1
|
Prkačin I, Mokos M, Ferara N, Šitum M. Melanoma's New Frontier: Exploring the Latest Advances in Blood-Based Biomarkers for Melanoma. Cancers (Basel) 2024; 16:4219. [PMID: 39766118 PMCID: PMC11727356 DOI: 10.3390/cancers16244219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/06/2025] Open
Abstract
Melanoma is one of the most malignant cancers, and the global incidence of cutaneous melanoma is increasing. While melanomas are highly prone to metastasize if diagnosed late, early detection and treatment significantly reduce the risk of mortality. Identifying patients at higher risk of metastasis, who might benefit from early adjuvant therapies, is particularly important, especially with the advent of new melanoma treatments. Therefore, there is a pressing need to develop additional prognostic biomarkers for melanoma to improve early stratification of patients and accurately identify high-risk subgroups, ultimately enabling more effective personalized treatments. Recent advances in melanoma therapy, including targeted treatments and immunotherapy, have underscored the importance of biomarkers in determining prognosis and predicting treatment response. The clinical application of these markers holds the potential for significant advancements in melanoma management. Various tumor-derived genetic, proteomic, and cellular components are continuously released into the bloodstream of cancer patients. These molecules, including circulating tumor DNA and RNA, proteins, tumor cells, and immune cells, are emerging as practical and precise liquid biomarkers for cancer. In the current era of effective molecular-targeted therapies and immunotherapies, there is an urgent need to integrate these circulating biomarkers into clinical practice to facilitate personalized treatment. This review highlights recent discoveries in circulating melanoma biomarkers, explores the challenges and potentials of emerging technologies for liquid biomarker discovery, and discusses future directions in melanoma biomarker research.
Collapse
Affiliation(s)
- Ivana Prkačin
- Department of Dermatology and Venereology, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia; (M.M.); (N.F.); (M.Š.)
- School of Medicine, University of Split, 21000 Split, Croatia
| | - Mislav Mokos
- Department of Dermatology and Venereology, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia; (M.M.); (N.F.); (M.Š.)
| | - Nikola Ferara
- Department of Dermatology and Venereology, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia; (M.M.); (N.F.); (M.Š.)
| | - Mirna Šitum
- Department of Dermatology and Venereology, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia; (M.M.); (N.F.); (M.Š.)
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Croatian Academy of Sciences and Arts, 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Levati L, Tabolacci C, Facchiano A, Facchiano F, Alvino E, Antonini Cappellini GC, Scala E, Bonmassar L, Caporali S, Lacal PM, Bresin A, De Galitiis F, Russo G, D'Atri S. Circulating interleukin-8 and osteopontin are promising biomarkers of clinical outcomes in advanced melanoma patients treated with targeted therapy. J Exp Clin Cancer Res 2024; 43:226. [PMID: 39143551 PMCID: PMC11325673 DOI: 10.1186/s13046-024-03151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Circulating cytokines can represent non-invasive biomarkers to improve prediction of clinical outcomes of cancer patients. Here, plasma levels of IL-8, CCL4, osteopontin, LIF and BDNF were determined at baseline (T0), after 2 months of therapy (T2) and, when feasible, at progression (TP), in 70 melanoma patients treated with BRAF and MEK inhibitors. The association of baseline cytokine levels with clinical response, progression-free survival (PFS) and overall survival (OS) was evaluated. METHODS Cytokine concentrations were measured using the xMAP technology. Their ability to discriminate between responding (Rs) and non-responding (NRs) patients was assessed by Receiver Operating Characteristics analysis. PFS and OS were estimated with the Kaplan-Meier method. The Cox proportional hazard model was used in the univariate and multivariate analyses to estimate crude and adjusted hazard ratios with 95% confidence intervals. RESULTS CCL4 and LIF were undetectable in the majority of samples. The median osteopontin concentration at T0 and T2 was significantly higher in NRs than in Rs. The median T0 and T2 values of IL-8 were also higher in NRs than in Rs, although the statistical significance was not reached. No differences were detected for BDNF. In 39 Rs with matched T0, T2, and TP samples, osteopontin and IL-8 significantly decreased from T0 to T2 and rose again at TP, while BDNF levels remained unchanged. In NRs, none of the cytokines showed a significant decrease at T2. Only osteopontin demonstrated a good ability to discriminate between Rs and NRs. A high IL-8 T0 level was associated with significantly shorter PFS and OS and higher risk of progression and mortality, and remained an independent negative prognostic factor for OS in multivariate analysis. An elevated osteopontin T0 concentration was also significantly associated with worse OS and increased risk of death. Patients with high IL-8 and high osteopontin showed the lowest PFS and OS, and in multivariate analysis this cytokine combination remained independently associated with a three- to six-fold increased risk of mortality. CONCLUSION Circulating IL-8 and osteopontin appear useful biomarkers to refine prognosis evaluation of patients undergoing targeted therapy, and deserve attention as potential targets to improve its clinical efficacy.
Collapse
Affiliation(s)
- Lauretta Levati
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
- Present Address: Research Coordination and Support Service, Istituto Superiore Di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Antonio Facchiano
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Ester Alvino
- Institute of Translational Pharmacology, National Council of Research, Via Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Gian Carlo Antonini Cappellini
- Department of Oncology and Dermatological Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
- Present Address: UOC Oncologia, Interpresidio ASL RM2, Via Dei Monti Tiburtini 387, 00157, Rome, Italy
| | - Enrico Scala
- Clinical and Laboratory Molecular Allergy Unit, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Laura Bonmassar
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Simona Caporali
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
- Present Address: Regional Transplant Center Lazio (CRTL), San Camillo Hospital, Circonvallazione Gianicolense 87, 00152, Rome, Italy
| | - Pedro Miguel Lacal
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Antonella Bresin
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Federica De Galitiis
- Department of Oncology and Dermatological Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Giandomenico Russo
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Stefania D'Atri
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy.
| |
Collapse
|
3
|
Várvölgyi T, Janka EA, Szász I, Koroknai V, Toka-Farkas T, Szabó IL, Ványai B, Szegedi A, Emri G, Balázs M. Combining Biomarkers for the Diagnosis of Metastatic Melanoma. J Clin Med 2023; 13:174. [PMID: 38202181 PMCID: PMC10779676 DOI: 10.3390/jcm13010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/12/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
The early detection of melanoma relapse can improve patient survival; thus, there is a great need for easily accessible biomarkers that facilitate the diagnosis of metastatic disease. We investigated the diagnostic effect of blood biomarkers such as lactate dehydrogenase (LDH), S100B, and osteopontin in the detection of metastases. Clinical data and peripheral blood samples of 206 melanoma patients were collected (no metastasis, N = 120; metastasis, N = 86). The discriminative power of blood biomarkers, patient demographics, and clinicopathological parameters of primary melanomas were evaluated using univariate and multivariate logistic regression models and receiver operating characteristic (ROC) analysis to determine the area under the curve (AUC). Plasma osteopontin levels showed a significant and independent effect on the probability of metastasis, similar to serum S100B levels. In addition, the location of the primary tumor on the lower extremities and the American Joint Committee on Cancer (AJCC) categories pT2b-3a, pT3b-4a, and pT4b were associated with the diagnosis of metastasis. Importantly, the combination of the three blood biomarkers and primary tumor localization and AJCC pT category yielded excellent discrimination (AUC: training set: 0.803; validation set: 0.822). In conclusion, plasma osteopontin can be classified as a melanoma biomarker; moreover, by combining clinicopathological prognostic variables, the diagnostic effect of blood biomarkers in the detection of metastatic melanoma can be improved.
Collapse
Affiliation(s)
- Tünde Várvölgyi
- Department of Dermatology, MTA Centre of Excellence, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.V.); (E.A.J.); (T.T.-F.); (I.L.S.); (B.V.); (A.S.); (G.E.)
| | - Eszter Anna Janka
- Department of Dermatology, MTA Centre of Excellence, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.V.); (E.A.J.); (T.T.-F.); (I.L.S.); (B.V.); (A.S.); (G.E.)
- HUN-REN-UD Allergology Research Group, University of Debrecen, 4032 Debrecen, Hungary
| | - István Szász
- HUN-REN-UD Public Health Research Group, University of Debrecen, 4028 Debrecen, Hungary; (I.S.); (V.K.)
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary
| | - Viktória Koroknai
- HUN-REN-UD Public Health Research Group, University of Debrecen, 4028 Debrecen, Hungary; (I.S.); (V.K.)
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary
| | - Tünde Toka-Farkas
- Department of Dermatology, MTA Centre of Excellence, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.V.); (E.A.J.); (T.T.-F.); (I.L.S.); (B.V.); (A.S.); (G.E.)
| | - Imre Lőrinc Szabó
- Department of Dermatology, MTA Centre of Excellence, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.V.); (E.A.J.); (T.T.-F.); (I.L.S.); (B.V.); (A.S.); (G.E.)
- HUN-REN-UD Allergology Research Group, University of Debrecen, 4032 Debrecen, Hungary
| | - Beatrix Ványai
- Department of Dermatology, MTA Centre of Excellence, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.V.); (E.A.J.); (T.T.-F.); (I.L.S.); (B.V.); (A.S.); (G.E.)
| | - Andrea Szegedi
- Department of Dermatology, MTA Centre of Excellence, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.V.); (E.A.J.); (T.T.-F.); (I.L.S.); (B.V.); (A.S.); (G.E.)
- HUN-REN-UD Allergology Research Group, University of Debrecen, 4032 Debrecen, Hungary
| | - Gabriella Emri
- Department of Dermatology, MTA Centre of Excellence, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.V.); (E.A.J.); (T.T.-F.); (I.L.S.); (B.V.); (A.S.); (G.E.)
- HUN-REN-UD Allergology Research Group, University of Debrecen, 4032 Debrecen, Hungary
| | - Margit Balázs
- HUN-REN-UD Public Health Research Group, University of Debrecen, 4028 Debrecen, Hungary; (I.S.); (V.K.)
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary
| |
Collapse
|
4
|
Saup R, Nair N, Shen J, Schmaus A, Thiele W, Garvalov BK, Sleeman JP. Increased Circulating Osteopontin Levels Promote Primary Tumour Growth, but Do Not Induce Metastasis in Melanoma. Biomedicines 2023; 11:biomedicines11041038. [PMID: 37189656 DOI: 10.3390/biomedicines11041038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023] Open
Abstract
Osteopontin (OPN) is a phosphoprotein with diverse functions in various physiological and pathological processes. OPN expression is increased in multiple cancers, and OPN within tumour tissue has been shown to promote key stages of cancer development. OPN levels are also elevated in the circulation of cancer patients, which in some cases has been correlated with enhanced metastatic propensity and poor prognosis. However, the precise impact of circulating OPN (cOPN) on tumour growth and progression remains insufficiently understood. To examine the role of cOPN, we used a melanoma model, in which we stably increased the levels of cOPN through adeno-associated virus-mediated transduction. We found that increased cOPN promoted the growth of primary tumours, but did not significantly alter the spontaneous metastasis of melanoma cells to the lymph nodes or lungs, despite an increase in the expression of multiple factors linked to tumour progression. To assess whether cOPN has a role at later stages of metastasis formation, we employed an experimental metastasis model, but again could not detect any increase in pulmonary metastasis in animals with elevated levels of cOPN. These results demonstrate that increased levels of OPN in the circulation play distinct roles during different stages of melanoma progression.
Collapse
|
5
|
Revythis A, Shah S, Kutka M, Moschetta M, Ozturk MA, Pappas-Gogos G, Ioannidou E, Sheriff M, Rassy E, Boussios S. Unraveling the Wide Spectrum of Melanoma Biomarkers. Diagnostics (Basel) 2021; 11:diagnostics11081341. [PMID: 34441278 PMCID: PMC8391989 DOI: 10.3390/diagnostics11081341] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
The use of biomarkers in medicine has become essential in clinical practice in order to help with diagnosis, prognostication and prediction of treatment response. Since Alexander Breslow’s original report on “melanoma and prognostic values of thickness”, providing the first biomarker for melanoma, many promising new biomarkers have followed. These include serum markers, such as lactate dehydrogenase and S100 calcium-binding protein B. However, as our understanding of the DNA mutational profile progresses, new gene targets and proteins have been identified. These include point mutations, such as mutations of the BRAF gene and tumour suppressor gene tP53. At present, only a small number of the available biomarkers are being utilised, but this may soon change as more studies are published. The aim of this article is to provide a comprehensive review of melanoma biomarkers and their utility for current and, potentially, future clinical practice.
Collapse
Affiliation(s)
- Antonios Revythis
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (A.R.); (S.S.); (M.K.)
| | - Sidrah Shah
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (A.R.); (S.S.); (M.K.)
| | - Mikolaj Kutka
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (A.R.); (S.S.); (M.K.)
| | - Michele Moschetta
- CHUV, Lausanne University Hospital, Rue du Bugnon, 21 CH-1011 Lausanne, Switzerland;
| | - Mehmet Akif Ozturk
- Department of Internal Medicine, School of Medicine, Bahcesehir University, Istanbul 34353, Turkey;
| | - George Pappas-Gogos
- Department of Surgery, University Hospital of Ioannina, 45111 Ioannina, Greece;
| | - Evangelia Ioannidou
- Department of Paediatrics and Child Health, West Suffolk Hospital NHS Foundation Trust, Hardwick Lane, Bury St Edmunds IP33 2QZ, UK;
| | - Matin Sheriff
- Department of Urology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK;
| | - Elie Rassy
- Department of Cancer Medicine, Gustave Roussy Institut, 94805 Villejuif, France;
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (A.R.); (S.S.); (M.K.)
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9RT, UK
- AELIA Organization, 9th Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece
- Correspondence: or or
| |
Collapse
|
6
|
Deng G, Zeng F, Su J, Zhao S, Hu R, Zhu W, Hu S, Chen X, Yin M. BET inhibitor suppresses melanoma progression via the noncanonical NF-κB/SPP1 pathway. Am J Cancer Res 2020; 10:11428-11443. [PMID: 33052224 PMCID: PMC7546000 DOI: 10.7150/thno.47432] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/30/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Bromodomain and extra-terminal domain (BET) inhibitors have shown profound efficacy against hematologic malignancies and solid tumors in preclinical studies. However, the underlying molecular mechanism in melanoma is not well understood. Here we identified secreted phosphoprotein 1 (SPP1) as a melanoma driver and a crucial target of BET inhibitors in melanoma. Methods: Bioinformatics analysis and meta-analysis were used to evaluate the SPP1 expression in normal tissues, primary melanoma, and metastatic melanoma. Real-time PCR (RT-PCR) and Western blotting were employed to quantify SPP1 expression in melanoma cells and tissues. Cell proliferation, wound healing, and Transwell assays were carried out to evaluate the effects of SPP1 and BET inhibitors in melanoma cells in vitro. A xenograft mouse model was used to investigate the effect of SPP1 and BET inhibitors on melanoma in vivo. Chromatin immunoprecipitation (ChIP) assay was performed to evaluate the regulatory mechanism of BET inhibitors on SPP1. Results: SPP1 was identified as a melanoma driver by bioinformatics analysis, and meta-analysis determined it to be a diagnostic and prognostic biomarker for melanoma. SPP1 overexpression was associated with poor melanoma prognosis, and silencing SPP1 suppressed melanoma cell proliferation, migration, and invasion. Through a pilot drug screen, we identified BET inhibitors as ideal therapeutic agents that suppressed SPP1 expression. Also, SPP1 overexpression could partially reverse the suppressive effect of BET inhibitors on melanoma. We further demonstrated that bromodomain-containing 4 (BRD4) regulated SPP1 expression. Notably, BRD4 did not bind directly to the SPP1 promoter but regulated SPP1 expression through NFKB2. Silencing of NFKB2 resembled the phenotype of BET inhibitors treatment and SPP1 silencing in melanoma. Conclusion: Our findings highlight SPP1 as an essential target of BET inhibitors and provide a novel mechanism by which BET inhibitors suppress melanoma progression via the noncanonical NF-κB/SPP1 pathway.
Collapse
|
7
|
Selby PJ, Banks RE, Gregory W, Hewison J, Rosenberg W, Altman DG, Deeks JJ, McCabe C, Parkes J, Sturgeon C, Thompson D, Twiddy M, Bestall J, Bedlington J, Hale T, Dinnes J, Jones M, Lewington A, Messenger MP, Napp V, Sitch A, Tanwar S, Vasudev NS, Baxter P, Bell S, Cairns DA, Calder N, Corrigan N, Del Galdo F, Heudtlass P, Hornigold N, Hulme C, Hutchinson M, Lippiatt C, Livingstone T, Longo R, Potton M, Roberts S, Sim S, Trainor S, Welberry Smith M, Neuberger J, Thorburn D, Richardson P, Christie J, Sheerin N, McKane W, Gibbs P, Edwards A, Soomro N, Adeyoju A, Stewart GD, Hrouda D. Methods for the evaluation of biomarkers in patients with kidney and liver diseases: multicentre research programme including ELUCIDATE RCT. PROGRAMME GRANTS FOR APPLIED RESEARCH 2018. [DOI: 10.3310/pgfar06030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BackgroundProtein biomarkers with associations with the activity and outcomes of diseases are being identified by modern proteomic technologies. They may be simple, accessible, cheap and safe tests that can inform diagnosis, prognosis, treatment selection, monitoring of disease activity and therapy and may substitute for complex, invasive and expensive tests. However, their potential is not yet being realised.Design and methodsThe study consisted of three workstreams to create a framework for research: workstream 1, methodology – to define current practice and explore methodology innovations for biomarkers for monitoring disease; workstream 2, clinical translation – to create a framework of research practice, high-quality samples and related clinical data to evaluate the validity and clinical utility of protein biomarkers; and workstream 3, the ELF to Uncover Cirrhosis as an Indication for Diagnosis and Action for Treatable Event (ELUCIDATE) randomised controlled trial (RCT) – an exemplar RCT of an established test, the ADVIA Centaur® Enhanced Liver Fibrosis (ELF) test (Siemens Healthcare Diagnostics Ltd, Camberley, UK) [consisting of a panel of three markers – (1) serum hyaluronic acid, (2) amino-terminal propeptide of type III procollagen and (3) tissue inhibitor of metalloproteinase 1], for liver cirrhosis to determine its impact on diagnostic timing and the management of cirrhosis and the process of care and improving outcomes.ResultsThe methodology workstream evaluated the quality of recommendations for using prostate-specific antigen to monitor patients, systematically reviewed RCTs of monitoring strategies and reviewed the monitoring biomarker literature and how monitoring can have an impact on outcomes. Simulation studies were conducted to evaluate monitoring and improve the merits of health care. The monitoring biomarker literature is modest and robust conclusions are infrequent. We recommend improvements in research practice. Patients strongly endorsed the need for robust and conclusive research in this area. The clinical translation workstream focused on analytical and clinical validity. Cohorts were established for renal cell carcinoma (RCC) and renal transplantation (RT), with samples and patient data from multiple centres, as a rapid-access resource to evaluate the validity of biomarkers. Candidate biomarkers for RCC and RT were identified from the literature and their quality was evaluated and selected biomarkers were prioritised. The duration of follow-up was a limitation but biomarkers were identified that may be taken forward for clinical utility. In the third workstream, the ELUCIDATE trial registered 1303 patients and randomised 878 patients out of a target of 1000. The trial started late and recruited slowly initially but ultimately recruited with good statistical power to answer the key questions. ELF monitoring altered the patient process of care and may show benefits from the early introduction of interventions with further follow-up. The ELUCIDATE trial was an ‘exemplar’ trial that has demonstrated the challenges of evaluating biomarker strategies in ‘end-to-end’ RCTs and will inform future study designs.ConclusionsThe limitations in the programme were principally that, during the collection and curation of the cohorts of patients with RCC and RT, the pace of discovery of new biomarkers in commercial and non-commercial research was slower than anticipated and so conclusive evaluations using the cohorts are few; however, access to the cohorts will be sustained for future new biomarkers. The ELUCIDATE trial was slow to start and recruit to, with a late surge of recruitment, and so final conclusions about the impact of the ELF test on long-term outcomes await further follow-up. The findings from the three workstreams were used to synthesise a strategy and framework for future biomarker evaluations incorporating innovations in study design, health economics and health informatics.Trial registrationCurrent Controlled Trials ISRCTN74815110, UKCRN ID 9954 and UKCRN ID 11930.FundingThis project was funded by the NIHR Programme Grants for Applied Research programme and will be published in full inProgramme Grants for Applied Research; Vol. 6, No. 3. See the NIHR Journals Library website for further project information.
Collapse
Affiliation(s)
- Peter J Selby
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Rosamonde E Banks
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Walter Gregory
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Jenny Hewison
- Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | - William Rosenberg
- Institute for Liver and Digestive Health, Division of Medicine, University College London, London, UK
| | - Douglas G Altman
- Centre for Statistics in Medicine, University of Oxford, Oxford, UK
| | - Jonathan J Deeks
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Christopher McCabe
- Department of Emergency Medicine, University of Alberta Hospital, Edmonton, AB, Canada
| | - Julie Parkes
- Primary Care and Population Sciences Academic Unit, University of Southampton, Southampton, UK
| | | | | | - Maureen Twiddy
- Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | - Janine Bestall
- Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | | | - Tilly Hale
- LIVErNORTH Liver Patient Support, Newcastle upon Tyne, UK
| | - Jacqueline Dinnes
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Marc Jones
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | | | | | - Vicky Napp
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Alice Sitch
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Sudeep Tanwar
- Institute for Liver and Digestive Health, Division of Medicine, University College London, London, UK
| | - Naveen S Vasudev
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Paul Baxter
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Sue Bell
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - David A Cairns
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | | | - Neil Corrigan
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Peter Heudtlass
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Nick Hornigold
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Claire Hulme
- Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | - Michelle Hutchinson
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Carys Lippiatt
- Department of Specialist Laboratory Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | | - Roberta Longo
- Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | - Matthew Potton
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Stephanie Roberts
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Sheryl Sim
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Sebastian Trainor
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Matthew Welberry Smith
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - James Neuberger
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | | | - Paul Richardson
- Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, UK
| | - John Christie
- Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Neil Sheerin
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - William McKane
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Paul Gibbs
- Portsmouth Hospitals NHS Trust, Portsmouth, UK
| | | | - Naeem Soomro
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | | | - Grant D Stewart
- NHS Lothian, Edinburgh, UK
- Academic Urology Group, University of Cambridge, Cambridge, UK
| | - David Hrouda
- Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
8
|
Kashani-Sabet M, Nosrati M, Miller JR, Sagebiel RW, Leong SPL, Lesniak A, Tong S, Lee SJ, Kirkwood JM. Prospective Validation of Molecular Prognostic Markers in Cutaneous Melanoma: A Correlative Analysis of E1690. Clin Cancer Res 2017; 23:6888-6892. [PMID: 28790109 PMCID: PMC5690823 DOI: 10.1158/1078-0432.ccr-17-1317] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/20/2017] [Accepted: 08/04/2017] [Indexed: 12/14/2022]
Abstract
Purpose: To validate the prognostic impact of combined expression levels of three markers (SPP1, RGS1, and NCOA3) in melanoma specimens from patients enrolled in the E1690 clinical trial of high-dose or low-dose IFNα-2b versus observation.Experimental Design: Tissue was available from 248 patients. Marker expression was determined by digital imaging of immunohistochemically stained slides. The prognostic impact of each marker was first assessed by recording its expression value relative to the median. A multimarker index was then developed to combine marker expression levels by counting for each patient the number of markers with high expression. The impact of the multimarker index on relapse-free survival (RFS) and overall survival (OS) was assessed using Kaplan-Meier analysis, and both univariate and multivariate Cox regression analyses.Results: By Kaplan-Meier analysis, high multimarker expression scores were significantly predictive of RFS (P < 0.001) and OS (P < 0.001). Stepwise multivariate Cox regression analysis with backward elimination that included routine clinical and histologic prognostic factors revealed high multimarker expression scores and tumor thickness as the only factors significantly and independently predicting RFS and OS. Stepwise multivariate Cox regression analyses that also included treatment type and number of positive lymph nodes generated identical results for both RFS and OS. In the molecularly defined low-risk subgroup, patients treated with high-dose IFN had a significantly improved RFS compared with patients in the other two subgroups (P < 0.05).Conclusions: These results validate the independent impact of combined expression levels of SPP1, RGS1, and NCOA3 on survival of melanoma in a prospectively collected cohort. Clin Cancer Res; 23(22); 6888-92. ©2017 AACR.
Collapse
Affiliation(s)
- Mohammed Kashani-Sabet
- Center for Melanoma Research and Treatment, California Pacific Medical Center Research Institute, San Francisco, California.
| | - Mehdi Nosrati
- Center for Melanoma Research and Treatment, California Pacific Medical Center Research Institute, San Francisco, California
| | - James R Miller
- Center for Melanoma Research and Treatment, California Pacific Medical Center Research Institute, San Francisco, California
| | - Richard W Sagebiel
- Center for Melanoma Research and Treatment, California Pacific Medical Center Research Institute, San Francisco, California
| | - Stanley P L Leong
- Center for Melanoma Research and Treatment, California Pacific Medical Center Research Institute, San Francisco, California
| | - Andrew Lesniak
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Schuyler Tong
- Center for Melanoma Research and Treatment, California Pacific Medical Center Research Institute, San Francisco, California
| | - Sandra J Lee
- Dana-Farber Cancer Institute, Boston, Massachusetts
- ECOG-ACRIN Melanoma Committee, Philadelphia, Pennsylvania
| | - John M Kirkwood
- ECOG-ACRIN Melanoma Committee, Philadelphia, Pennsylvania
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| |
Collapse
|
9
|
Osteopontin at the Crossroads of Inflammation and Tumor Progression. Mediators Inflamm 2017; 2017:4049098. [PMID: 28769537 PMCID: PMC5523273 DOI: 10.1155/2017/4049098] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/04/2017] [Indexed: 12/13/2022] Open
Abstract
Complex interactions between tumor and host cells regulate systemic tumor dissemination, a process that begins early at the primary tumor site and goes on until tumor cells detach themselves from the tumor mass and start migrating into the blood or lymphatic vessels. Metastatic cells colonize the target organs and are capable of surviving and growing at distant sites. In this context, osteopontin (OPN) appears to be a key determinant of the crosstalk between cancer cells and the host microenvironment, which in turn modulates immune evasion. OPN is overexpressed in several human carcinomas and has been implicated in inflammation, tumor progression, and metastasis. Thus, it represents one of the most attracting targets for cancer therapy. Within the tumor mass, OPN is secreted in various forms either by the tumor itself or by stroma cells, and it can exert either pro- or antitumorigenic effects according to the cell type and tumor microenvironment. Thus, targeting OPN for therapeutic purposes needs to take into account the heterogeneous functions of the multiple OPN forms with regard to cancer formation and progression. In this review, we will describe the role of systemic, tumor-derived, and stroma-derived OPN, highlighting its pivotal role at the crossroads of inflammation and tumor progression.
Collapse
|
10
|
Prasmickaite L, Berge G, Bettum IJ, Aamdal S, Hansson J, Bastholt L, Øijordsbakken M, Boye K, Mælandsmo GM. Evaluation of serum osteopontin level and gene polymorphism as biomarkers: analyses from the Nordic Adjuvant Interferon alpha Melanoma trial. Cancer Immunol Immunother 2015; 64:769-76. [PMID: 25832001 PMCID: PMC11029450 DOI: 10.1007/s00262-015-1686-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/19/2015] [Indexed: 01/26/2023]
Abstract
Malignant melanoma is highly aggressive cancer with poor prognosis and few therapeutic options. Interferon alpha (IFN-α) has been tested as adjuvant immunotherapy in high-risk melanoma patients in a number of studies, but its beneficial role is controversial. Although IFN-α treatment can prolong relapse-free survival, the effect on overall survival is not significant. However, a small subset of patients benefits from the treatment, signifying the need for biomarkers able to identify a responding subgroup. Here we evaluated whether serum osteopontin (OPN) could function as a biomarker identifying patients with poor prognosis that might benefit from IFN-α. The choice of osteopontin was based on the knowledge about the dual role of this protein in cancer and immune response, an apparent association between OPN and IFN signaling and a prognostic value of OPN in multiple other tumor types. Serum samples from 275 high-risk melanoma patients enrolled in the Nordic Adjuvant IFN Melanoma trial were analyzed for circulating OPN concentrations and OPN promoter polymorphisms in position -443. The potential relation between serum OPN levels, the genotypes and survival in non-treated patients and patients receiving adjuvant IFN-α was investigated. Although slightly better survival was observed in the treated patients that had high levels of OPN, the difference was not statistically significant. In conclusion, serum OPN (its level or the genotype) cannot distinguish melanoma patients with poor prognosis, or patients that might benefit from adjuvant treatment with IFN-α.
Collapse
Affiliation(s)
- Lina Prasmickaite
- Division of Cancer, Surgery and Transplantation, Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0310, Montebello, Oslo, Norway,
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kiss T, Ecsedi S, Vizkeleti L, Koroknai V, Emri G, Kovács N, Adany R, Balazs M. The role of osteopontin expression in melanoma progression. Tumour Biol 2015; 36:7841-7. [PMID: 25944164 DOI: 10.1007/s13277-015-3495-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/23/2015] [Indexed: 12/12/2022] Open
Abstract
It was shown that osteopontin (OPN), a glycophosphoprotein, plays divergent roles in cancer progression. In addition to multiple intra- and extracellular functions, it facilitates migration of tumour cells, has crucial role in cell adhesion and is associated with increased metastasis formation. In previous studies, we performed global gene expression profiling on a series of primary melanoma samples and found that OPN was significantly overexpressed in ulcerated melanomas. The major purpose of this study was to define OPN expression in primary melanomas with differing biological behaviours. OPN mRNA expression was analysed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) in primary melanoma tissues. Immunohistochemistry was performed using a tissue microarray. Cox regression tests were used for survival analysis. Greater than 50 % of the tissues exhibited high protein expression that was significantly associated with tumour thickness and metastasis. OPN mRNA expression was significantly increased in thicker melanomas and lesions with an ulcerated surface. Increased expression was primarily detected in advanced-stage tumours. A multivariate Cox regression analysis revealed that high OPN expression, tumour thickness and metastasis were significantly associated with reduced relapse-free survival. In summary, high OPN mRNA and protein expression were associated with a less favourable clinical outcome of primary melanoma patients. We determined that OPN is a significant predictive factor for the survival of primary melanoma patients. Based on our and others data, the high expression of OPN may have a crucial stimulatory role in tumour progression and metastasis formation, which, thus, have been proposed as potential targets for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Timea Kiss
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Hungary, 4028, Debrecen, Kassai str. 26/b., Hungary.,MTA-DE Public Health Research Group, University of Debrecen, Debrecen, Hungary
| | - Szilvia Ecsedi
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Hungary, 4028, Debrecen, Kassai str. 26/b., Hungary.,MTA-DE Public Health Research Group, University of Debrecen, Debrecen, Hungary
| | - Laura Vizkeleti
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Hungary, 4028, Debrecen, Kassai str. 26/b., Hungary.,MTA-DE Public Health Research Group, University of Debrecen, Debrecen, Hungary
| | - Viktoria Koroknai
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Hungary, 4028, Debrecen, Kassai str. 26/b., Hungary.,MTA-DE Public Health Research Group, University of Debrecen, Debrecen, Hungary
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Nora Kovács
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Hungary, 4028, Debrecen, Kassai str. 26/b., Hungary
| | - Roza Adany
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Hungary, 4028, Debrecen, Kassai str. 26/b., Hungary.,MTA-DE Public Health Research Group, University of Debrecen, Debrecen, Hungary
| | - Margit Balazs
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Hungary, 4028, Debrecen, Kassai str. 26/b., Hungary. .,MTA-DE Public Health Research Group, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
12
|
Srungaram P, Rule JA, Yuan HJ, Reimold A, Dahl B, Sanders C, Lee WM. Plasma osteopontin in acute liver failure. Cytokine 2015; 73:270-6. [PMID: 25802196 DOI: 10.1016/j.cyto.2015.02.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 02/13/2015] [Accepted: 02/23/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Osteopontin (OPN) is a novel phosphoglycoprotein expressed in Kupffer cells that plays a pivotal role in activating natural killer cells, neutrophils and macrophages. Measuring plasma OPN levels in patients with acute liver failure (ALF) might provide insights into OPN function in the setting of massive hepatocyte injury. METHODS OPN levels were measured using a Quantikine® ELISA assay on plasma from 105 consecutive ALF patients enrolled by the US Acute Liver Failure Study Group, as well as controls including 40 with rheumatoid arthritis (RA) and 35 healthy subjects both before, and 1 and 3 days after undergoing spine fusion (SF) surgery as a model for acute inflammation. RESULTS Median plasma OPN levels across all etiologies of ALF patients were elevated 10- to 30-fold: overall median 1055ng/mL; range: 33-19,127), when compared to healthy controls (median in pre-SF patients: 41ng/mL; range 2.6-86.4). RA and SF post op patients had elevated OPN levels (37ng/mL and 198ng/mL respectively), well below those of the ALF patients. Median OPN levels were highest in acetaminophen (3603ng/mL) and ischemia-related ALF (4102ng/mL) as opposed to viral hepatitis (706ng/mL), drug-induced liver injury (353ng/mL) or autoimmune hepatitis (436ng/mL), correlating with the degree of hepatocellular damage, as reflected by aminotransferase values (R value: 0.47 for AST, p<0.001). CONCLUSIONS OPN levels appeared to correlate with degree of liver necrosis in ALF. Very high levels were associated with hyperacute injury and good outcomes. Whether OPN exerts a protective effect in limiting disease progression in this setting remains uncertain.
Collapse
Affiliation(s)
- Praveen Srungaram
- Division of Digestive and Liver Diseases, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
| | - Jody A Rule
- Division of Digestive and Liver Diseases, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
| | - He Jun Yuan
- Division of Digestive and Liver Diseases, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
| | - Andreas Reimold
- Rheumatology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
| | - Benny Dahl
- Spine Unit, Rigshospitalet, Copenhagen, Denmark
| | - Corron Sanders
- Division of Digestive and Liver Diseases, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
| | - William M Lee
- Division of Digestive and Liver Diseases, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
13
|
Shevde LA, Samant RS. Role of osteopontin in the pathophysiology of cancer. Matrix Biol 2014; 37:131-41. [PMID: 24657887 PMCID: PMC5916777 DOI: 10.1016/j.matbio.2014.03.001] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/10/2014] [Accepted: 03/10/2014] [Indexed: 12/12/2022]
Abstract
Osteopontin (OPN) is a multifunctional cytokine that impacts cell proliferation, survival, drug resistance, invasion, and stem like behavior. Due to its critical involvement in regulating cellular functions, its aberrant expression and/or splicing is functionally responsible for undesirable alterations in disease pathologies, specifically cancer. It is implicated in promoting invasive and metastatic progression of many carcinomas. Due to its autocrine and paracrine activities OPN has been shown to be a crucial mediator of cellular cross talk and an influential factor in the tumor microenvironment. OPN has been implicated as a prognostic and diagnostic marker for several cancer types. It has also been explored as a possible target for treatment. In this article we hope to provide a broad perspective on the importance of OPN in the pathophysiology of cancer.
Collapse
Affiliation(s)
- Lalita A Shevde
- Department of Pathology and Comprehensive Cancer Center, The University of Alabama at Birmingham, United States.
| | - Rajeev S Samant
- Department of Pathology and Comprehensive Cancer Center, The University of Alabama at Birmingham, United States.
| |
Collapse
|
14
|
Chung HJ, Mahalingam M. Angiogenesis, vasculogenic mimicry and vascular invasion in cutaneous malignant melanoma – implications for therapeutic strategies and targeted therapies. Expert Rev Anticancer Ther 2014; 14:621-39. [DOI: 10.1586/14737140.2014.883281] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|