1
|
Mahmud M, Munjal A, Savani M, Win H, Rozell U, Arshad J. Biomarker Testing and Role of Tyrosine Kinase Inhibitors and Immunotherapy for Esophageal Squamous Cell Carcinoma. FOREGUT: THE JOURNAL OF THE AMERICAN FOREGUT SOCIETY 2024; 4:467-474. [DOI: 10.1177/26345161241238748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Esophageal squamous cell carcinoma (ESCC) constitutes an aggressive subset of esophageal cancers that portends a poor prognosis. Management of ESCC has been historically challenging due to the limited effective therapeutic options. Broadening our understanding of the molecular landscape and identifying reliable biomarkers are essential in early detection, monitoring disease response and advancing treatment strategies. Recently, immunotherapy and tyrosine kinase inhibitors have changed the treatment algorithm of ESCC. In this review, we explore the molecular landscape and biomarkers that can aid in the management of ESCC and discuss the role of immunotherapy and tyrosine kinase inhibitors in the treatment of ESCC.
Collapse
Affiliation(s)
| | | | - Malvi Savani
- University of Arizona Cancer Center, Tucson, AZ, USA
| | - Hninyee Win
- University of Arizona Cancer Center, Tucson, AZ, USA
| | | | - Junaid Arshad
- University of Arizona Cancer Center, Tucson, AZ, USA
| |
Collapse
|
2
|
Khan IR, Sadida HQ, Hashem S, Singh M, Macha MA, Al-Shabeeb Akil AS, Khurshid I, Bhat AA. Therapeutic implications of signaling pathways and tumor microenvironment interactions in esophageal cancer. Biomed Pharmacother 2024; 176:116873. [PMID: 38843587 DOI: 10.1016/j.biopha.2024.116873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Esophageal cancer (EC) is significantly influenced by the tumor microenvironment (TME) and altered signaling pathways. Downregulating these pathways in EC is essential for suppressing tumor development, preventing metastasis, and enhancing therapeutic outcomes. This approach can increase tumor sensitivity to treatments, enhance patient outcomes, and inhibit cancer cell proliferation and spread. The TME, comprising cellular and non-cellular elements surrounding the tumor, significantly influences EC's development, course, and treatment responsiveness. Understanding the complex relationships within the TME is crucial for developing successful EC treatments. Immunotherapy is a vital TME treatment for EC. However, the heterogeneity within the TME limits the application of anticancer drugs outside clinical settings. Therefore, identifying reliable microenvironmental biomarkers that can detect therapeutic responses before initiating therapy is crucial. Combining approaches focusing on EC signaling pathways with TME can enhance treatment outcomes. This integrated strategy aims to interfere with essential signaling pathways promoting cancer spread while disrupting factors encouraging tumor development. Unraveling aberrant signaling pathways and TME components can lead to more focused and efficient treatment approaches, identifying specific cellular targets for treatments. Targeting the TME and signaling pathways may reduce metastasis risk by interfering with mechanisms facilitating cancer cell invasion and dissemination. In conclusion, this integrative strategy has significant potential for improving patient outcomes and advancing EC research and therapy. This review discusses the altered signaling pathways and TME in EC, focusing on potential future therapeutics.
Collapse
Affiliation(s)
- Inamu Rashid Khan
- Department of Zoology, Central University of Kashmir, Ganderbal, Jammu and Kashmir 191201, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha 26999, Qatar
| | - Sheema Hashem
- Department of Human Genetics, Sidra Medicine Doha 26999, Qatar
| | - Mayank Singh
- Department of Medical Oncology (Lab), Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu and Kashmir 192122, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha 26999, Qatar
| | - Ibraq Khurshid
- Department of Zoology, Central University of Kashmir, Ganderbal, Jammu and Kashmir 191201, India.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha 26999, Qatar.
| |
Collapse
|
3
|
Li J, Wang J, Ma D, Bai H. Highly sensitive and specific resonance Rayleigh scattering detection of esophageal cancer cells via dual-aptamer target binding strategy. Mikrochim Acta 2023; 190:248. [PMID: 37266700 DOI: 10.1007/s00604-023-05828-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023]
Abstract
The modification of EGFR aptamer (Apt 1) and HER2 aptamer (Apt 2) with gold nanoparticles (AuNPs) is reported to obtain probe I (Apt 1-AuNPs) and probe II (Apt 2-AuNPs). Taking Eca109, KYSE510, and KYSE150 cells as models, the sandwich scattering system of probe I-cell-probe II was formed by the recognition of tumor markers by the aptamer modified probe, and the resonance Rayleigh scattering (RRS) spectra were investigated. The results showed that the scattering system can be used to quantitatively detect the Eca109 cell lines in the range 5.0×10 to 5.0×105 cells·mL-1 with a detection limit of 15 cells· mL-1.The system can also detect the KYSE510 cell lines in a linear range of 5.0×10 to 5.0×105 cells·mL-1 with a detection limit of 18 cells·mL-1 and the KYSE150 cell lines in a linear range of 3.0×10 to 5.0×105 cells·mL-1 with a detection limit of 12 cells·mL-1. To demonstrate the potential application of the RRS method for real sample analysis, cells were spiked into blank serum samples at concentrations from 1.0×102 to 1.0×105 cells·mL-1. The recovery was between 97.0% and 102.3%, and the RSD was between 1.1% and 4.9%, confirming the feasibility of the proposed method for ESCC cell determination.
Collapse
Affiliation(s)
- Junbo Li
- Pharmaceutical Department, Changzhi Medical College, Changzhi, 046000, China.
| | - Jinghua Wang
- Department of Traditional Chinese Medicine, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, ,046000, China
| | - Dandan Ma
- Pharmaceutical Department, Changzhi Medical College, Changzhi, 046000, China
| | - Huiyun Bai
- Pharmaceutical Department, Changzhi Medical College, Changzhi, 046000, China
| |
Collapse
|
4
|
Bennett AN, Huang RX, He Q, Lee NP, Sung WK, Chan KHK. Drug repositioning for esophageal squamous cell carcinoma. Front Genet 2022; 13:991842. [PMID: 36246638 PMCID: PMC9554346 DOI: 10.3389/fgene.2022.991842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Esophageal cancer (EC) remains a significant challenge globally, having the 8th highest incidence and 6th highest mortality worldwide. Esophageal squamous cell carcinoma (ESCC) is the most common form of EC in Asia. Crucially, more than 90% of EC cases in China are ESCC. The high mortality rate of EC is likely due to the limited number of effective therapeutic options. To increase patient survival, novel therapeutic strategies for EC patients must be devised. Unfortunately, the development of novel drugs also presents its own significant challenges as most novel drugs do not make it to market due to lack of efficacy or safety concerns. A more time and cost-effective strategy is to identify existing drugs, that have already been approved for treatment of other diseases, which can be repurposed to treat EC patients, with drug repositioning. This can be achieved by comparing the gene expression profiles of disease-states with the effect on gene-expression by a given drug. In our analysis, we used previously published microarray data and identified 167 differentially expressed genes (DEGs). Using weighted key driver analysis, 39 key driver genes were then identified. These driver genes were then used in Overlap Analysis and Network Analysis in Pharmomics. By extracting drugs common to both analyses, 24 drugs are predicted to demonstrate therapeutic effect in EC patients. Several of which have already been shown to demonstrate a therapeutic effect in EC, most notably Doxorubicin, which is commonly used to treat EC patients, and Ixazomib, which was recently shown to induce apoptosis and supress growth of EC cell lines. Additionally, our analysis predicts multiple psychiatric drugs, including Venlafaxine, as repositioned drugs. This is in line with recent research which suggests that psychiatric drugs should be investigated for use in gastrointestinal cancers such as EC. Our study shows that a drug repositioning approach is a feasible strategy for identifying novel ESCC therapies and can also improve the understanding of the mechanisms underlying the drug targets.
Collapse
Affiliation(s)
- Adam N. Bennett
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Rui Xuan Huang
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Qian He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Nikki P. Lee
- Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Wing-Kin Sung
- Department of Computer Sciences, National University of Singapore, Singapore, Singapore
| | - Kei Hang Katie Chan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Epidemiology, Centre for Global Cardiometabolic Health, Brown University, Providence, RI, United States
| |
Collapse
|
5
|
Wang L, Liang M, Xiao Y, Chen J, Mei C, Lin Y, Zhang Y, Li D. NIR-II Navigation with an EGFR-Targeted Probe Improves Imaging Resolution and Sensitivity of Detecting Micrometastases in Esophageal Squamous Cell Carcinoma Xenograft Models. Mol Pharm 2022; 19:3563-3575. [PMID: 35420035 DOI: 10.1021/acs.molpharmaceut.2c00115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The survival rate of esophageal squamous carcinoma (ESCC) after surgical resection is estimated to be only 30.3% due to the difficulty in identifying microinfiltration and subtle metastases. In this study, we explored the value of near-infrared fluorescence in the second window (NIR-II) using an epidermal growth factor receptor (EGFR)-targeted probe (cetuximab-IR800) for the intraoperative navigation of ESCC in xenograft mouse models. Immunohistochemical results showed that EGFR was aberrantly expressed in 94.49% (120/127) of ESCC tissues and 90.63% (58/64) of metastatic lymph nodes. Western blot results demonstrated that EGFR protein was highly expressed in ESCC cell lines. Flow cytometry data revealed that cetuximab-IR800 showed a stronger binding specificity in EGFR-positive KYSE-30 cells than in A2780 control cells (P < 0.01). In vivo imaging data showed that the ratio of mean fluorescent intensity (MFI) and tumor to background (TBR) was significantly higher in KYSE-30 subcutaneous tumors with the infusion of cetuximab-IR800 than in those with the infusion of IgG1-IR800 (P < 0.05). Surgical navigation with NIR-II imaging showed that the TBR in orthotopic ESCC was significantly higher than that of NIR in the first window (NIR-I) (2.11 ± 0.46 vs 1.58 ± 0.31, P < 0.05), and NIR-II was more sensitive than NIR-I in detecting subcentimeter metastases (94.87% (37/39) vs 58.97% (23/39), P < 0.001). In conclusion, cetuximab-IR800 with high specificity for ESCC was first used in NIR-II surgical navigation. This probe showed better imaging resolution and higher sensitivity in detecting subtle metastases derived from an orthotopic ESCC model than NIR-I, which indicates that NIR-II has promise in guiding precise surgery for ESCC patients.
Collapse
Affiliation(s)
- Lizhu Wang
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China.,Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Mingzhu Liang
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Yitai Xiao
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Jiayao Chen
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Chaoming Mei
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Yujing Lin
- Department of Pathology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Yaqin Zhang
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Dan Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| |
Collapse
|
6
|
Zhang X, Wang Y, Meng L. Comparative genomic analysis of esophageal squamous cell carcinoma and adenocarcinoma: New opportunities towards molecularly targeted therapy. Acta Pharm Sin B 2022; 12:1054-1067. [PMID: 35530133 PMCID: PMC9069403 DOI: 10.1016/j.apsb.2021.09.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Esophageal cancer is one of the most lethal cancers worldwide because of its rapid progression and poor prognosis. Esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) are two major subtypes of esophageal cancer. ESCC predominantly affects African and Asian populations, which is closely related to chronic smoking and alcohol consumption. EAC typically arises in Barrett's esophagus with a predilection for Western countries. While surgical operation and chemoradiotherapy have been applied to combat this deadly cancer, molecularly targeted therapy is still at the early stages. With the development of large-scale next-generation sequencing, various genomic alterations in ESCC and EAC have been revealed and their potential roles in the initiation and progression of esophageal cancer have been studied. Potential therapeutic targets have been identified and novel approaches have been developed to combat esophageal cancer. In this review, we comprehensively analyze the genomic alterations in EAC and ESCC and summarize the potential role of the genetic alterations in the development of esophageal cancer. Progresses in the therapeutics based on the different tissue types and molecular signatures have also been reviewed and discussed.
Collapse
|
7
|
Chen ZQ, Cao ZR, Wang Y, Zhang X, Xu L, Wang YX, Chen Y, Yang CH, Ding J, Meng LH. Repressing MYC by targeting BET synergizes with selective inhibition of PI3Kα against B cell lymphoma. Cancer Lett 2022; 524:206-218. [PMID: 34688842 DOI: 10.1016/j.canlet.2021.10.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/18/2021] [Accepted: 10/17/2021] [Indexed: 12/17/2022]
Abstract
Phosphatidylinositol 3-kinase (PI3K) δ-specific inhibitors have been approved for the therapy of certain types of B cell lymphoma (BCL). However, their clinical use is limited by the substantial toxicity and lack of efficacy in other types of BCL. Emerging evidence indicates that PI3Kα plays important roles in the progression of B cell lymphoma. In this study, we revealed that PI3Kα was important for the PI3K signaling and proliferation in BCL cells. A novel clinical PI3Kα-selective inhibitor CYH33 possessed superior activity against BCL compared to the marketed PI3Kα-selective inhibitor Alpelisib and PI3Kδ-selective inhibitor Idelalisib. Though CYH33 was able to inhibit PI3K/AKT signaling in tested BCL cells, differential activity against proliferation was observed. Transcriptome profiling revealed that CYH33 down-regulated "MYC-targets" gene set in sensitive but not resistant cells. CYH33 inhibited c-MYC transcription in sensitive cells, which was attributed to a decrease in acetylated H3 bound to the promoter and super-enhancer region of c-MYC. Accordingly, CYH33 treatment resulted in phosphorylation and proteasomal degradation of the histone acetyltransferase p300. An unbiased screening with drugs approved or in clinical trials for the therapy of BCL identified that the clinical BET (Bromodomain and Extra Terminal domain) inhibitor OTX015 significantly potentiated the activity of CYH33 against BCL in vitro and in vivo, which was associated with enhanced inhibition on c-MYC expression and induction of cell cycle arrest and apoptosis. Our findings provide the rationale of combined CYH33 with BET inhibitors for the therapy of B cell lymphoma.
Collapse
Affiliation(s)
- Zi-Qi Chen
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhe-Rui Cao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Wang
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xi Zhang
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lan Xu
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Xiang Wang
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yi Chen
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chun-Hao Yang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jian Ding
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Ling-Hua Meng
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
8
|
He S, Xu J, Liu X, Zhen Y. Advances and challenges in the treatment of esophageal cancer. Acta Pharm Sin B 2021; 11:3379-3392. [PMID: 34900524 PMCID: PMC8642427 DOI: 10.1016/j.apsb.2021.03.008] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/24/2021] [Accepted: 02/06/2021] [Indexed: 12/18/2022] Open
Abstract
Esophageal cancer (EC) is one of the most common cancers with high morbidity and mortality rates. EC includes two histological subtypes, namely esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC). ESCC primarily occurs in East Asia, whereas EAC occurs in Western countries. The currently available treatment strategies for EC include surgery, chemotherapy, radiation therapy, molecular targeted therapy, and combinations thereof. However, the prognosis remains poor, and the overall five-year survival rate is very low. Therefore, achieving the goal of effective treatment remains challenging. In this review, we discuss the latest developments in chemotherapy and molecular targeted therapy for EC, and comprehensively analyze the application prospects and existing problems of immunotherapy. Collectively, this review aims to provide a better understanding of the currently available drugs through in-depth analysis, promote the development of new therapeutic agents, and eventually improve the treatment outcomes of patients with EC.
Collapse
Affiliation(s)
- Shiming He
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Jian Xu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Xiujun Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Yongsu Zhen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
9
|
Lan T, Xue X, Dunmall LC, Miao J, Wang Y. Patient-derived xenograft: a developing tool for screening biomarkers and potential therapeutic targets for human esophageal cancers. Aging (Albany NY) 2021; 13:12273-12293. [PMID: 33903283 PMCID: PMC8109069 DOI: 10.18632/aging.202934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/23/2021] [Indexed: 04/15/2023]
Abstract
Esophageal cancer (EC) represents a human malignancy, diagnosed often at the advanced stage of cancer and resulting in high morbidity and mortality. The development of precision medicine allows for the identification of more personalized therapeutic strategies to improve cancer treatment. By implanting primary cancer tissues into immunodeficient mice for expansion, patient-derived xenograft (PDX) models largely maintain similar histological and genetic representations naturally found in patients' tumor cells. PDX models of EC (EC-PDX) provide fine platforms to investigate the tumor microenvironment, tumor genomic heterogeneity, and tumor response to chemoradiotherapy, which are necessary for new drug discovery to combat EC in addition to optimization of current therapeutic strategies for EC. In this review, we summarize the methods used for establishing EC-PDX models and investigate the utilities of EC-PDX in screening predictive biomarkers and potential therapeutic targets. The challenge of this promising research tool is also discussed.
Collapse
Affiliation(s)
- Tianfeng Lan
- Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Xia Xue
- Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, P.R. China
- The Academy of Medical Science, Precision Medicine Center of the Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan, P.R. China
| | - Louisa Chard Dunmall
- Centre for Cancer Biomarkers and Biotherapeuitcs, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jinxin Miao
- Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, P.R. China
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, Henan, P.R. China
| | - Yaohe Wang
- Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, P.R. China
- Centre for Cancer Biomarkers and Biotherapeuitcs, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
10
|
Liu Y, Zhao L, Xue L, Hou Y. Selected updates in molecular and genomic pathology of esophageal cancer. Ann N Y Acad Sci 2020; 1482:225-235. [PMID: 33215736 DOI: 10.1111/nyas.14527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022]
Abstract
Recent years have seen rapid advances in the field of molecular and genomic pathology that have not only improved understanding of esophageal carcinogenesis and tumor immune environment in general but also have reshaped pathology practice and clinical management. In this article, we provide updates on three topics (1) human epidermal growth factor receptor 2, the first and most important biomarker in targeted therapy of esophageal cancer; (2) programmed death 1/programmed death ligand 1, recent biomarkers that have shown promise in treating both esophageal adenocarcinoma and esophageal squamous cell carcinoma; and (3) human papillomavirus involvement in esophageal carcinogenesis, one of the most debated topics in the field, discussed here with a renewed understanding from recent genomic and molecular data.
Collapse
Affiliation(s)
- Yueping Liu
- Department of Pathology, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, China
| | - Lei Zhao
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Liyan Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Lee NP, Chan CM, Tung LN, Wang HK, Law S. Tumor xenograft animal models for esophageal squamous cell carcinoma. J Biomed Sci 2018; 25:66. [PMID: 30157855 PMCID: PMC6116446 DOI: 10.1186/s12929-018-0468-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 08/24/2018] [Indexed: 12/12/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the predominant subtype of esophageal cancer worldwide and highly prevalent in less developed regions. Management of ESCC is challenging and involves multimodal treatments. Patient prognosis is generally poor especially for those diagnosed in advanced disease stage. One factor contributing to this clinical dismal is the incomplete understanding of disease mechanism, for which this situation is further compounded by the presence of other limiting factors for disease diagnosis, patient prognosis and treatments. Tumor xenograft animal models including subcutaneous tumor xenograft model, orthotopic tumor xenograft model and patient-derived tumor xenograft model are vital tools for ESCC research. Establishment of tumor xenograft models involves the implantation of human ESCC cells/xenografts/tissues into immunodeficient animals, in which mice are most commonly used. Different tumor xenograft models have their own advantages and limitations, and these features serve as key factors to determine the use of these models at different stages of research. Apart from their routine use on basic research to understand disease mechanism of ESCC, tumor xenograft models are actively employed for undertaking preclinical drug screening project and biomedical imaging research.
Collapse
Affiliation(s)
- Nikki P Lee
- Department of Surgery, The University of Hong Kong, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong.
| | - Chung Man Chan
- Department of Surgery, The University of Hong Kong, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Lai Nar Tung
- Department of Surgery, The University of Hong Kong, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Hector K Wang
- Department of Surgery, The University of Hong Kong, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Simon Law
- Department of Surgery, The University of Hong Kong, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong
| |
Collapse
|
12
|
Guo XF, Li SS, Zhu XF, Dou QH, Liu D. Lapatinib in combination with paclitaxel plays synergistic antitumor effects on esophageal squamous cancer. Cancer Chemother Pharmacol 2018; 82:383-394. [PMID: 29909520 DOI: 10.1007/s00280-018-3627-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/13/2018] [Indexed: 12/29/2022]
Abstract
PURPOSE Paclitaxel-based chemoradiotherapy was proven to be efficacious in treating patients with advanced esophageal cancer. However, the toxicity and the development of resistance limited its anticancer efficiency. The present study was to evaluate the antitumor effects of lapatinib, a dual tyrosine inhibitor of both epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2), combined with paclitaxel on the esophageal squamous cancer. METHODS MTT assays were used to evaluate the effects of the combination of lapatinib and paclitaxel on the growth of esophageal squamous cancer cell lines (KYSE150, KYSE450, KYSE510 and TE-7). The activity of the combination of two agents on cell invasion, migration and apoptosis was measured by wound healing assay, transwell assay and Annexin V-FITC/PI stain assay. Western blot assay was used to analyze the effects of the two agents on the EGFR/HER2 signaling. The in vivo efficacy was evaluated in KYSE450 xenograft nude mouse model. RESULTS The combination of lapatinib and paclitaxel was highly synergistic in inhibiting cell growth with a combination index of < 1, and suppressed significantly the invasion and migration capability of esophageal squamous cancer cells. Esophageal squamous cancer cells displayed increased rates of apoptosis after treatment with lapatinib plus paclitaxel. The phosphorylated EGFR and HER2 as well as the activation of downstream molecules MAPKs and AKT significantly decreased when exposed to lapatinib and paclitaxel. In vivo studies showed that the combination of two agents had greater antitumor efficacy than either agent alone. CONCLUSIONS The combination of lapatinib with paclitaxel showed synergistic antitumor activity, suggesting their potential in treating patients with esophageal squamous cancer.
Collapse
Affiliation(s)
- Xiao-Fang Guo
- Department of Microbiology, School of Basic Medical Sciences, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, Henan, People's Republic of China.
| | - Sai-Sai Li
- Department of Microbiology, School of Basic Medical Sciences, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, Henan, People's Republic of China
| | - Xiao-Fei Zhu
- Department of Clinical Immunology, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China.,Henan Collaborative Innovation center of Molecular Diagnosis and Laboratory Medicine, Xinxiang, People's Republic of China
| | - Qiao-Hua Dou
- Department of Microbiology, School of Basic Medical Sciences, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, Henan, People's Republic of China
| | - Duan Liu
- Department of Gynecology and Obstetrics, Third Affiliated Hospital, Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|