1
|
Li Q, Tang Y, Zuo JB, Han H, Tu GX, Chen C. CENP-H as a new prognostic biomarker for tumors: a real-world literature review. Front Oncol 2025; 15:1521988. [PMID: 40071086 PMCID: PMC11893413 DOI: 10.3389/fonc.2025.1521988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 02/07/2025] [Indexed: 03/14/2025] Open
Abstract
Centromere protein H (CENP-H) is an important component of a functional centromere. Studies have demonstrated that CENP-H is overexpressed in renal cell, gastric, hypopharyngeal squamous cell, nasopharyngeal, endometrial, lung, cervical, esophageal, liver, colorectal, oral squamous cell, breast, and tongue carcinomas. CENP-H overexpression is positively correlated with a poor prognosis, pathological stage, T stage, and lymph node metastasis in patients with the above carcinomas. CENP-H can promote cancer growth and metastasis through PI3K/AKT, survivin, and mitochondrial apoptosis signaling mechanisms, and it can be regulated by long non-coding ribonucleic acid (lncRNA) plasmacytoma variant translocation 1 (PVT1)/miR-612, Sp1, or Sp3. This review aims to summarize the expression of CENP-H, the relationship between CENP-H expression and prognostic features, growth and metastasis of cancer in patients, as well as the mechanism of CENP-H in cancer. It also proposes a new candidate molecule for treating patients with cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Cheng Chen
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
2
|
Yang Z, Chen W, Liu Y, Niu Y. Recent updates of centromere proteins in hepatocellular carcinoma: a review. Infect Agent Cancer 2025; 20:7. [PMID: 39915786 PMCID: PMC11800463 DOI: 10.1186/s13027-024-00630-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/16/2024] [Indexed: 02/11/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related death worldwide, with approximately 800,000 deaths worldwide each year. Owing to the atypical early symptoms and characteristics of HCC, over 80% of HCC patients cannot receive curative treatment. The treatment of HCC is facing a bottleneck, and new treatment methods are urgently needed. Since the pathogenesis of HCC is not yet clear, identifying the molecular mechanisms and therapeutic targets related to it is crucial. Centromeres are considered special deoxyribonucleic acid (DNA) sequences with highly repetitive sequences that are physically connected to the spindle during cell division, ensuring equal division of genetic material between daughter cells. The numerous proteins that aggregate on this sequence during cell division are called centromere proteins (CENPs). Currently, numerous studies have shown that CENPs are abnormally expressed in tumor cells and are associated with patient prognosis. The abnormal expression of CENPs is a key cause of chromosomal instability. Furthermore, chromosomal instability is a common characteristic of the majority of tumors. Chromosomal instability can lead to uncontrolled and sustained division and proliferation of malignant tumors. Therapeutic plans targeting CENPs play important roles in the treatment of HCC. For example, small ribonucleic acid (RNA) can silence CENP expression and prevent the occurrence and development of liver cancer. In recent years, studies of HCC-targeting CENPs have gradually increased but are still relatively novel, requiring further systematic elaboration. In this review, we provide a detailed introduction to the characteristics of CENPs and discuss their roles in HCC. In addition, we discuss their application prospects in future clinical practice.
Collapse
Affiliation(s)
- Zhongyuan Yang
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, 430030, Hubei, China.
| | - Wenjiao Chen
- Department of Dermatology, Wuhan Hankou Hospital, Wuhan, Hubei, China
| | - Yunhui Liu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yuxin Niu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, 430030, Hubei, China
| |
Collapse
|
3
|
Wang J, Luo J, Yang S, Deng Y, Chen P, Tan Y, Liu Y. Development and validation of disulfidptosis-related genes signature for patients with glioma. Discov Oncol 2024; 15:758. [PMID: 39692962 DOI: 10.1007/s12672-024-01664-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Disulfidptosis has recently emerged as a novel form of regulated cell death (RCD). Evasion of cell death is a hallmark of cancer, and the resistance of many tumors to apoptosis-inducing therapies has heightened interest in exploring alternative RCD mechanisms. METHODS Transcriptomic and clinical data were obtained from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Chinese Glioma Genome Atlas (CGGA). Glioma samples were classified using non-negative matrix factorization (NMF). A predictive model was constructed using Lasso regression analysis, and its performance was evaluated through receiver operating characteristic (ROC) and Kaplan-Meier survival analyses. The relationship between the model and the tumor immune microenvironment (TIME) as well as treatment sensitivity was also assessed. Finally, we validated the expression of key signature genes in glioma. RESULTS Glioma samples were categorized into two distinct subtypes based on disulfidptosis-related genes, showing significant differences in overall survival (OS) and progression-free survival (PFS) between the subtypes. A genetic risk score model was then developed using these genes. A nomogram predicting OS was constructed using the risk score and clinical variables. Patients were stratified into low- and high-risk groups based on the median risk score from the TCGA cohort. Low-risk patients had significantly better outcomes compared to high-risk patients (TCGA cohort, OS: p < 0.001; PFS: p < 0.001; CGGA cohort, OS: p < 0.001). The risk score was associated with HLA expression, immune checkpoint genes, immune cell infiltration, immune function, tumor mutation burden, tumor stemness score, and drug sensitivity. Lastly, the expression of 11 signature genes was confirmed in glioma tissues. CONCLUSIONS The disulfidptosis-related gene-based risk score model effectively predicted glioma outcomes and highlighted the role of disulfidptosis-related genes in tumor immunity. This study offers potential new avenues for glioma treatment by targeting disulfidptosis.
Collapse
Affiliation(s)
- Jia Wang
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Junchi Luo
- Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Sha Yang
- Guizhou University Medical College, Guiyang, 550025, Guizhou Province, China
| | - Yongbing Deng
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Peng Chen
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Ying Tan
- Zunyi Medical University, Zunyi, Guizhou Province, China
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yang Liu
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China.
| |
Collapse
|
4
|
Si LH, Sun GC, Liu ZW, Gu SY, Yan CH, Xu JY, Jia Y. High expression levels of centromere protein O participates in cell proliferation of human ovarian cancer. J Ovarian Res 2024; 17:126. [PMID: 38890751 PMCID: PMC11184697 DOI: 10.1186/s13048-024-01452-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Ovarian cancer is a common malignant tumor in women, with a high mortality rate ranking first among gynecological tumors. Currently, there is insufficient understanding of the causes, pathogenesis, recurrence and metastasis of ovarian cancer, and early diagnosis and treatment still face great challenges. The sensitivity and specificity of existing ovarian cancer screening methods are still unsatisfactory. Centromere protein O (CENP-O) is a recently discovered structural centromere protein that is involved in cell death and is essential for spindle assembly, chromosome separation, and checkpoint signaling during mitosis. The abnormal high expression of CENP-O was detected in various tumors such as bladder cancer and gastric cancer, and it participates in the regulation of tumor cell proliferation. In this study, we detect the expression abundance of CENP-O mRNA in different ovarian cancer cells ( ES-2, A2780, Caov-3, OVCAR-3 and SK-OV-3). The biological function changes of cell proliferation and apoptosis were detected and the role of CENP-O in ovarian cancer cell proliferation and apoptosis was explored by knocking down the expression of CENP-O gene. The results showed that CENP-O gene was significantly expressed in 5 types of ovarian cancer cell lines. After knocking down the CENP-O gene, the proliferation and cloning ability of ovarian cancer cells decreased, and the apoptosis increased. This study indicates that CENP-O has the potential to be a molecular therapeutic target, and downregulating the expression of CENP-O gene can break the unlimited proliferation ability of cancer cells and promote their apoptosis, providing a foundation and new ideas for subsequent molecular mechanism research and targeted therapy.
Collapse
Affiliation(s)
- Li-Hui Si
- Department of Obstetrics and Gynecology, The second Hospital of Jilin University, Changchun, Jilin, China
| | - Guang-Chao Sun
- Department of Neurosurgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zi-Wei Liu
- Department of Obstetrics and Gynecology, The second Hospital of Jilin University, Changchun, Jilin, China
| | - Shi-Yu Gu
- Department of Obstetrics and Gynecology, The second Hospital of Jilin University, Changchun, Jilin, China
| | - Chu-Han Yan
- Department of Obstetrics and Gynecology, The second Hospital of Jilin University, Changchun, Jilin, China
| | - Jin-Yuan Xu
- Department of Obstetrics and Gynecology, The second Hospital of Jilin University, Changchun, Jilin, China
| | - Yan Jia
- Department of Obstetrics and Gynecology, The second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
5
|
Wu F, Li G, Shen H, Huang J, Liu Z, Zhu Y, Zhong Q, Ou R, Zhang Q, Liu S. Pan-Cancer Analysis Reveals CENPI as a Potential Biomarker and Therapeutic Target in Adrenocortical Carcinoma. J Inflamm Res 2023; 16:2907-2928. [PMID: 37465344 PMCID: PMC10350421 DOI: 10.2147/jir.s408358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
Background Centromere protein I (CENPI) has been shown to affect the tumorigenesis of breast and colorectal cancers. However, its biological role and prognostic value in other kinds of cancer, especially adrenocortical carcinoma (ACC), remained to be further investigated. Methods Various bioinformatics tools were adopted for exploring the significance of differential expression of CENPI in several malignant tumors from databases such as Depmap portal, GTEx, and TCGA. ACC was selected for further analyzed, and information such as clinicopathological features, the prognostic outcome of diverse subgroups, differentially expressed genes (DEGs), co-expression genes, as well as levels of tumor-infiltrating immune cells (TIIC), was extracted from multiple databases. To verify the possibility of CENPI as a therapeutic target in ACC, drug sensitivity assay and si-RNA mediate knockdown of CENPI were carried out. Results The pan-cancer analyses showed that the CENPI mRNA expression levels differed significantly among most cancer types. Additionally, a high precision in cancer prediction and close relation with cancer survival indicated that CENPI could be a potential candidate biomarker to diagnose and predict cancer prognosis. In ACC, CENPI was closely related to multiple clinical characteristics, such as pathological stage and primary therapy outcome. High CENPI levels predicted poor overall survival (OS), progression-free interval (PFI), and disease-specific survival (DSS) of ACC patients, particularly for different clinical subgroups. Moreover, the expression of CENPI showed positive relationship to Th2 cells but negatively related to most of the TIICs. Furthermore, drug sensitivity assay showed that vorinostat inhibit CENPI expression and ACC cell growth. Additionally, si-RNA mediated knockdown of CENPI inhibited ACC cell growth and invasion and showed synergistic anti-proliferation effect with AURKB inhibitor barasertib. Conclusion Pan-cancer analysis demonstrated that CENPI is a potential diagnostic and prognostic biomarker in various cancers as well as an anti-ACC therapeutic target.
Collapse
Affiliation(s)
- Feima Wu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, People’s Republic of China
| | - Guangchao Li
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, People’s Republic of China
| | - Huijuan Shen
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, People’s Republic of China
| | - Jing Huang
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, People’s Republic of China
| | - Zhi Liu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, People’s Republic of China
| | - Yangmin Zhu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, People’s Republic of China
| | - Qi Zhong
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, People’s Republic of China
| | - Ruiming Ou
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, People’s Republic of China
| | - Qing Zhang
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, People’s Republic of China
| | - Shuang Liu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
6
|
Wang Q, Gou X, Liu L, Zhang T, Yuan H, Zhao Y, Xie Y, Zhou J, Song K. HnRNPAB is an independent prognostic factor in non‑small cell lung cancer and is involved in cell proliferation and metastasis. Oncol Lett 2023; 25:215. [PMID: 37153057 PMCID: PMC10157350 DOI: 10.3892/ol.2023.13801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/15/2023] [Indexed: 05/09/2023] Open
Abstract
Heterogeneous nuclear ribonucleoprotein A/B (hnRNPAB) is an RNA binding protein that is closely associated with the biological function and metabolism of RNA, which is involved in the malignant transformation of various tumor cells. However, the role and mechanisms of hnRNPAB in non-small cell lung cancer (NSCLC) are still unclear. In the present study, the expression levels of hnRNPAB in NSCLC and normal tissues were analyzed using the human protein atlas database and UALCAN database. The clinical significance of hnRNPAB was assayed using the data of NSCLC cases from The Cancer Genome Atlas database. Subsequently, two stable NSCLC cell lines with hnRNPAB knockdown were constructed and the effects of hnRNPAB silencing on cell viability, migration, invasion and epithelial-mesenchymal transition (EMT) were identified. Genes associated with hnRNPAB expression in NSCLC were screened using the Linked Omics database and verified by quantitative real-time PCR (RT-qPCR). The database analysis indicated that hnRNPAB was mainly expressed in the nucleus of NSCLC cells. Compared with the normal tissues, hnRNPAB expression was overexpressed in NSCLC tissues and was closely associated with the overall survival, sex, tumor-node-metastases classification, and poor prognosis of patients with lung adenocarcinoma. Functionally, knockdown of hnRNPAB inhibited the proliferation, migration, invasion and EMT of NSCLC cells and arrested the cell cycle at G1 phase. Mechanistically, the bioinformatics analysis and RT-qPCR verification demonstrated that hnRNPAB knockdown led to a significant expression change of genes associated with tumorigenesis. In conclusion, the present study indicated that hnRNPAB played an important role in the malignant transformation of NSCLC, supporting the significance of hnRNPAB as a novel potential therapeutic target for the early diagnosis and prognosis of NSCLC.
Collapse
Affiliation(s)
- Qinrong Wang
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Xuanjing Gou
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Lingling Liu
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Ting Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Hang Yuan
- DNA Laboratory, Forensic Center of Public Security of Xiangyang, Xiangyang, Hubei 441000, P.R. China
| | - Yan Zhao
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yuan Xie
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Jianjiang Zhou
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Kewei Song
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Department of Sport and Health, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
7
|
Integrative analysis of the expression and prognosis for CENPs in ovarian cancer. Genomics 2022; 114:110445. [DOI: 10.1016/j.ygeno.2022.110445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/19/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022]
|
8
|
High mRNA Expression of CENPL and Its Significance in Prognosis of Hepatocellular Carcinoma Patients. DISEASE MARKERS 2021; 2021:9971799. [PMID: 34457090 PMCID: PMC8387183 DOI: 10.1155/2021/9971799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/30/2021] [Accepted: 07/31/2021] [Indexed: 12/11/2022]
Abstract
Centromere proteins (CENPs) are the main constituent proteins of kinetochore, which are essential for cell division. In recent years, several studies have revealed that several CENPs were aberrantly expressed in hepatocellular carcinoma (HCC). However, numerous centromere proteins have not been studied in HCC. In this study, we used databases of Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), the Kaplan-Meier Plotter, cBioPortal, the Human Protein Atlas (HPA), and TIMER (Tumor Immune Estimation Resource) and immunohistochemical staining of clinical specimens to investigate the expression of 15 major centromere proteins in HCC to evaluate their potential prognostic value. We found that the mRNA levels of 4 out of 15 centromere proteins (CENPL, CENPQ, CENPR, and CENPU) were significantly higher in HCC than in normal tissues, and their mRNA levels were associated with the tumor stages (p values < 0.01). Patients with higher mRNA levels of CENPL had poorer overall survival, progression-free survival, relapse-free survival, and disease-specific survival (p values < 0.05). Furthermore, the higher levels of CENPL mRNA were associated with worse overall survival in males without hepatitis virus infection (p values < 0.05). The protein expression level of CENPL in human HCC tissue was higher than that in normal liver tissue. In addition, the expression of CENPL was positively correlated with the levels of the tumor-infiltrating lymphocytes. The results suggest that the high mRNA expression of CENPL may be a potential predictor of prognosis in HCC patients.
Collapse
|
9
|
Tahmasebi-Birgani M, Ansari H, Carloni V. Defective mitosis-linked DNA damage response and chromosomal instability in liver cancer. Biochim Biophys Acta Rev Cancer 2019; 1872:60-65. [PMID: 31152819 DOI: 10.1016/j.bbcan.2019.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/29/2019] [Accepted: 05/11/2019] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC), the most common form of liver cancer, represents a health problem in hepatic viruses-eradicating era because obesity, type 2 diabetes, and nonalcoholic steatohepatitis (NASH) are considered emerging pathogenic factors. Metabolic disorders underpin mitotic errors that lead to numerical and structural chromosome aberrations in a significant proportion of cell divisions. Here, we review that genomically unstable HCCs show evidence for a paradoxically DNA damage response (DDR) which leads to ongoing chromosome segregation errors. The understanding of DDR induced by defective mitoses is crucial to our ability to develop or improve liver cancer therapeutic strategies.
Collapse
Affiliation(s)
- Maryam Tahmasebi-Birgani
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Ansari
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vinicio Carloni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| |
Collapse
|
10
|
Menyhárt O, Nagy Á, Győrffy B. Determining consistent prognostic biomarkers of overall survival and vascular invasion in hepatocellular carcinoma. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181006. [PMID: 30662724 PMCID: PMC6304123 DOI: 10.1098/rsos.181006] [Citation(s) in RCA: 336] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/08/2018] [Indexed: 05/03/2023]
Abstract
Background: Potential prognostic biomarker candidates for hepatocellular carcinoma (HCC) are abundant, but their generalizability is unexplored. We cross-validated markers of overall survival (OS) and vascular invasion in independent datasets. Methods: The literature search yielded 318 genes related to survival and 52 related to vascular invasion. Validation was performed in three datasets (RNA-seq, n = 371; Affymetrix arrays, n = 91; Illumina gene chips, n = 135) by uni- and multivariate Cox regression and Mann-Whitney U-test, separately for Asian and Caucasian patients. Results: One hundred and eighty biomarkers remained significant in Asian and 128 in Caucasian subjects at p < 0.05. After multiple testing correction BIRC5 (p = 1.9 × 10-10), CDC20 (p = 2.5 × 10-9) and PLK1 (p = 3 × 10-9) endured as best performing genes in Asian patients; however, none remained significant in the Caucasian cohort. In a multivariate analysis, significance was reached by stage (p = 0.0018) and expression of CENPH (p = 0.0038) and CDK4 (p = 0.038). KIF18A was the only gene predicting vascular invasion in the Affymetrix and Illumina cohorts (p = 0.003 and p = 0.025, respectively). Conclusion: Overall, about half of biomarker candidates failed to retain prognostic value and none were better than stage predicting OS. Impact: Our results help to eliminate biomarkers with limited capability to predict OS and/or vascular invasion.
Collapse
Affiliation(s)
- Otília Menyhárt
- 2nd Department of Pediatrics, Semmelweis University, H-1094 Budapest, Hungary
- MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Ádám Nagy
- 2nd Department of Pediatrics, Semmelweis University, H-1094 Budapest, Hungary
- MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Balázs Győrffy
- 2nd Department of Pediatrics, Semmelweis University, H-1094 Budapest, Hungary
- MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
- Author for correspondence: Balázs Győrffy e-mail:
| |
Collapse
|
11
|
Ding N, Li R, Shi W, He C. CENPI is overexpressed in colorectal cancer and regulates cell migration and invasion. Gene 2018; 674:80-86. [PMID: 29936263 DOI: 10.1016/j.gene.2018.06.067] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/15/2018] [Accepted: 06/20/2018] [Indexed: 01/05/2023]
Abstract
Centromere protein I (CENPI),an important member of centromere protein family, has been suggest to serve as a oncogene in breast cancer, but the clinical significance and biological function of CENPI in colorectal cancer (CRC) is still unclear. In our results, we found CENPI was overexpressed in CRC tissues and cells, and associated with clinical stage, tumor depth, lymph node metastasis, distant metastasis and differentiation in CRC patients. However, there was no significant association between CENPI protein expression and overall survival time in colon cancer patients and rectal cancer patients through analyzing TCGA survival data. Moreover, CENPI mRNA and protein were increased in metastatic lymph nodes compared with primary CRC tissues. Down-regulation of CENPI expression suppresses CRC cell migration, invasion and epithelial mesenchymal transition process. In conclusion, CENPI is overexpressed in CRC and functions as oncogene in modulating CRC cell migration, invasion and EMT process.
Collapse
Affiliation(s)
- Na Ding
- Clinical Medical College, Weifang Medical University, No.7166 Baotong Road West, Weifang 261053, Shandong, China
| | - Rongxin Li
- Department of Pharmacy, Affiliated Hospital of Weifang Medical University, No.2428 Yuhe Road, Weifang 261031, Shandong, China
| | - Wenhao Shi
- Clinical Medical College, Binzhou Medical University, No.346 Guanhai Road, Yantai 264003, Shandong, China
| | - Cui He
- Department of Gastrointestinal Surgery, Affiliated Hospital of Weifang Medical University, No.2428 Yuhe Road, Weifang 261031, Shandong, China.
| |
Collapse
|
12
|
Carloni V, Lulli M, Madiai S, Mello T, Hall A, Luong TV, Pinzani M, Rombouts K, Galli A. CHK2 overexpression and mislocalisation within mitotic structures enhances chromosomal instability and hepatocellular carcinoma progression. Gut 2018; 67:348-361. [PMID: 28360097 DOI: 10.1136/gutjnl-2016-313114] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 03/02/2017] [Accepted: 03/04/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Chromosomal instability (CIN) is the most common form of genomic instability, which promotes hepatocellular carcinoma (HCC) progression by enhancing tumour heterogeneity, drug resistance and immunity escape. CIN per se is an important factor of DNA damage, sustaining structural chromosome abnormalities but the underlying mechanisms are unknown. DESIGN DNA damage response protein checkpoint kinase 2 (Chk2) expression was evaluated in an animal model of diethylnitrosamine-induced HCC characterised by DNA damage and elevated mitotic errors. Chk2 was also determined in two discrete cohorts of human HCC specimens. To assess the functional role of Chk2, gain on and loss-of-function, mutagenesis, karyotyping and immunofluorescence/live imaging were performed by using HCT116, Huh7 and human hepatocytes immortalised with hTERT gene (HuS). RESULTS We demonstrate that mitotic errors during HCC tumorigenesis cause lagging chromosomes/DNA damage and activation of Chk2. Overexpression/phosphorylation and mislocalisation within the mitotic spindle of Chk2 contributes to induce lagging chromosomes. Lagging chromosomes and mitotic activity are reversed by knockdown of Chk2. Furthermore, upregulated Chk2 maintains mitotic activity interacting with Aurora B kinase for chromosome condensation and cytokinesis. The forkhead-associated domain of Chk2 is required for Chk2 mislocalisation to mitotic structures. In addition, retinoblastoma protein phosphorylation contributes to defective mitoses. A cohort and independent validation cohort show a strong cytoplasm to nuclear Chk2 translocation in a subset of patients with HCC. CONCLUSIONS The study reveals a new mechanistic insight in the coinvolvement of Chk2 in HCC progression. These findings propose Chk2 as a putative biomarker to detect CIN in HCC providing a valuable support for clinical/therapeutical management of patients.
Collapse
Affiliation(s)
- Vinicio Carloni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences, General Pathology Unit, University of Florence, Florence, Italy
| | - Stefania Madiai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Tommaso Mello
- Department of Experimental and Clinical Biomedical Sciences, Gastroenterology Unit, University of Florence, Florence, Italy
| | - Andrew Hall
- Department of Cellular Pathology, Royal Free Hospital, London, UK
| | - Tu Vinh Luong
- Department of Cellular Pathology, Royal Free Hospital, London, UK
| | - Massimo Pinzani
- University College London (UCL) Institute for Liver & Digestive Health, London, UK
| | - Krista Rombouts
- University College London (UCL) Institute for Liver & Digestive Health, London, UK
| | - Andrea Galli
- Department of Experimental and Clinical Biomedical Sciences, Gastroenterology Unit, University of Florence, Florence, Italy
| |
Collapse
|
13
|
Wu W, Wu F, Wang Z, Di J, Yang J, Gao P, Jiang B, Su X. CENPH Inhibits Rapamycin Sensitivity by Regulating GOLPH3-dependent mTOR Signaling Pathway in Colorectal Cancer. J Cancer 2017; 8:2163-2172. [PMID: 28819418 PMCID: PMC5560133 DOI: 10.7150/jca.19940] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/25/2017] [Indexed: 12/29/2022] Open
Abstract
Background: Centromere protein H (CENPH) is known as a fundamental component of the active centromere complex, and its overexpression is correlated with poor prognosis in various solid tumors. mTOR inhibitor rapamycin has been shown to possess antitumor activity, as well as prevent intestinal tumorigenesis. However, the prognostic value of CENPH in colorectal cancer (CRC) and the role of CENPH in rapamycin sensitivity remain unknown. Materials and methods: The effect of CENPH on the cell proliferation, clonogenicity, and cell response to rapamycin in CRC were evaluated by MTT and/or colony formation assays. For the underlying mechanisms, the interaction between CENPH and GOLPH3 were detected by co-immunoprecipitation, GST pull-down, and His-tag pull-down assays, as well as the laser scanning confocal microscopy. The status of kinases in mTOR signaling was determined by Western blot. Finally, the clinical significance of CENPH was analyzed using public CRC datasets with CENPH transcripts and clinical information. Results: CENPH inhibited CRC malignant phenotypes, conferred reduced sensitivity to rapamycin, and attenuated both mTORC1 and mTORC2 in mTOR signaling pathway through the interaction with golgi phosphoprotein 3 (GOLPH3), which has been identified as a potential oncogene and modulates the response to rapamycin. Moreover, elevated levels of CENPH were detected in CRC tissues, compared with normal colorectal tissues. High levels of CENPH expression gradually decreased according to CRC tumor stages. Patients with high CENPH expression had favorable survival. Conclusions: Our results suggest that CENPH inhibits rapamycin sensitivity by regulating GOLPH3 dependent mTOR pathway. High CENPH expression is associated with better prognosis in CRC patients. Taken together, CENPH may serve as a potential predictor for rapamycin sensitivity and therapeutic target for CRC patients.
Collapse
Affiliation(s)
- Wei Wu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Fan Wu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zaozao Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jiabo Di
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jie Yang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Pin Gao
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Beihai Jiang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiangqian Su
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
14
|
Overexpression of centromere protein K (CENP-K) gene in hepatocellular carcinoma promote cell proliferation by activating AKT/TP53 signal pathway. Oncotarget 2017; 8:73994-74005. [PMID: 29088763 PMCID: PMC5650318 DOI: 10.18632/oncotarget.18172] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 04/28/2017] [Indexed: 01/14/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the high-incidence malignant tumors with very poor prognosis. Identification of potential oncogenes is critical to discovering novel therapeutic targets for many cancers, including HCC. In our previous studies, using microarray technology, we conformed that CENP-K was overexpressed in HCCs. However, whether the overexpression of CENP-K contributes to hepatocarcinogenesis remains unclear. In this study, we found that CENP-K was significantly up-regulated in 60% (63 of 105) of HCC specimens at the mRNA level compared to adjacent non-cancerous liver specimens, as determined by RT-qPCR. Immunohistochemical staining confirmed similar results at the protein level. Interestingly, we found that the DNA methylation status of the CENP-K promoter was significantly reduced in HCC specimens with increased CENP-K expression. In addition, CENP-K mRNA expression level was positively correlated with the level of alpha-fetoprotein (AFP) (≥ 400 ng/ml) and tumor size (≥ 3 cm) (p < 0.05). CENP-K overexpression promoted proliferation and migration in SMMC7721 and Focus cells. In contrast, knock down of CENP-K significantly inhibited the growth of MHCC-LM3 and QGY7703 cells. Furthermore, we found that overexpression of CENP-K stimulated the tyrosine phosphorylation of the AKT and MDM2 proteins, but inhibited tyrosine phosphorylation of the TP53 protein. Our data suggest that the up-regulation of CENP-K, a potential oncotarget gene, may be modulated by epigenetic events and can contribute to hepatocarcinogenesis.
Collapse
|
15
|
TXNRD1 Is an Unfavorable Prognostic Factor for Patients with Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4698167. [PMID: 28536696 PMCID: PMC5425838 DOI: 10.1155/2017/4698167] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/06/2017] [Accepted: 02/12/2017] [Indexed: 11/23/2022]
Abstract
Thioredoxin reductase 1 (TXNRD1) which is a selenocysteine-containing protein is overexpressed in many malignancies. Its role in the hepatocellular carcinoma (HCC) prognosis has not been investigated. In this study, we investigated whether TXNRD1 functions as an independent prognostic factor for HCC patients. We found TXNRD1 was overexpressed in HCC tissues and cells, immunohistochemical analysis suggested TXNRD1 was elevated in 57 of 120 (47.5%) clinical samples, and its level was increased with the increasing clinical stage. In addition, TXNRD1 expression was positively correlated with clinical stage (p = 3.5e − 5), N classification (p = 4.4e − 4), and M classification (p = 0.037) of HCC patients. Kaplan-Meier analysis revealed that patients with high TXNRD1 expression had significantly shorter survival time than patients with low TXNRD1 expression. Multivariate analysis found TXNRD1 was an independent prognostic factor for HCC patients. In conclusion, our data suggested that TXNRD1 was a biomarker for the prognosis of patients with HCC.
Collapse
|
16
|
Lu G, Hou H, Lu X, Ke X, Wang X, Zhang D, Zhao Y, Zhang J, Ren M, He S. CENP-H regulates the cell growth of human hepatocellular carcinoma cells through the mitochondrial apoptotic pathway. Oncol Rep 2017; 37:3484-3492. [PMID: 28498417 DOI: 10.3892/or.2017.5602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/14/2016] [Indexed: 11/05/2022] Open
Abstract
The genomic alterations of hepatocellular carcinoma (HCC) are still unclear. Centromere protein-H (CENP-H) has been shown to be associated with many solid tumors. Our previous study found that CENP-H was upregulated in HCC and was related to patient prognosis. However, the biological functions of CENP-H in HCC and the possible underlying mechanisms have not been well elucidated. In the present study, we demonstrated that CENP-H knockdown inhibited the proliferation of Hep3B cells and decreased colony formation ability of single cells in vitro. Furthermore, CENP-H knockdown induced Hep3B cell apoptosis, and apoptotic bodies were observed using transmission electron microscopy. The protein expression of cleaved caspase-3 was upregulated in Hep3B cells after CENP-H knockdown. Additionally, a Bax/Bcl-2 ratio imbalance with a significant increase of Bax and a substantial decrease of Bcl-2 at both the mRNA and protein levels were determined in this study. In an animal experiment, CENP-H knockdown blocked the growth of Hep3B subcutaneous xenografts. Immunohistochemistry revealed that the protein expression of cleaved caspase-3 and Bax was increased, whereas the protein expression of Bcl-2 and Ki-67 was decreased in subcutaneous xenografts of the CENP-H-knockdown group. In summary, CENP-H may be involved in cell proliferation and apoptosis of HCC cells through the mitochondrial apoptotic pathway. Combined with previous studies, the data provide a new perspective on HCC development and progression.
Collapse
Affiliation(s)
- Guifang Lu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Helei Hou
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xinlan Lu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiquan Ke
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xin Wang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Dan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yan Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jun Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Mudan Ren
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shuixiang He
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
17
|
Upregulation of centromere protein H is associated with progression of renal cell carcinoma. J Mol Histol 2015; 46:377-85. [DOI: 10.1007/s10735-015-9635-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/03/2015] [Indexed: 12/27/2022]
|