1
|
Jiang YX, Zhao YN, Yu XL, Yin LM. Ginsenoside Rd Induces Differentiation of Myeloid Leukemia Cells via Regulating ERK/GSK-3β Signaling Pathway. Chin J Integr Med 2024; 30:588-599. [PMID: 38085388 DOI: 10.1007/s11655-023-3561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 06/28/2024]
Abstract
OBJECTIVE To investigate the role of ginsenoside Rd (GRd) in acute myeloid leukemia (AML) cell differentiation. METHODS AML cells were treated with GRd (25, 50, 100 and 200 µg/mL), retinoic acid (RA, 0.1g/L) and PD98059 (20 mg/mL) for 72 h, cell survival was detected by methylthiazolyldiphenyl-tetrazolium bromide and colony formation assays, and cell cycle was detected by flow cytometry. Cell morphology and differentiation were observed by Wright-Giemsa staining, peroxidase chemical staining and cellular immunochemistry assay, respectively. The protein expression levels of GATA binding protein 1 (GATA-1), purine rich Box-1 (PU.1), phosphorylated-extracellular signal-related kinase (p-ERK), ERK, phosphorylated-glycogen synthase kinase-3β (p-GSK3β), GSK3β and signal transducer and activator of transcription 1 (STAT1) were detected by Western blot. Thirty-six mice were randomly divided into 3 groups using a random number table: model control group (non-treated), GRd group [treated with 200 mg/(kg·d) GRd] and homoharringtonine (HTT) group [treated with 1 mg/(kg·d) HTT]. A tumor-bearing nude mouse model was established, and tumor weight and volume were recorded. Changes of subcutaneous tumor tissue were observed after hematoxylin and eosin staining. WT1 and GATA-1 expressions were detected by immunohistochemical staining. RESULTS The cell survival was inhibited by GRd in a dose-dependent manner and GRd caused G0/G1 cell arrest (p<0.05). GRd treatment induced leukemia cell differentiation, showing increased expressions of peroxidase and specific proteins concerning erythrogenic or granulocytic differentiation (p<0.05). GRd treatment elicited upregulation of p-ERK, p-GSK-3β and STAT1 expressions in cells, and reversed the effects of PD98059 on inhibiting the expressions of peroxidase, GATA-1 and PU.1 (P<0.05). After GRd treatment, tumor weight and volume of mice were decreased, and tumor cells underwent massive apoptosis and necrosis (P<0.05). WT1 level was decreased, and GATA-1 level was significantly increased in subcutaneous tumor tissues (P<0.05 or P<0.01). CONCLUSION GRd might induce the differentiation of AML cells via regulating the ERK/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Yu-Xia Jiang
- Department of Hematology, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Yan-Na Zhao
- Institute of Hematology Research, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
| | - Xiao-Ling Yu
- Institute of Hematology Research, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
| | - Li-Ming Yin
- Institute of Hematology Research, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China.
| |
Collapse
|
2
|
Yin B, Li W, Qin H, Yun J, Sun X. The Use of Chinese Skullcap ( Scutellaria baicalensis) and Its Extracts for Sustainable Animal Production. Animals (Basel) 2021; 11:ani11041039. [PMID: 33917159 PMCID: PMC8067852 DOI: 10.3390/ani11041039] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 12/04/2022] Open
Abstract
Simple Summary With the increasing pressure to address the problems of bacterial resistance and drug residues, medicinal herbs are gradually taking a more important role in animal production. Scutellaria baicalensis is a common and widely used Chinese medicinal herb. The main bioactive compounds in the plant are baicalein and baicalin. These compounds have many biological functions including anti-oxidation, antipyretic, analgesic, anti-inflammatory, antiallergic, antimicrobial, immunomodulatory, and antitumor effects. S. baicalensis and its extracts can effectively promote animal growth, improve the production performance of dairy cows, reduce the stress and inflammatory response, and have effective therapeutic effects on diseases caused by bacteria, viruses, and other pathogenic microorganisms. This paper summarizes the biological function of S. baicalensis and its application in sustainable animal production to provide a reference for future application of S. baicalensis and other medicinal herbs in animal production and disease treatment. Abstract Drugs have been widely adopted in animal production. However, drug residues and bacterial resistance are a worldwide issue, and thus the most important organizations (FAO, USDA, EU, and EFSA) have limited or banned the use of some drugs and the use of antibiotics as growth promoters. Natural products such as medicinal herbs are unlikely to cause bacterial resistance and have no chemical residues. With these advantages, medicinal herbs have long been used to treat animal diseases and improve animal performance. In recent years, there has been an increasing interest in the study of medicinal herbs. S. baicalensis is a herb with a high medicinal value. The main active compounds are baicalin and baicalein. They may act as antipyretic, analgesic, anti-inflammatory, antiallergenic, antimicrobial, and antitumor agents. They also possess characteristics of being safe, purely natural, and not prone to drug resistance. S. baicalensis and its extracts can effectively promote the production performance of livestock and treat many animal diseases, such as mastitis. In this review, we summarize the active compounds, biological functions, and applications of S. baicalensis in the production of livestock and provide a guideline for the application of natural medicines in the production and treatment of diseases.
Collapse
Affiliation(s)
- Baishuang Yin
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132109, China; (B.Y.); (W.L.); (H.Q.); (J.Y.)
| | - Wei Li
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132109, China; (B.Y.); (W.L.); (H.Q.); (J.Y.)
| | - Hongyu Qin
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132109, China; (B.Y.); (W.L.); (H.Q.); (J.Y.)
| | - Jinyan Yun
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132109, China; (B.Y.); (W.L.); (H.Q.); (J.Y.)
| | - Xuezhao Sun
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132109, China; (B.Y.); (W.L.); (H.Q.); (J.Y.)
- The Innovation Centre of Ruminant Precision Nutrition and Smart and Ecological Farming, Jilin Agricultural Science and Technology University, Jilin 132109, China
- Jilin Inter-Regional Cooperation Centre for the Scientific and Technological Innovation of Ruminant Precision Nutrition and Smart and Ecological Farming, Jilin 132109, China
- Correspondence: ; Tel.: +86-187-4327-5745
| |
Collapse
|
3
|
Ma Z, Yang J, Yang Y, Wang X, Chen G, Shi A, Lu Y, Jia S, Kang X, Lu L. Rosmarinic acid exerts an anticancer effect on osteosarcoma cells by inhibiting DJ-1 via regulation of the PTEN-PI3K-Akt signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 68:153186. [PMID: 32088353 DOI: 10.1016/j.phymed.2020.153186] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/02/2020] [Accepted: 02/07/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Osteosarcoma is the most common type of primary malignant bone tumor. This disease has exhibited a progressively lower survival rate over the past several decades, which has resulted in it becoming a main cause of death in humans. Rosmarinic acid (RA), a water-soluble polyphenolic phytochemical, exerts powerful anticancer effects against multiple types of cancer; however, its potential effects on osteosarcoma remain unknown. Hence, the present study investigated the efficacy of RA against osteosarcoma and aimed to clarify the mechanisms underlying this process. METHODS The effects of RA on cell viability, apoptosis, cell cycle distribution, migration, invasion, and signaling molecules were analyzed by CCK-8 assay, flowcytometric analysis, wound healing assay, Transwell assay, proteomic analysis, and use of shRNAs. RESULTS RA exerted anti-proliferation and pro-apoptotic effects on U2OS and MG63 osteosarcoma cells. Apoptosis was induced via extrinsic and intrinsic pathways by increasing the Bax/Bcl-2 ratio, triggering the intracellular production of reactive oxygen species (ROS), reducing the mitochondrial membrane potential (MMP), and upregulating the cleavage rates of caspase-8, caspase-9, and caspase-3. Additionally, RA suppressed the migration and invasion of osteosarcoma cells by inhibiting the expression levels of matrix metalloproteinase-2 and -9 (MMP-2 and -9), which are associated with a weakening of the epithelial-mesenchymal transition (EMT). Moreover, proteomic analyses identified DJ-1 as a potential target for RA. Several studies have indicated an oncogenic role for DJ-1 using knockdowns via the lentiviral-mediated transfection of shRNA, which caused the conspicuous suppression of cell proliferation, migration, and invasion as well as the arrest of cell cycle progression. At the molecular level, the expression levels of DJ-1, p-PI3K, and p-Akt were reduced, whereas the protein levels of phosphatase and tensin homologue (PTEN) were increased. CONCLUSION In conjunction with the high levels of DJ-1 expression in osteosarcoma tissues and cell lines, the present results suggested that RA exhibited anticancer effects in osteosarcoma cells by inhibiting DJ-1 via regulation of the PTEN-PI3K-Akt signaling pathway. Therefore, DJ-1 might be a biological target for RA in osteosarcoma cells.
Collapse
Affiliation(s)
- Zhanjun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China; Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, China
| | - Jingjing Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yang Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xuexi Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou, Gansu 730000, China; School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Guohu Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ancheng Shi
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yubao Lu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Shouning Jia
- Traditional Chinese Medicine Hospital of Qinghai Province, Xining, Qinghai 810000, China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, China.
| | - Li Lu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou, Gansu 730000, China; Institute of Pharmacology, School of Basic Medical Science, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
4
|
Jang YG, Go RE, Hwang KA, Choi KC. Resveratrol inhibits DHT-induced progression of prostate cancer cell line through interfering with the AR and CXCR4 pathway. J Steroid Biochem Mol Biol 2019; 192:105406. [PMID: 31185279 DOI: 10.1016/j.jsbmb.2019.105406] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/20/2022]
Abstract
Prostate cancer (PCa) is one of the most common malignancies and the second most common cause of cancer-related deaths in men world-wide and is known to be affected by the action of dihydrotestosterone (DHT) via androgen receptor (AR). Resveratrol (Res) as a phytochemical in grapes and red wine has diverse biological effects such as anti-inflammation, anti-oxidation and anti-cancer. CXCR4 as a chemokine receptor has been found to be upregulated in cancer metastasis and has been used as a prognostic marker in various types of cancer, including leukemia, breast cancer, and prostate cancer. In this study, we focused on the role of DHT in the induction of prostate cancer progression by affecting the AR and CXCR4 pathway. Also, we investigated the inhibition effect of resveratrol on DHT-induced prostate cancer metastasis. In cell viability assay, DHT increased the cell viability of LNCaP prostate cancer cells, on the other hand, Res and its combination with bicalutamide (BCT) as an AR-antagonist or AMD3100 as a CXCR4 inhibitor significantly reduced the cell viability promoted by DHT. Trans-well migration assay and wound healing assay represented the similar results with cell viability assay. According to the results of TUNEL assay, the apoptotic activity was induced by treatment of Res. As results of western blot analysis, the expression of AR, CXCR4, p-PI3K, and p-AKT and the downstream genes related with cell cycle progression and epithelial-mesenchymal transition (EMT) were decreased and the expression of the apoptosis-related genes was increased by treatment of Res and its combination with BCT or AMD3100. This study would suggest that Res and its combination with AR and CXCR4 antagonists can be used in order to suppress the metastatic behaviors of prostate cancer.
Collapse
Affiliation(s)
- Yin-Gi Jang
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Ryu-Eun Go
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-A Hwang
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
5
|
Lei M, Liu L, Wu D. Priming with GM-CSF instead of G-CSF enhances CAG-induced apoptosis of acute monocytic leukemia cells in vitro. Cancer Chemother Pharmacol 2019; 84:265-273. [PMID: 31115604 DOI: 10.1007/s00280-019-03857-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/02/2019] [Indexed: 11/24/2022]
Abstract
High expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor has been found in myelomonocytic or monocytic subtypes (M4/M5) of acute myeloid leukemia. Herein, we aimed to improve the effect of CAG [Ara-C, ACR, and G-CSF (granulocyte colony-stimulating factor)] regimen for acute monocytic leukemia by replacing G-CSF with GM-CSF. Results showed that the percentage of cells in S phase was higher with GM-CSF than with G-CSF treatment at 20 ng/mL (P < 0.05). When THP-1 and SHI-1 cells were primed with 20 ng/mL G-CSF or GM-CSF followed by Ara-C and ACR, cell proliferation rate in the CAGM (Ara-C, ACR, and GM-CSF) regimen was lower than in the CAG regimen (P < 0.05). Furthermore, CAGM regimen induced more obvious cell apoptosis than CAG regimen probably by reducing Bcl-2/Bax ratio (P < 0.05). Similar results were seen in primary cells from M5 patients. Collectively, our study suggests that priming with GM-CSF may be more effective than G-CSF in CAG regimen in acute monocytic leukemia.
Collapse
Affiliation(s)
- Meiqing Lei
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key laboratory of Thrombosis and Hemostasis of Ministry of Health, Collaborative Innovation Center of Hematology, Suzhou Institute of Blood and Marrow Transplantation, 188 Shizi Street, Suzhou, 215006, Jiangsu, People's Republic of China.,Department of Hematology in Haikou Municipal People's Hospital, Affiliated Haikou Hospital Xiangya School of Medicine Central South University, Haikou, 570208, Hainan, People's Republic of China
| | - Limin Liu
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key laboratory of Thrombosis and Hemostasis of Ministry of Health, Collaborative Innovation Center of Hematology, Suzhou Institute of Blood and Marrow Transplantation, 188 Shizi Street, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Depei Wu
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key laboratory of Thrombosis and Hemostasis of Ministry of Health, Collaborative Innovation Center of Hematology, Suzhou Institute of Blood and Marrow Transplantation, 188 Shizi Street, Suzhou, 215006, Jiangsu, People's Republic of China.
| |
Collapse
|
6
|
Chen J, Hu P, Wu G, Zhou H. Antipancreatic cancer effect of DNT cells and the underlying mechanism. Pancreatology 2019; 19:105-113. [PMID: 30579733 DOI: 10.1016/j.pan.2018.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 12/03/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVES This study aimed to explore double-negative T (DNT) cell cytotoxicity to pancreatic cancer and the effect of the Fas (CD95, APO-1)/FasL (CD178) signaling pathway on this process. METHODS DNT cells from the peripheral blood of healthy volunteers were expanded in vitro. The inhibitory effect of DNT cells on pancreatic cancer cells was investigated using a CCK-8 assay and nude mouse tumor model. A mechanistic study was performed using pathway blocking assays. RESULTS DNT cells were amplified in vitro with >90% purity, and the growth of pancreatic cancer in vitro was significantly inhibited by DNT cells. After coculture with DNT cells, Fas, caspase-8 and cleaved caspase-8 showed increased expression in pancreatic cancer cells. When blocking agent decoy receptor 3 (DcR3) was added, the antitumor effect of DNT cells and the expression of Fas, caspase-8 and cleaved caspase-8 were reduced in pancreatic cancer cells. In the nude mouse tumor model, the tumor volume and weight were lower in the DNT cell group and gemcitabine group than in the blank control group. Additionally, the expression of Fas, caspase-8 and cleaved caspase-8 was higher in the DNT cell group than in the blank control group. Moreover, DNT cells promoted apoptosis in cancer cells and animal model tissues. CONCLUSION DNT cells inhibited the growth of pancreatic cancer, and the Fas/FasL signaling pathway was involved in this process.
Collapse
Affiliation(s)
- Jiong Chen
- Department of General Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, 230001, Anhui Province, PR China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, PR China.
| | - Pibo Hu
- Department of General Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, 230001, Anhui Province, PR China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, PR China
| | - Gaohua Wu
- Department of General Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, 230001, Anhui Province, PR China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, PR China
| | - Haibo Zhou
- Department of General Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, 230001, Anhui Province, PR China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, PR China
| |
Collapse
|
7
|
Wang H, Li H, Chen F, Luo J, Gu J, Wang H, Wu H, Xu Y. Baicalin extracted from Huangqin (Radix Scutellariae Baicalensis) induces apoptosis in gastric cancer cells by regulating B cell lymphoma
(Bcl-2)/Bcl-2-associated X protein and activating caspase-3 and caspase-9. J TRADIT CHIN MED 2018; 37:229-5. [PMID: 29960296 DOI: 10.1016/s0254-6272(17)30049-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To evaluate the effects of baicalin in human gastric cancer cells, including apoptosis-inducing
effects, and to investigate its underlying mechanisms of action. METHODS Cell proliferation and apoptosis assays were performed to investigate the anti-proliferation effects of baicalin in human gastric cancer BGC-823 and MGC-803 cells. Real time-quantitative
polymerase chain reaction and Western blotting analysis were performed to elucidate the molecular
mechanisms underlying the anti-tumor properties of baicalin. RESULTS In BGC-823 and MGC-803 gastric cancer cells treated with 80, 120, and 160 μmol/L baicalin
for 48 h, a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay showed that
baicalin significantly inhibited cell proliferation in a dose-dependent manner, while flow cytometric
analysis demonstrated that baicalin could induce apoptosis, also in a dose-dependent manner.
Moreover, baicalin up-regulated the expression of caspase-3, caspase-9, and B cell lymphoma
(Bcl-2)-associated X protein and down-regulated the expression of Bcl-2 at both the mRNA and
protein level. CONCLUSION Baicalin has potential as a therapeutic
agent for gastric cancer by inducing apoptosis in cancer cells.
Collapse
|
8
|
Pan LL, Wu WJ, Zheng GF, Han XY, He JS, Cai Z. Ginkgetin inhibits proliferation of human leukemia cells via the TNF-α signaling pathway. ACTA ACUST UNITED AC 2018; 72:441-447. [PMID: 28902633 DOI: 10.1515/znc-2016-0210] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 07/27/2017] [Indexed: 01/14/2023]
Abstract
Ginkgetin is known to be an anticancer agent in many studies. However, its effectiveness in treating chronic myeloid leukemia [corrected] remains unknown. The present study aimed to evaluate the effects of ginkgetin on the growth of the K562 cell line. The MTT assay was employed to examine the proliferation of K562, and a terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) staining was conducted to detect the apoptotic rates. Furthermore, changes of tumor necrosis factor-α (TNF-α) were detected by Western blot analysis. Ginkgetin inhibited the proliferation of K562 cells in a dose- and time-dependent manner. Concentrations of ginkgetin required to induce 50% death of K562 at 24, 48 and 72 h were 38.9, 31.3 and 19.2 μM, respectively. Moreover, treatment of ginkgetin increased K562 apoptosis in vitro along with increased levels of TNF-α. Interestingly, anti-TNF-α antibody prevented ginkgetin-induced K562 cell apoptosis and growth inhibition via deactivation of caspase-8, caspase-9 and caspase-3. Concomitantly, downregulation of TNF-α by etanercept in vivo attenuated ginkgetin-induced inhibitory effects on the tumor growth in an xenograft mouse model. Our results indicate that ginkgetin effectively inhibits K562 cell proliferation, and TNF-α plays a key role in ginkgetin-induced cell apoptosis.
Collapse
|
9
|
Han YH, Kee JY, Hong SH. Rosmarinic Acid Activates AMPK to Inhibit Metastasis of Colorectal Cancer. Front Pharmacol 2018; 9:68. [PMID: 29459827 PMCID: PMC5807338 DOI: 10.3389/fphar.2018.00068] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/18/2018] [Indexed: 12/16/2022] Open
Abstract
Rosmarinic acid (RA) has been used as an anti-inflammatory, anti-diabetic, and anti-cancer agent. Although RA has also been shown to exert an anti-metastatic effect, the mechanism of this effect has not been reported to be associated with AMP-activated protein kinase (AMPK). The aim of this study was to elucidate whether RA could inhibit the metastatic properties of colorectal cancer (CRC) cells via the phosphorylation of AMPK. RA inhibited the proliferation of CRC cells through the induction of cell cycle arrest and apoptosis. In several metastatic phenotypes of CRC cells, RA regulated epithelial-mesenchymal transition (EMT) through the upregulation of an epithelial marker, E-cadherin, and the downregulation of the mesenchymal markers, N-cadherin, snail, twist, vimentin, and slug. Invasion and migration of CRC cells were inhibited and expressions of matrix metalloproteinase (MMP)-2 and MMP-9 were decreased by RA treatment. Adhesion and adhesion molecules such as ICAM-1 and integrin β1 expressions were also reduced by RA treatment. In particular, the effects of RA on EMT and MMPs expressions were due to the activation of AMPK. Moreover, RA inhibited lung metastasis of CRC cells by activating AMPK in mouse model. Collectively, these results proved that RA could be potential therapeutic agent against metastasis of CRC.
Collapse
Affiliation(s)
- Yo-Han Han
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, South Korea
| | - Ji-Ye Kee
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, South Korea
| | - Seung-Heon Hong
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, South Korea
| |
Collapse
|
10
|
Ren X, Zhang Z, Tian J, Wang H, Song G, Guo Q, Tian J, Han Y, Liao Q, Liu G, Ding H, Jiang G. The downregulation of c-Myc and its target gene hTERT is associated with the antiproliferative effects of baicalin on HL-60 cells. Oncol Lett 2017; 14:6833-6840. [PMID: 29163703 DOI: 10.3892/ol.2017.7039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/29/2017] [Indexed: 11/06/2022] Open
Abstract
Baicalin is a flavonoid compound isolated from Scutellaria baicalensis, a Chinese traditional medicinal herb, and is used as an anti-inflammatory, antibacterial, anxiolytic and hepatoprotective drug. Accumulating evidence has demonstrated that baicalin exhibits potent antitumor properties by suppressing cell growth, arresting cell cycle progression and inducing differentiation or apoptosis in leukemia cell lines. However, whether or not the extrinsic pathway is involved in baicalin-induced apoptosis of leukemia cells and the mechanisms underlying the antitumor activity of baicalin remain unclear. In the present study, the effect of baicalin on the expression of caspase-8, Fas cell surface death receptor (Fas) and Fas ligand in HL-60 cells was assessed, and it was demonstrated that the Fas-mediated extrinsic pathway was also involved in baicalin-triggered cell apoptosis, in addition to the intrinsic pathway. Furthermore, baicalin was able to inhibit the proliferation of HL-60 cells by arresting the cell cycle at the G0/G1 phase, and by down-regulating Myc proto-oncogene protein (c-Myc) along with its target gene, human telomerase reverse transcriptase. In summary, the results of the present study demonstrated that baicalin was able to inhibit the growth of HL-60 cells through blockade of the G0/G1 phase of the cell cycle, and significantly induce the apoptosis of cells by activating the intrinsic and extrinsic pathways. The inhibition of HL-60 cell growth was also demonstrated to be mediated by telomerase inhibition through suppression of c-Myc. The results of the present study highlight the possibility of baicalin as a promising regimen for the treatment of AML.
Collapse
Affiliation(s)
- Xia Ren
- Key Laboratory for Rare and Uncommon Diseases of Shandong and Key Laboratory for Tumor Immunology and Chinese Medicine Immunology of Shandong, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Zhiyong Zhang
- Key Laboratory for Rare and Uncommon Diseases of Shandong and Key Laboratory for Tumor Immunology and Chinese Medicine Immunology of Shandong, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Jing Tian
- Laboratory Department, People's Hospital of Zhangqiu, Zhangqiu, Shandong 250200, P.R. China
| | - Hengxiao Wang
- Key Laboratory for Rare and Uncommon Diseases of Shandong and Key Laboratory for Tumor Immunology and Chinese Medicine Immunology of Shandong, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Guanhua Song
- Key Laboratory for Rare and Uncommon Diseases of Shandong and Key Laboratory for Tumor Immunology and Chinese Medicine Immunology of Shandong, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Qiang Guo
- Key Laboratory for Rare and Uncommon Diseases of Shandong and Key Laboratory for Tumor Immunology and Chinese Medicine Immunology of Shandong, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Jing Tian
- Key Laboratory for Rare and Uncommon Diseases of Shandong and Key Laboratory for Tumor Immunology and Chinese Medicine Immunology of Shandong, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Yang Han
- Key Laboratory for Rare and Uncommon Diseases of Shandong and Key Laboratory for Tumor Immunology and Chinese Medicine Immunology of Shandong, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Qiong Liao
- Key Laboratory for Rare and Uncommon Diseases of Shandong and Key Laboratory for Tumor Immunology and Chinese Medicine Immunology of Shandong, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Guoqiang Liu
- Department of Hematology, Shengli Oilfield Central Hospital, Dongying, Shandong 257034, P.R. China
| | - Huifang Ding
- Department of Hematology, Shengli Oilfield Central Hospital, Dongying, Shandong 257034, P.R. China
| | - Guosheng Jiang
- Key Laboratory for Rare and Uncommon Diseases of Shandong and Key Laboratory for Tumor Immunology and Chinese Medicine Immunology of Shandong, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| |
Collapse
|
11
|
Sak K, Everaus H. Established Human Cell Lines as Models to Study Anti-leukemic Effects of Flavonoids. Curr Genomics 2017; 18:3-26. [PMID: 28503087 PMCID: PMC5321770 DOI: 10.2174/1389202917666160803165447] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 11/20/2015] [Accepted: 11/27/2015] [Indexed: 12/19/2022] Open
Abstract
Despite the extensive work on pathological mechanisms and some recent advances in the treatment of different hematological malignancies, leukemia continues to present a significant challenge being frequently considered as incurable disease. Therefore, the development of novel therapeutic agents with high efficacy and low toxicity is urgently needed to improve the overall survival rate of patients. In this comprehensive review article, the current knowledge about the anticancer activities of flavonoids as plant secondary polyphenolic metabolites in the most commonly used human established leukemia cell lines (HL-60, NB4, KG1a, U937, THP-1, K562, Jurkat, CCRF- CEM, MOLT-3, and MOLT-4) is compiled, revealing clear anti-proliferative, pro-apoptotic, cell cycle arresting, and differentiation inducing effects for certain compounds. Considering the low toxicity of these substances in normal blood cells, the presented data show a great potential of flavonoids to be developed into novel anti-leukemia agents applicable also in the malignant cells resistant to the current conventional chemotherapeutic drugs.
Collapse
Affiliation(s)
- Katrin Sak
- Department of Hematology and Oncology, University of Tartu, Tartu, Estonia
| | - Hele Everaus
- Department of Hematology and Oncology, University of Tartu, Tartu, Estonia
| |
Collapse
|
12
|
Cui Y, Meng H, Liu W, Wang H, Liu Q. Huaier aqueous extract induces apoptosis of human fibrosarcoma HT1080 cells through the mitochondrial pathway. Oncol Lett 2015; 9:1590-1596. [PMID: 25789006 PMCID: PMC4356327 DOI: 10.3892/ol.2015.2906] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 01/08/2015] [Indexed: 12/28/2022] Open
Abstract
In recent years, aqueous extract of Trametes robiniophila Murr. (Huaier), a traditional Chinese medicine, has been frequently used in China for complementary cancer therapy. However, the mechanisms underlying its anticancer effects have yet to be elucidated. The present study aimed to evaluate the ability of Huaier extract to inhibit proliferation, promote apoptosis and suppress mobility in the fibrosarcoma HT1080 cell line in vitro. The cells were treated with gradient doses of Huaier extract at concentrations of 0, 4, 8 or 16 mg/ml for 24, 48 or 72 h. The cell viability and motility were measured in vitro using MTT, invasive, migration and scratch assays. The distribution of the cell cycle and the extent of cellular apoptosis were analyzed by flow cytometry. The apoptotic pathways were detected using a mitochondrial membrane potential transition assay and western blotting. The results revealed that the cellular viability decreased significantly with increasing concentrations of Huaier extract. In addition, cell invasiveness and migration were also suppressed significantly. It was demonstrated that Huaier extract induced G2 cell-cycle arrest and cellular apoptosis in a time- and dose-dependent manner. The decreased mitochondrial membrane potential, the downregulation of B-cell lymphoma 2 and pro-caspase-3, and upregulation of Bcl-2-associated X protein, cleaved caspase-9 and caspase-3 suggested that Huaier extract induced the apoptosis of HT1080 cells through the mitochondrial pathway. The results of the present study indicate that Huaier extract is a potential complementary agent for the treatment of fibrosarcoma.
Collapse
Affiliation(s)
- Yang Cui
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150028, P.R. China
| | - Hongmei Meng
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Weidong Liu
- Department of Orthopedics, The First Hospital of Qiqihar, Qiqihar, Heilongjiang 161000, P.R. China
| | - Huan Wang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Qingpeng Liu
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150028, P.R. China
| |
Collapse
|
13
|
Orzechowska B, Chaber R, Wiśniewska A, Pajtasz-Piasecka E, Jatczak B, Siemieniec I, Gulanowski B, Chybicka A, Błach-Olszewska Z. Baicalin from the extract of Scutellaria baicalensis affects the innate immunity and apoptosis in leukocytes of children with acute lymphocytic leukemia. Int Immunopharmacol 2014; 23:558-67. [PMID: 25448499 DOI: 10.1016/j.intimp.2014.10.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 10/01/2014] [Accepted: 10/06/2014] [Indexed: 01/29/2023]
Abstract
Scutellariae Radix (root of Scutellaria baicalensis) has a long history of application in traditional and in modern herbal medications. The major components of Scutellariae Radix are baicalin, baicalein, wogonoside and wogonin. Accumulating evidence demonstrates that Scutellaria has immunomodulatory effects and possesses compelling anticancer potential. Treatment of peripheral blood leukocytes (PBLs) with Scutellaria extract (SBE) enriched in baicalin, reduced viability of PBLs obtained from patients with acute lymphoblastic leukemia (ALL). SBE had no impact on the survival of healthy, control leukocytes. The immune system modulation by SBE resulted in increased production of IFNγ in PBLs, and reduced TNFα and IL-10 production in bone marrow cells (BMC), in ALL patients. SBE stimulated the nonspecific antiviral immunity, assessed by resistance of PBLs and BMC to vesicular stomatitis virus (VSV) infection. SBE showed pro-apoptotic activity in NALM-6 cell line (B-type human leukemia). The number of cells expressing annexin V increased from 6% in control cultures to 29% and 52% after treatment with 100 μg/ml and 200 μg/ml respectively. Increased percentage of apoptotic cells was observed when cells were treated with corresponding concentration of baicalin. SBE enhanced apoptosis of PBLs in BMC of leukemic children. The percentage of PBLs that underwent apoptosis and mean annexin V expression increased from 11% in the control to 17% and 24% for the doses of 100 μg/ml and 200 μg/ml respectively. Importantly, SBE did not induce apoptosis of PBLs in the healthy, control group.
Collapse
Affiliation(s)
- B Orzechowska
- Ludwik Hiszfeld Institute of Immunology and Experimental Therapy (IIET), Polish Academy of Sciences, Wroclaw, Poland.
| | - R Chaber
- Department of Bone Marrow Transplantation, Oncology and Hematology, Medical University, Wroclaw, Poland
| | - A Wiśniewska
- Ludwik Hiszfeld Institute of Immunology and Experimental Therapy (IIET), Polish Academy of Sciences, Wroclaw, Poland
| | - E Pajtasz-Piasecka
- Ludwik Hiszfeld Institute of Immunology and Experimental Therapy (IIET), Polish Academy of Sciences, Wroclaw, Poland
| | - B Jatczak
- Ludwik Hiszfeld Institute of Immunology and Experimental Therapy (IIET), Polish Academy of Sciences, Wroclaw, Poland
| | - I Siemieniec
- Ludwik Hiszfeld Institute of Immunology and Experimental Therapy (IIET), Polish Academy of Sciences, Wroclaw, Poland
| | | | - A Chybicka
- Department of Bone Marrow Transplantation, Oncology and Hematology, Medical University, Wroclaw, Poland
| | - Z Błach-Olszewska
- Ludwik Hiszfeld Institute of Immunology and Experimental Therapy (IIET), Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
14
|
Zhang Y, Ren X, Shi M, Jiang Z, Wang H, Su Q, Liu Q, Li G, Jiang G. Downregulation of STAT3 and activation of MAPK are involved in the induction of apoptosis by HNK in glioblastoma cell line U87. Oncol Rep 2014; 32:2038-46. [PMID: 25175884 DOI: 10.3892/or.2014.3434] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/10/2014] [Indexed: 11/06/2022] Open
Abstract
Honokiol [3,5-di-(2-propenyl)-1,1-biphenyl-2,2-diol; HNK], a natural bioactive molecular compound isolated from the Magnolia officinalis, exhibits potent antitumor activity against a variety of human cancer cell lines. However, few studies have reported the antineoplastic effects of HNK on glioblastoma cells. It remains unknown how apoptosis is induced by HNK in glioblastoma cells and through which associated pathway this compound acts. The present study confirmed that HNK inhibited proliferation of glioblastoma cells by inducing a slight G0/G1 phase cell cycle arrest and apoptosis. We demonstrated for the first time that HNK triggered apoptosis of glioblastoma cells through both caspase-independent and caspase-dependent pathways, the latter including the extrinsic pathway and intrinsic pathway. Moreover, the inhibition of STAT3 signaling, ERK1/2 as well as activation of the p38 MAPK signaling pathway may be involved in apoptosis induced by HNK in U87 cells. Our findings suggest that HNK treatment could be a promising therapeutic strategy in human glioblastoma.
Collapse
Affiliation(s)
- Yubao Zhang
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Xia Ren
- Key Laboratory for Rare and Uncommon Diseases, Key Laboratory for Tumor Immunology and Chinese Medicine Immunology of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
| | - Meiyan Shi
- Key Laboratory for Rare and Uncommon Diseases, Key Laboratory for Tumor Immunology and Chinese Medicine Immunology of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
| | - Zheng Jiang
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Hengxiao Wang
- Key Laboratory for Rare and Uncommon Diseases, Key Laboratory for Tumor Immunology and Chinese Medicine Immunology of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
| | - Qinghong Su
- Key Laboratory for Rare and Uncommon Diseases, Key Laboratory for Tumor Immunology and Chinese Medicine Immunology of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
| | - Qinglin Liu
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Guosheng Jiang
- Key Laboratory for Rare and Uncommon Diseases, Key Laboratory for Tumor Immunology and Chinese Medicine Immunology of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
| |
Collapse
|
15
|
Chen H, Gao Y, Wu J, Chen Y, Chen B, Hu J, Zhou J. Exploring therapeutic potentials of baicalin and its aglycone baicalein for hematological malignancies. Cancer Lett 2014; 354:5-11. [PMID: 25128647 DOI: 10.1016/j.canlet.2014.08.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 07/31/2014] [Accepted: 08/01/2014] [Indexed: 12/31/2022]
Abstract
Despite tremendous advances in the targeted therapy for various types of hematological malignancies with successful improvements in the survival rates, emerging resistance issues are startlingly high and novel therapeutic strategies are urgently needed. In addition, chemoprevention is currently becoming an elusive goal. Plant-derived natural products have garnered considerable attention in recent years due to the potential dual functions as chemotherapeutics and dietary chemoprevention. One of the particularly ubiquitous families is the polyphenolic flavonoids. Among them, baicalin and its aglycone baicalein have been widely investigated in hematological malignancies because both of them exhibit remarkable pharmacological properties. This review focuses on the recent achievements in drug discovery research associated with baicalin and baicalein for hematological malignancy therapies. The promising anticancer activities of these two flavonoids targeting diverse signaling pathways and their potential biological mechanisms in different types of hematological malignancies, as well as the combination strategy with baicalin or baicalein as chemotherapeutic adjuvants for recent therapies in these intractable diseases are discussed. Meanwhile, the biotransformation of baicalin and baicalein and the relevant approaches to improve their bioavailability are also summarized.
Collapse
Affiliation(s)
- Haijun Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China; Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Yu Gao
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jianlei Wu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yingyu Chen
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
| | - Buyuan Chen
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
| | - Jianda Hu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China.
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, USA.
| |
Collapse
|