [PMID: 24968878 DOI: 10.3892/ijmm.2014.1824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 06/19/2014] [Indexed: 11/05/2022] Open
Abstract
The role of the WW domain-containing oxidoreductase (WWOX) gene in multiple types of solid human cancers has been documented extensively. However, the functional role of WWOX in human multiple myeloma has not yet been fully elucidated. The present study aimed to investigate the effects of exogenous WWOX expression on the biological properties of U266 multiple myeloma cells, as well as the possible molecular mechanisms involved. In vitro experiments revealed that exogenous WWOX cDNA transfection resulted in marked growth arrest and the induction of apoptosis in the U266 multiple myeloma cells, accompanied by the activation of the intrinsic apoptotic pathway. Our data provide evidence that WWOX also plays a role as a tumor suppressor gene in multiple myeloma, possibly by suppressing cell proliferation and promoting apoptosis by triggering the intrinsic apoptotic pathway.
Collapse
Affiliation(s)
- Hongsheng Zhang
- Department of Pathology, Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350004, P.R. China
| | - Lingying Kong
- Department of Pathology, Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350004, P.R. China
| | - Zhaolei Cui
- Department of Pathology, Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350004, P.R. China
| | - Wei Du
- Department of Pathology, Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350004, P.R. China
| | - Yihui He
- Department of Pathology, Fujian Provincial Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Zhi Yang
- Department of Pathology, Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350004, P.R. China
| | - Li Wang
- Department of Pathology, Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350004, P.R. China
| | - Xiaoyan Chen
- Department of Pathology, Fujian Provincial Hospital, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
19
|
Gardenswartz A, Aqeilan RI. WW domain-containing oxidoreductase's role in myriad cancers: clinical significance and future implications. Exp Biol Med (Maywood) 2014; 239:253-63. [PMID: 24510053 DOI: 10.1177/1535370213519213] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The WW domain-containing oxidoreductase (WWOX) gene, encodes a tumor suppressor located on 16q23.1, spanning FRA16D, one of the most active common fragile sites in the human genome, that is altered in numerous types of cancer. WWOX's alteration in these myriad cancers is due to disparate mechanisms including loss of heterozygosity, homozygous deletion and epigenetic changes. In vitro, WWOX has been found to be reduced or absent in numerous cancer cell lines and WWOX restoration has been found to inhibit tumor cell growth and invasion. Wwox knockout mice developed femoral focal lesions resembling osteosarcomas within one month of their life and aging Wwox heterozygous mice have an increased incidence of spontaneous lung and mammary tumors as well as B-cell lymphomas. We herein review WWOX's role that has been unearthed thus far in different types of malignancies, its clinical significance and future implications.
Collapse
|