1
|
CIGB-300 Anticancer Peptide Differentially Interacts with CK2 Subunits and Regulates Specific Signaling Mediators in a Highly Sensitive Large Cell Lung Carcinoma Cell Model. Biomedicines 2022; 11:biomedicines11010043. [PMID: 36672551 PMCID: PMC9856093 DOI: 10.3390/biomedicines11010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Large cell lung carcinoma (LCLC) is one form of NSCLC that spreads more aggressively than some other forms, and it represents an unmet medical need. Here, we investigated for the first time the effect of the anti-CK2 CIGB-300 peptide in NCI-H460 cells as an LCLC model. NCI-H460 cells were highly sensitive toward CIGB-300 cytotoxicity, reaching a peak of apoptosis at 6 h. Moreover, CIGB-300 slightly impaired the cell cycle of NCI-H460 cells. The CIGB-300 interactomics profile revealed in more than 300 proteins that many of them participated in biological processes relevant in cancer. Interrogation of the CK2 subunits targeting by CIGB-300 indicated the higher binding of the peptide to the CK2α' catalytic subunit by in vivo pull-down assays plus immunoblotting analysis and confocal microscopy. The down-regulation of both phosphorylation and protein levels of the ribonuclear protein S6 (RPS6) was observed 48 h post treatment. Altogether, we have found that NCI-H460 cells are the most CIGB-300-sensitive solid tumor cell line described so far, and also, the findings we provide here uncover novel features linked to CK2 targeting by the CIGB-300 anticancer peptide.
Collapse
|
2
|
Targeting CK2 in cancer: a valuable strategy or a waste of time? Cell Death Discov 2021; 7:325. [PMID: 34716311 PMCID: PMC8555718 DOI: 10.1038/s41420-021-00717-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/22/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
CK2 is a protein kinase involved in several human diseases (ranging from neurological and cardiovascular diseases to autoimmune disorders, diabetes, and infections, including COVID-19), but its best-known implications are in cancer, where it is considered a pharmacological target. Several CK2 inhibitors are available and clinical trials are underway in different cancer types. Recently, the suitability of CK2 as a broad anticancer target has been questioned by the finding that a newly developed compound, named SGC-CK2-1, which is more selective than any other known CK2 inhibitor, is poorly effective in reducing cell growth in different cancer lines, prompting the conclusion that the anticancer efficacy of CX-4945, the commonly used clinical-grade CK2 inhibitor, is to be attributed to its off-target effects. Here we perform a detailed scrutiny of published studies on CK2 targeting and a more in-depth analysis of the available data on SGC-CK2-1 vs. CX-4945 efficacy, providing a different perspective about the actual reliance of cancer cells on CK2. Collectively taken, our arguments would indicate that the pretended dispensability of CK2 in cancer is far from having been proved and warn against premature conclusions, which could discourage ongoing investigations on a potentially valuable drug target.
Collapse
|
3
|
Abdulrahman N, Siveen KS, Joseph JM, Osman A, Yalcin HC, Hasan A, Uddin S, Mraiche F. Inhibition of p90 ribosomal S6 kinase potentiates cisplatin activity in A549 human lung adenocarcinoma cells. J Pharm Pharmacol 2020; 72:1536-1545. [PMID: 32667058 DOI: 10.1111/jphp.13335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/21/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Cisplatin is a standard treatment approach against lung adenocarcinoma. Resistance to cisplatin and the toxic side effects of cisplatin continue to remain a challenge. Combining drugs with different mechanisms is being investigated as a means to overcome these challenges. In ovarian cancer cells, the knockdown of RSK2 increased the sensitivity of cisplatin. RSK is a downstream mediator of the MAPK pathway that is responsible for cell survival, proliferation and migration. METHODS Our study examined the effect of cisplatin, BI-D1870 (RSK inhibitor) or their combination on cell migration, apoptosis, autophagy and cell cycle in A549 human lung adenocarcinoma cells. KEY FINDINGS The combination of cisplatin and BI-D1870 potentiated the antimigration rate, the activation of caspases-3 and was associated with a significant decrease in RSK1 and ERK expression when compared to cisplatin alone. The combination of cisplatin and BI-D1870 also resulted in the inhibition of LC3 II to LC3 I expression when compared to BI-D1870. The combination of cisplatin and BI-D1870 increased the number of cells in the G2/M-phase when compared to cisplatin alone. CONCLUSIONS These findings suggest that combining cisplatin with agents that target the RSK mediated cell survival pathway, may potentiate the cisplatin effect in lung adenocarcinoma.
Collapse
Affiliation(s)
- Nabeel Abdulrahman
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | | | | | - Aisha Osman
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Huseyin C Yalcin
- Biomedical Research Center (BRC), Qatar University, Doha, Qatar
- Biomedical Sciences Program, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Anwarul Hasan
- Biomedical Research Center (BRC), Qatar University, Doha, Qatar
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Fatima Mraiche
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
4
|
Yu H, Yang X, Tang J, Si S, Zhou Z, Lu J, Han J, Yuan B, Wu Q, Lu Q, Yang H. ALKBH5 Inhibited Cell Proliferation and Sensitized Bladder Cancer Cells to Cisplatin by m6A-CK2α-Mediated Glycolysis. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 23:27-41. [PMID: 33376625 PMCID: PMC7744648 DOI: 10.1016/j.omtn.2020.10.031] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 10/17/2020] [Indexed: 12/19/2022]
Abstract
N6-methyladenosine (m6A) is the most commonly occurring internal RNA modification to be found in eukaryotic mRNA and serves an important role in various physiological events. AlkB homolog 5 RNA demethylase (ALKBH5), an m6A demethylase, belongs to the AlkB family of dioxygenases and has been shown to specifically demethylate m6A in RNA, which is associated with a variety of tumors. However, its function in bladder cancer remains largely unclear. In the present study, we found that the expression of ALKBH5 was downregulated in bladder cancer tissues and cell lines. Low expression of ALKBH5 was correlated with the worse prognosis of bladder cancer patients. Furthermore, functional assays revealed that knockdown of ALKBH5 promoted bladder cancer cell proliferation, migration, invasion, and decreased cisplatin chemosensitivity in the 5637 and T24 bladder cancer cell lines in vivo and in vitro, whereas ALKBH5 overexpression led to the opposite results. Finally, ALKBH5 inhibited the progression and sensitized bladder cancer cells to cisplatin through a casein kinase 2 (CK2)α-mediated glycolysis pathway in an m6A-dependent manner. Taken together, these findings might provide fresh insights into bladder cancer therapy.
Collapse
Affiliation(s)
- Hao Yu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Xiao Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Jinyuan Tang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Shuhui Si
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Zijian Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Jiancheng Lu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Jie Han
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Baorui Yuan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Qikai Wu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Qiang Lu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Haiwei Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| |
Collapse
|
5
|
ShiYang X, Miao Y, Cui Z, Lu Y, Zhou C, Zhang Y, Xiong B. Casein kinase 2 modulates the spindle assembly checkpoint to orchestrate porcine oocyte meiotic progression. J Anim Sci Biotechnol 2020; 11:31. [PMID: 32292585 PMCID: PMC7140493 DOI: 10.1186/s40104-020-00438-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/17/2020] [Indexed: 11/10/2022] Open
Abstract
Background CK2 (casein kinase 2) is a serine/threonine-selective protein kinase that has been involved in a variety of cellular processes such as DNA repair, cell cycle control and circadian rhythm regulation. However, its functional roles in oocyte meiosis have not been fully determined. Results We report that CK2 is essential for porcine oocyte meiotic maturation by regulating spindle assembly checkpoint (SAC). Immunostaining and immunoblotting analysis showed that CK2 was constantly expressed and located on the chromosomes during the entire oocyte meiotic maturation. Inhibition of CK2 activity by its selective inhibitor CX-4945 impaired the first polar body extrusion and arrested oocytes at M I stage, accompanied by the presence of BubR1 at kinetochores, indicative of activated SAC. In addition, we found that spindle/chromosome structure was disrupted in CK2-inhibited oocytes due to the weakened microtubule stability, which is a major cause resulting in the activation of SAC. Last, we found that the level DNA damage as assessed by γH2A.X staining was considerably elevated when CK2 was inhibited, suggesting that DNA damage might be another critical factor leading to the SAC activation and meiotic failure of oocytes. Conclusions Our findings demonstrate that CK2 promotes the porcine oocyte maturation by ensuring normal spindle assembly and DNA damage repair.
Collapse
Affiliation(s)
- Xiayan ShiYang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yilong Miao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zhaokang Cui
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yajuan Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Changyin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Bo Xiong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
6
|
Kaur K, Jaitak V. Recent Development in Indole Derivatives as Anticancer Agents for Breast Cancer. Anticancer Agents Med Chem 2020; 19:962-983. [PMID: 30864529 DOI: 10.2174/1871520619666190312125602] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Breast Cancer (BC) is the second most common cause of cancer related deaths in women. Due to severe side effects and multidrug resistance, current therapies like hormonal therapy, surgery, radiotherapy and chemotherapy become ineffective. Also, the existing drugs for BC treatment are associated with several drawbacks such as poor oral bioavailability, non-selectivity and poor pharmacodynamics properties. Therefore, there is an urgent need for the development of more effective and safer anti BC agents. OBJECTIVE This article explored in detail the possibilities of indole-based heterocyclic compounds as anticancer agents with breast cancer as their major target. METHODS Recent literature related to indole derivatives endowed with encouraging anti BC potential is reviewed. With special focus on BC, this review offers a detailed account of multiple mechanisms of action of various indole derivatives: aromatase inhibitor, tubulin inhibitor, microtubule inhibitor, targeting estrogen receptor, DNA-binding mechanism, induction of apoptosis, inhibition of PI3K/AkT/NFkB/mTOR, and HDAC inhibitors, by which these derivatives have shown promising anticancer potential. RESULTS Exhaustive literature survey indicated that indole derivatives are associated with properties of inducing apoptosis and disturbing tubulin assembly. Indoles are also associated with the inhibition of NFkB/mTOR/PI3K/AkT and regulation of estrogen-mediated activity. Furthermore, indole derivatives have been found to modulate critical targets such as topoisomerase and HDAC. These derivatives have shown significant activity against breast cancer cells. CONCLUSION In BC, indole derivatives seem to be quite competent and act through various mechanisms that are well established in case of BC. This review has shown that indole derivatives can further be explored for the betterment of BC chemotherapy. A lot of potential is still hidden which demands to be discovered for upgrading BC chemotherapy.
Collapse
Affiliation(s)
- Kamalpreet Kaur
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda (Pb) -151001, India
| | - Vikas Jaitak
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda (Pb) -151001, India
| |
Collapse
|
7
|
Ardon-Dryer K, Mock C, Reyes J, Lahav G. The effect of dust storm particles on single human lung cancer cells. ENVIRONMENTAL RESEARCH 2020; 181:108891. [PMID: 31740036 PMCID: PMC6982605 DOI: 10.1016/j.envres.2019.108891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 05/10/2023]
Abstract
Exposure to dust particles during dust storms can lead to respiratory problems, diseases, and even death. The effect of dust particles at the cellular level is poorly understood. In this study, we investigated the impact that dust storm particles (Montmorillonite) have on human lung epithelial cells (A549) at the single cell level. Using live-cell imaging, we continuously followed individual cells after exposure to a wide range of concentrations of dust particles. We monitored the growth trajectory of each cell including number and timing of divisions, interaction with the dust particles, as well as time and mechanism of cell death. We found that individual cells show different cellular fates (survival or death) even in response to the same dust concentration. Cells that died interacted with dust particles for longer times, and engulfed more dust particles, compared with surviving cells. While higher dust concentrations reduced viability in a dose-dependent manner, the effect on cell death was non-monotonic, with intermediate dust concentration leading to a larger fraction of dying cells compared to lower and higher concentrations. This non-monotonic relationship was explained by our findings that high dust concentrations inhibit cell proliferation. Using cellular morphological features, supported by immunoblots and proinflammatory cytokines, we determined that apoptosis is the dominant death mechanism at low dust concentrations, while higher dust concentrations activate necrosis. Similar single cell approaches can serve as a baseline for evaluating other aerosol types that will improve our understanding of the health-related consequences of exposure to dust storms.
Collapse
Affiliation(s)
- Karin Ardon-Dryer
- Department of System Biology Harvard Medical School Harvard University, 200 Longwood Avenue Warren Alpert Building, Harvard Medical School, Boston, MA, 02115, USA; Department of Geosciences, Atmospheric Science Group, Texas Tech University, 3003 15th Street Department of Geosciences, Atmospheric Science Group, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Caroline Mock
- Department of System Biology Harvard Medical School Harvard University, 200 Longwood Avenue Warren Alpert Building, Harvard Medical School, Boston, MA, 02115, USA
| | - Jose Reyes
- Department of System Biology Harvard Medical School Harvard University, 200 Longwood Avenue Warren Alpert Building, Harvard Medical School, Boston, MA, 02115, USA
| | - Galit Lahav
- Department of System Biology Harvard Medical School Harvard University, 200 Longwood Avenue Warren Alpert Building, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
8
|
Shahraki A, Ebrahimi A. Binding of ellagic acid and urolithin metabolites to the CK2 protein, based on the ONIOM method and molecular docking calculations. NEW J CHEM 2019. [DOI: 10.1039/c9nj03508g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Using three-layer ONIOM and molecular docking calculations to investigate the binding of urolithins to the active site of the CK2 protein.
Collapse
Affiliation(s)
- Asiyeh Shahraki
- Department of Chemistry
- Computational Quantum Chemistry Laboratory
- University of Sistan and Baluchestan
- Zahedan
- Iran
| | - Ali Ebrahimi
- Department of Chemistry
- Computational Quantum Chemistry Laboratory
- University of Sistan and Baluchestan
- Zahedan
- Iran
| |
Collapse
|
9
|
Rabjerg M, Guerra B, Oliván-Viguera A, Mikkelsen MLN, Köhler R, Issinger OG, Marcussen N. Nuclear localization of the CK2α-subunit correlates with poor prognosis in clear cell renal cell carcinoma. Oncotarget 2018; 8:1613-1627. [PMID: 27906674 PMCID: PMC5352082 DOI: 10.18632/oncotarget.13693] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 11/11/2016] [Indexed: 01/01/2023] Open
Abstract
Protein kinase CK2α, one of the two catalytic isoforms of the protein kinase CK2 has been shown to contribute to tumor development, tumor proliferation and suppression of apoptosis in various malignancies. We conducted this study to investigate CK2 expression in different subtypes of Renal Cell Carcinoma (RCC) and in the benign oncocytoma. qRT-PCR, immunohistochemistry and Western blot analyses revealed that CK2α expression was significantly increased at the mRNA and protein levels in clear cell RCC (ccRCC). Also the kinase activity of CK2 was significantly increased in ccRCC compared to normal renal cortex. Nuclear protein expression of CK2α correlated in univariate analysis with poor Progression Free Survival (HR = 8.11, p = 0.016). Functional analyses (cell proliferation assay) revealed an inhibitory effect of Caki-2 cell growth following CK2 inhibition with CX-4945. Our results suggest that CK2α promotes migration and invasion of ccRCC and therefore could serve as a novel prognostic biomarker and molecular therapeutic target in this type of cancer.
Collapse
Affiliation(s)
- Maj Rabjerg
- Department of Pathology, Odense University Hospital, DK-5000 Odense, Denmark
| | - Barbara Guerra
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark
| | - Aida Oliván-Viguera
- Aragon Agency for Research and Development (ARAID), IACS, IIS Aragon, 50009 Zaragoza, Spain
| | | | - Ralf Köhler
- Aragon Agency for Research and Development (ARAID), IACS, IIS Aragon, 50009 Zaragoza, Spain
| | - Olaf-Georg Issinger
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark
| | - Niels Marcussen
- Department of Pathology, Odense University Hospital, DK-5000 Odense, Denmark
| |
Collapse
|
10
|
The quinone-based derivative, HMNQ induces apoptotic and autophagic cell death by modulating reactive oxygen species in cancer cells. Oncotarget 2017; 8:99637-99648. [PMID: 29245930 PMCID: PMC5725121 DOI: 10.18632/oncotarget.21005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 08/28/2017] [Indexed: 12/17/2022] Open
Abstract
8-Hydroxy-2-methoxy-1,4-naphthoquinone (HMNQ), a natural compound isolated from the bark of Juglans sinensis Dode, displays cytotoxic activity against various human cancer cells. However, the molecular mechanism of the anticancer effect is unclear. In this study, we examined the cytotoxic mechanism of HMNQ at the molecular level in human cancer cells. Cells were treated with HMNQ in a dose- or time-dependent manner. HMNQ treatment inhibited cell viability, colony formation and cell migration, indicating that HMNQ induced cancer cell death. HMNQ-treated cells resulted in apoptotic cell death through PARP-1 cleavage, Bax upregulation and Bcl-2 downregulation. HMNQ was also observed to induce autophagy by upregulating Beclin-1 and LC3. Furthermore, HMNQ induced reactive oxygen species (ROS) production, which was attenuated by the ROS scavengers, NAC and GSH. Finally, HMNQ increased expression of JNK phosphorylation and the JNK inhibitor SP600125 rescued HMNQ-induced cell death, suggesting that the cytotoxicity of HMNQ is mediated by the JNK signaling pathway. Taken together, our findings show that HMNQ exhibits anticancer activity through induction of ROS-mediated apoptosis and autophagy in human cancer cells. These data suggest the potential value of HMNQ as a natural anticancer drug.
Collapse
|
11
|
Inhibition of protein kinase CK2 sensitizes non-small cell lung cancer cells to cisplatin via upregulation of PML. Mol Cell Biochem 2017; 436:87-97. [PMID: 28744813 DOI: 10.1007/s11010-017-3081-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/30/2017] [Indexed: 12/24/2022]
Abstract
Non-small cell lung carcinoma (NSCLC), a malignancy of lungs, is very aggressive and usually ends up with a dismal prognosis. Cisplatin (CDDP)-based systemic chemotherapy is the main pharmaceutical approach for treating NSCLC, but its effect is discounted by some hitherto unknown reasons. Thus, this study is dedicated to improving the efficacy of CDDP. Our results show that combining use of CDDP with CK2 siRNA or inhibitor is more efficient in suppressing cancer cell growth and promoting apoptosis than use of CDDP alone. The underlying mechanism is that CDDP has two pathways to go: one is that it directly induces apoptosis and the other is that it activates CK2, which suppresses proapoptosis gene promyelocytic leukemia (PML). In conclusion, inhibiting CK2 can enhance sensitivity of CDDP to NSCLC cancer cells through PML.
Collapse
|
12
|
Lin F, Cao SB, Ma XS, Sun HX. Inhibition of casein kinase 2 blocks G 2/M transition in early embryo mitosis but not in oocyte meiosis in mouse. J Reprod Dev 2017; 63:319-324. [PMID: 28367932 PMCID: PMC5481635 DOI: 10.1262/jrd.2016-064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Casein kinase 2 (CK2) is a highly conserved, ubiquitously expressed serine/threonine protein kinase with hundreds of substrates. The role of CK2 in the G2/M transition of oocytes, zygotes, and 2-cell embryos was studied in mouse by enzyme activity inhibition using the specific inhibitor 4, 5, 6, 7-tetrabromobenzotriazole (TBB). Zygotes and 2-cell embryos were arrested at G2 phase by TBB treatment, and DNA damage was increased in the female pronucleus of arrested zygotes. Further developmental ability of arrested zygotes was reduced, but that of arrested 2-cell embryos was not affected after releasing from inhibition. By contrast, the G2/M transition in oocytes was not affected by TBB. These results indicate that CK2 activity is essential for mitotic G2/M transition in early embryos but not for meiotic G2/M transition in oocytes.
Collapse
Affiliation(s)
- Fei Lin
- Center for Reproductive Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Shi-Bing Cao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xue-Shan Ma
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hai-Xiang Sun
- Center for Reproductive Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| |
Collapse
|
13
|
Structure-activity relationship study of 4-(thiazol-5-yl)benzoic acid derivatives as potent protein kinase CK2 inhibitors. Bioorg Med Chem 2016; 24:1136-41. [PMID: 26850376 DOI: 10.1016/j.bmc.2016.01.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 01/07/2023]
Abstract
Two classes of modified analogs of 4-(thiazol-5-yl)benzoic acid-type CK2 inhibitors were designed. The azabenzene analogs, pyridine- and pyridazine-carboxylic acid derivatives, showed potent protein kinase CK2 inhibitory activities [IC50 (CK2α)=0.014-0.017μM; IC50 (CK2α')=0.0046-0.010μM]. Introduction of a 2-halo- or 2-methoxy-benzyloxy group at the 3-position of the benzoic acid moiety maintained the potent CK2 inhibitory activities [IC50 (CK2α)=0.014-0.016μM; IC50 (CK2α')=0.0088-0.014μM] and led to antiproliferative activities [CC50 (A549)=1.5-3.3μM] three to six times higher than those of the parent compound.
Collapse
|
14
|
Filhol O, Giacosa S, Wallez Y, Cochet C. Protein kinase CK2 in breast cancer: the CK2β regulatory subunit takes center stage in epithelial plasticity. Cell Mol Life Sci 2015; 72:3305-22. [PMID: 25990538 PMCID: PMC11113558 DOI: 10.1007/s00018-015-1929-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/06/2015] [Accepted: 05/11/2015] [Indexed: 12/11/2022]
Abstract
Structurally, protein kinase CK2 consists of two catalytic subunits (α and α') and two regulatory subunits (β), which play a critical role in targeting specific CK2 substrates. Compelling evidence shows the complexity of the CK2 cellular signaling network and supports the view that this enzyme is a key component of regulatory protein kinase networks that are involved in several aspects of cancer. CK2 both activates and suppresses the expression of a number of essential oncogenes and tumor suppressors, and its expression and activity are upregulated in blood tumors and virtually all solid tumors. The prognostic significance of CK2α expression in association with various clinicopathological parameters highlighted this kinase as an adverse prognostic marker in breast cancer. In addition, several recent studies reported its implication in the regulation of the epithelial-to-mesenchymal transition (EMT), an early step in cancer invasion and metastasis. In this review, we briefly overview the contribution of CK2 to several aspects of cancer and discuss how in mammary epithelial cells, the expression of its CK2β regulatory subunit plays a critical role in maintaining an epithelial phenotype through CK2-mediated control of key EMT-related transcription factors. Importantly, decreased CK2β expression in breast tumors is correlated with inefficient phosphorylation and nuclear translocation of Snail1 and Foxc2, ultimately leading to EMT induction. This review highlights the pivotal role played by CK2β in the mammary epithelial phenotype and discusses how a modest alteration in its expression may be sufficient to induce dramatic effects facilitating the early steps in tumor cell dissemination through the coordinated regulation of two key transcription factors.
Collapse
Affiliation(s)
- Odile Filhol
- Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France
- Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, Commissariat à l’Energie Atomique, Grenoble, France
- Unité Mixte de Recherche-S1036, University of Grenoble Alpes, Grenoble, France
| | - Sofia Giacosa
- Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France
- Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, Commissariat à l’Energie Atomique, Grenoble, France
- Unité Mixte de Recherche-S1036, University of Grenoble Alpes, Grenoble, France
| | - Yann Wallez
- Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France
- Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, Commissariat à l’Energie Atomique, Grenoble, France
- Unité Mixte de Recherche-S1036, University of Grenoble Alpes, Grenoble, France
| | - Claude Cochet
- Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France
- Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, Commissariat à l’Energie Atomique, Grenoble, France
- Unité Mixte de Recherche-S1036, University of Grenoble Alpes, Grenoble, France
| |
Collapse
|
15
|
Nakanishi A, Minami A, Kitagishi Y, Ogura Y, Matsuda S. BRCA1 and p53 tumor suppressor molecules in Alzheimer's disease. Int J Mol Sci 2015; 16:2879-92. [PMID: 25636033 PMCID: PMC4346871 DOI: 10.3390/ijms16022879] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 11/20/2014] [Accepted: 01/20/2015] [Indexed: 12/16/2022] Open
Abstract
Tumor suppressor molecules play a pivotal role in regulating DNA repair, cell proliferation, and cell death, which are also important processes in the pathogenesis of Alzheimer’s disease. Alzheimer’s disease is the most common neurodegenerative disorder, however, the precise molecular events that control the death of neuronal cells are unclear. Recently, a fundamental role for tumor suppressor molecules in regulating neurons in Alzheimer’s disease was highlighted. Generally, onset of neurodegenerative diseases including Alzheimer’s disease may be delayed with use of dietary neuro-protective agents against oxidative stresses. Studies suggest that dietary antioxidants are also beneficial for brain health in reducing disease-risk and in slowing down disease-progression. We summarize research advances in dietary regulation for the treatment of Alzheimer’s disease with a focus on its modulatory roles in BRCA1 and p53 tumor suppressor expression, in support of further therapeutic research in this field.
Collapse
Affiliation(s)
- Atsuko Nakanishi
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Akari Minami
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Yasuko Kitagishi
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Yasunori Ogura
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| |
Collapse
|
16
|
Jabor Gozzi G, Bouaziz Z, Winter E, Daflon-Yunes N, Aichele D, Nacereddine A, Marminon C, Valdameri G, Zeinyeh W, Bollacke A, Guillon J, Lacoudre A, Pinaud N, Cadena SM, Jose J, Le Borgne M, Di Pietro A. Converting potent indeno[1,2-b]indole inhibitors of protein kinase CK2 into selective inhibitors of the breast cancer resistance protein ABCG2. J Med Chem 2014; 58:265-77. [PMID: 25272055 DOI: 10.1021/jm500943z] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of indeno[1,2-b]indole-9,10-dione derivatives were synthesized as human casein kinase II (CK2) inhibitors. The most potent inhibitors contained a N(5)-isopropyl substituent on the C-ring. The same series of compounds was found to also inhibit the breast cancer resistance protein ABCG2 but with totally different structure-activity relationships: a N(5)-phenethyl substituent was critical, and additional hydrophobic substituents at position 7 or 8 of the D-ring or a methoxy at phenethyl position ortho or meta also contributed to inhibition. The best ABCG2 inhibitors, such as 4c, 4h, 4i, 4j, and 4k, behaved as very weak inhibitors of CK2, whereas the most potent CK2 inhibitors, such as 4a, 4p, and 4e, displayed limited interaction with ABCG2. It was therefore possible to convert, through suitable substitutions of the indeno[1,2-b]indole-9,10-dione scaffold, potent CK2 inhibitors into selective ABCG2 inhibitors and vice versa. In addition, some of the best ABCG2 inhibitors, which displayed a very low cytotoxicity, thus giving a high therapeutic ratio, and appeared not to be transported, constitute promising candidates for further investigations.
Collapse
Affiliation(s)
- Gustavo Jabor Gozzi
- Equipe Labellisée Ligue 2014, BMSSI UMR 5086 CNRS/Université Lyon 1, IBCP, 69367 Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|