1
|
Saroj S, Kana Veedu A, Reddy U C, Venkatesan N, Verma AK, Kannoth Manheri M. Modulation of Doxorubicin-Induced ROS Accumulation in Cardiomyocytes Using Ibuprofen-Conjugated Synthetic Lipids as Carriers. ACS APPLIED BIO MATERIALS 2025. [PMID: 40408375 DOI: 10.1021/acsabm.4c01932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
Conjugation of an NSAID such as ibuprofen to the head group of oxanorbornane-based lipids and the use of their aggregates as carriers for doxorubicin (Dox) are discussed here. These conjugates were characterized by various spectroscopic techniques, including 2D-NMR, and insights into their assembly were gathered through PXRD, AFM, SEM, DLS, and qNano techniques. Free lipids as well as their formulations (lipid:cholesterol:Dox in a 3:1.5:2 molar ratio) showed a high tendency to form solid lipid particles, which was verified by TEM analysis. The presence of the ibuprofen unit led to an increase in interlipid spacing and a characteristic change in their packing. Active loading through a pH gradient allowed us to achieve high drug entrapment and a controlled release profile. The formulation AT3.3, prepared by this method, showed a Dox entrapment of ∼90%, with a controlled release of ∼18% by the end of 24 h; only ∼66% of the entrapped Dox was released by the end of 5 days. Cytotoxicity studies in NIH3T3 cells and hemolytic assay results showed that these lipids and their formulations have a good safety profile. Results from flow cytometry experiments in A549 cells revealed that the formulation AT3.3 induces effects similar to free Dox, with cell cycle arrest predominantly at the S phase and G2/M phase. At the same time, the response from the blank formulation was comparable to that of the control. Confocal microscopy studies in NIH3T3 and A549 cells showed that free Dox gets localized mainly in the nucleus, while the use of the carrier (AT3.3) causes significant localization of the drug on the cytoplasmic side as well. ROS induction due to free Dox and its formulation (AT3.3) in cardiomyocytes and A549 cells was also compared, and the results showed a protective effect in cardiomyocytes when using this formulation.
Collapse
Affiliation(s)
- Soumya Saroj
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Akshaya Kana Veedu
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Chandrasekhar Reddy U
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Nalini Venkatesan
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Abhishek K Verma
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | | |
Collapse
|
2
|
Qiao X, Guo S, Meng Z, Gan H, Wu Z, Sun Y, Liu S, Dou G, Gu R. Advances in the study of death receptor 5. Front Pharmacol 2025; 16:1549808. [PMID: 40144653 PMCID: PMC11936945 DOI: 10.3389/fphar.2025.1549808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
DR5, a receptor with the highest affinity for TRAIL under physiological conditions, selectively induces apoptosis in specific target cells such as tumor and aberrant immune cells, while minimally affecting normal cells. The TRAIL-DR5 signaling pathway is a crucial regulatory mechanism when the body responds to various exogenous interference factors, including viruses, chemicals, and radiation. This pathway plays a vital role in maintaining physiological homeostasis and in the pathological development of various diseases. Different modulations of DR5, such as upregulation, activation, and antagonism, hold significant potential for therapeutic applications in tumors, cardiovascular diseases, autoimmune diseases, viral infections, and radiation injuries. This article provides an overview of the current research progress on DR5, including the status and prospects of its clinical applications.
Collapse
Affiliation(s)
- Xuan Qiao
- Graduate Collaborative Training Base of Academy of Military Medical Sciences, Hengyang Medical School, University of South China, Hengyang, China
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Shuang Guo
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhiyun Meng
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Hui Gan
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhuona Wu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Yunbo Sun
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Shuchen Liu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Guifang Dou
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Ruolan Gu
- Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
3
|
Tumor Necrosis Factor Alpha: Implications of Anesthesia on Cancers. Cancers (Basel) 2023; 15:cancers15030739. [PMID: 36765695 PMCID: PMC9913216 DOI: 10.3390/cancers15030739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Cancer remains a major public health issue and a leading cause of death worldwide. Despite advancements in chemotherapy, radiation therapy, and immunotherapy, surgery is the mainstay of cancer treatment for solid tumors. However, tumor cells are known to disseminate into the vascular and lymphatic systems during surgical manipulation. Additionally, surgery-induced stress responses can produce an immunosuppressive environment that is favorable for cancer relapse. Up to 90% of cancer-related deaths are the result of metastatic disease after surgical resection. Emerging evidence shows that the interactions between tumor cells and the tumor microenvironment (TME) not only play decisive roles in tumor initiation, progression, and metastasis but also have profound effects on therapeutic efficacy. Tumor necrosis factor alpha (TNF-α), a pleiotropic cytokine contributing to both physiological and pathological processes, is one of the main mediators of inflammation-associated carcinogenesis in the TME. Because TNF-α signaling may modulate the course of cancer, it can be therapeutically targeted to ameliorate clinical outcomes. As the incidence of cancer continues to grow, approximately 80% of cancer patients require anesthesia during cancer care for diagnostic, therapeutic, or palliative procedures, and over 60% of cancer patients receive anesthesia for primary surgical resection. Numerous studies have demonstrated that perioperative management, including surgical manipulation, anesthetics/analgesics, and other supportive care, may alter the TME and cancer progression by affecting inflammatory or immune responses during cancer surgery, but the literature about the impact of anesthesia on the TNF-α production and cancer progression is limited. Therefore, this review summarizes the current knowledge of the implications of anesthesia on cancers from the insights of TNF-α release and provides future anesthetic strategies for improving oncological survival.
Collapse
|
4
|
Dangi D, Mattoo M, Kumar V, Sharma P. Synthesis and characterization of galactomannan polymer hydrogel and sustained drug delivery. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
5
|
Wu S, Yi Z, Ling M, Liu S, Sun Z, Guo X. DR4-Associated Death Receptor Signal Promotes Cartilage Damage in Patients With Kashin-Beck Disease. Cartilage 2021; 13:789S-796S. [PMID: 31762289 PMCID: PMC8808889 DOI: 10.1177/1947603519886626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Purpose. To explore the relationship between the death receptor (DR) and the pathological progression of Kashin-Beck disease (KBD). Design. KBD cartilage samples were collected from 15 patients diagnosed according to the "National Diagnostic Criteria of KBD" in China. In vitro monolayer chondrocytes were cultured in complete medium. Caspase-3 and caspase-8 activities in chondrocytes were analyzed using a kit. Nuclear morphology was observed by Hoechst 33258 staining, apoptosis was verified by flow cytometry analysis, and DR molecules were detected using Western blotting and quantitative real-time reverse transcription polymerase chain reaction analysis. Results. Early apoptotic rates of KBD and osteoarthritis (OA) chondrocytes were higher than those of normal control (NC) cells. Excessive apoptotic nuclei were observed in OA and KBD cells after Hoechst 33258 staining. Activities of both caspase-3 and caspase-8 were higher in KBD and OA cells than in NC cells. The average DR4 mRNA level in KBD cells was 3.301-fold higher than that in NC cells, Fas-associating protein with death domain (FADD) transcript level in KBD cells was 2.528-fold higher than that in NC cells. Western blot analyses showed that FAS, DR4, DR5, caspase-3, and FADD were upregulated in the KBD and OA groups compared with the NC group. High expression of caspase-8 in KBD compared with NC was verified, whereas cellular FLICE-inhibitory protein (c-FLIP) in KBD was significantly downregulated. Conclusions. KBD and OA chondrocytes showed obvious FADD-caspase-dependent apoptosis, which is related to the DR pathway. Apoptosis in KBD articular cartilage is mainly related to FAS/DR4-FADD-caspase signaling, and OA is associated with FAS/DR4/DR5-FADD-caspase signaling.
Collapse
Affiliation(s)
- Shixun Wu
- Department of Orthopedics Surgery,
Shaanxi Provincial People’s Hospital, Xi’an JiaoTong University, Xi’an, People’s
Republic of China
- Institute of Endemic Diseases of School
of Public Health, Health Science Center of Xi’an JiaoTong University, NHC Key
Laboratory of Trace Elements and Endemic Diseases, Xi’an, Shaanxi, People’s Republic
of China
- Collaborative Innovation Center of
Endemic Diseases and Health Promotion in Silk Road Region, Xi’an JiaoTong
University, Xi’an, People’s Republic of China
| | - Zhi Yi
- Department of Orthopedics Surgery,
Shaanxi Provincial People’s Hospital, Xi’an JiaoTong University, Xi’an, People’s
Republic of China
| | - Ming Ling
- Department of Orthopedics Surgery,
Shaanxi Provincial People’s Hospital, Xi’an JiaoTong University, Xi’an, People’s
Republic of China
| | - Shizhang Liu
- Department of Orthopedics Surgery,
Shaanxi Provincial People’s Hospital, Xi’an JiaoTong University, Xi’an, People’s
Republic of China
| | - Zhengming Sun
- Department of Orthopedics Surgery,
Shaanxi Provincial People’s Hospital, Xi’an JiaoTong University, Xi’an, People’s
Republic of China
| | - Xiong Guo
- Institute of Endemic Diseases of School
of Public Health, Health Science Center of Xi’an JiaoTong University, NHC Key
Laboratory of Trace Elements and Endemic Diseases, Xi’an, Shaanxi, People’s Republic
of China
- Collaborative Innovation Center of
Endemic Diseases and Health Promotion in Silk Road Region, Xi’an JiaoTong
University, Xi’an, People’s Republic of China
| |
Collapse
|
6
|
Upadhyay A, Amanullah A, Joshi V, Dhiman R, Prajapati VK, Poluri KM, Mishra A. Ibuprofen-based advanced therapeutics: breaking the inflammatory link in cancer, neurodegeneration, and diseases. Drug Metab Rev 2021; 53:100-121. [PMID: 33820460 DOI: 10.1080/03602532.2021.1903488] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ibuprofen is a classical nonsteroidal anti-inflammatory drug (NSAID) highly prescribed to reduce acute pain and inflammation under an array of conditions, including rheumatoid arthritis, osteoarthritis, dysmenorrhea, and gout. Ibuprofen acts as a potential inhibitor for cyclooxygenase enzymes (COX-1 and COX-2). In the past few decades, research on this small molecule has led to identifying other possible therapeutic benefits. Anti-tumorigenic and neuroprotective functions of Ibuprofen are majorly recognized in recent literature and need further consideration. Additionally, several other roles of this anti-inflammatory molecule have been discovered and subjected to experimental assessment in various diseases. However, the major challenge faced by Ibuprofen and other drugs of similar classes is their side effects, and tendency to cause gastrointestinal injury, generate cardiovascular risks, modulate hepatic and acute kidney diseases. Future research should also be conducted to deduce new methods and approaches of suppressing the unwanted toxic changes mediated by these drugs and develop new therapeutic avenues so that these small molecules continue to serve the purposes. This article primarily aims to develop a comprehensive and better understanding of Ibuprofen, its pharmacological features, therapeutic benefits, and possible but less understood medicinal properties apart from major challenges in its future application.KEY POINTSIbuprofen, an NSAID, is a classical anti-inflammatory therapeutic agent.Pro-apoptotic roles of NSAIDs have been explored in detail in the past, holding the key in anti-cancer therapies.Excessive and continuous use of NSAIDs may have several side effects and multiple organ damage.Hyperactivated Inflammation initiates multifold detrimental changes in multiple pathological conditions.Targeting inflammatory pathways hold the key to several therapeutic strategies against many diseases, including cancer, microbial infections, multiple sclerosis, and many other brain diseases.
Collapse
Affiliation(s)
- Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Ayeman Amanullah
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Vibhuti Joshi
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| |
Collapse
|
7
|
Babinčák M, Jendželovský R, Košuth J, Majerník M, Vargová J, Mikulášek K, Zdráhal Z, Fedoročko P. Death Receptor 5 (TNFRSF10B) Is Upregulated and TRAIL Resistance Is Reversed in Hypoxia and Normoxia in Colorectal Cancer Cell Lines after Treatment with Skyrin, the Active Metabolite of Hypericum spp. Cancers (Basel) 2021; 13:1646. [PMID: 33916015 PMCID: PMC8036732 DOI: 10.3390/cancers13071646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 02/08/2023] Open
Abstract
Skyrin (SKR) is a plant bisanthraquinone secondary metabolite from the Hypericum genus with potential use in anticancer therapy. However, its effect and mechanism of action are still unknown. The negative effect of SKR on HCT 116 and HT-29 cancer cell lines in hypoxic and normoxic conditions was observed. HCT 116 cells were more responsive to SKR treatment as demonstrated by decreased metabolic activity, cellularity and accumulation of cells in the G1 phase. Moreover, an increasing number of apoptotic cells was observed after treatment with SKR. Based on the LC-MS comparative proteomic data from hypoxia and normoxia (data are available via ProteomeXchange with the identifier PXD019995), SKR significantly upregulated Death receptor 5 (DR5), which was confirmed by real-time qualitative PCR (RT-qPCR). Furthermore, multiple changes in the Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-activated cascade were observed. Moreover, the reversion of TRAIL resistance was observed in HCT 116, HT-29 and SW620 cell lines, even in hypoxia, which was linked to the upregulation of DR5. In conclusion, our results propose the use of SKR as a prospective anticancer drug, particularly as an adjuvant to TRAIL-targeting treatment to reverse TRAIL resistance in hypoxia.
Collapse
Affiliation(s)
- Marián Babinčák
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia; (M.B.); (R.J.); (J.K.); (M.M.); (J.V.)
| | - Rastislav Jendželovský
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia; (M.B.); (R.J.); (J.K.); (M.M.); (J.V.)
| | - Ján Košuth
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia; (M.B.); (R.J.); (J.K.); (M.M.); (J.V.)
| | - Martin Majerník
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia; (M.B.); (R.J.); (J.K.); (M.M.); (J.V.)
| | - Jana Vargová
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia; (M.B.); (R.J.); (J.K.); (M.M.); (J.V.)
| | - Kamil Mikulášek
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (K.M.); (Z.Z.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (K.M.); (Z.Z.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Peter Fedoročko
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia; (M.B.); (R.J.); (J.K.); (M.M.); (J.V.)
| |
Collapse
|
8
|
Yamamoto J, Miyake K, Han Q, Tan Y, Inubushi S, Sugisawa N, Higuchi T, Tashiro Y, Nishino H, Homma Y, Matsuyama R, Chawla SP, Bouvet M, Singh SR, Endo I, Hoffman RM. Oral recombinant methioninase increases TRAIL receptor-2 expression to regress pancreatic cancer in combination with agonist tigatuzumab in an orthotopic mouse model. Cancer Lett 2020; 492:174-184. [PMID: 32739322 DOI: 10.1016/j.canlet.2020.07.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/08/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022]
Abstract
Methionine addiction is a fundamental and general hallmark of cancer. Gene expression analysis showed that methionine restriction (MR) of methionine-addicted cancer cells increases TNF-related apoptosis-induced ligand receptor-2 (TRAIL-R2) expression. Here, we determined the effects of MR on TRAIL-R2 targeted therapy in pancreatic cancer by the TRAIL-R2 agonist tigatuzumab. Human pancreatic cancer cell lines were cultured in control or methionine-free medium. The effects of MR on TRAIL-R2 expression and sensitivity to tigatuzumab were evaluated in vitro. An orthotopic pancreatic cancer mouse model was established to evaluate the efficacy of MR using oral recombinant methioninase (o-rMETase), and the efficacy of tigatuzumab and their combination. MR enabled tigatuzumab-induced apoptosis, by increasing TRAIL-R2 expression in pancreatic cancer cells in vitro. The protein expression level of the melanoma-associated antigen MAGED2, which reduces TRAIL-R2 expression, was decreased by MR. In the orthotopic pancreatic cancer mouse model, o-rMETase increased TRAIL-R2 expression level in the tumors and enabled the antitumor efficacy of tigatuzumab. MR, effected by o-rMETase, enabled the efficacy of the TRAIL-R2 agonist tigatuzumab by increasing TRAIL-R2 expression in pancreatic cancer. Our results suggest that o-rMETase has clinical potential for treating pancreatic cancer.
Collapse
Affiliation(s)
- Jun Yamamoto
- AntiCancer Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA; Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kentaro Miyake
- AntiCancer Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA; Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | | | - Sachiko Inubushi
- AntiCancer Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Norihiko Sugisawa
- AntiCancer Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Takashi Higuchi
- AntiCancer Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Yoshihiko Tashiro
- AntiCancer Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Hiroto Nishino
- AntiCancer Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Yuki Homma
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ryusei Matsuyama
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | - Michael Bouvet
- Department of Surgery, University of California, San Diego, CA, USA
| | - Shree Ram Singh
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA.
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Robert M Hoffman
- AntiCancer Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA.
| |
Collapse
|
9
|
Piazza GA, Ward A, Chen X, Maxuitenko Y, Coley A, Aboelella NS, Buchsbaum DJ, Boyd MR, Keeton AB, Zhou G. PDE5 and PDE10 inhibition activates cGMP/PKG signaling to block Wnt/β-catenin transcription, cancer cell growth, and tumor immunity. Drug Discov Today 2020; 25:1521-1527. [PMID: 32562844 DOI: 10.1016/j.drudis.2020.06.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/10/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023]
Abstract
Although numerous reports conclude that nonsteroidal anti-inflammatory drugs (NSAIDs) have anticancer activity, this common drug class is not recommended for long-term use because of potentially fatal toxicities from cyclooxygenase (COX) inhibition. Studies suggest the mechanism responsible for the anticancer activity of the NSAID sulindac is unrelated to COX inhibition but instead involves an off-target, phosphodiesterase (PDE). Thus, it might be feasible develop safer and more efficacious drugs for cancer indications by targeting PDE5 and PDE10, which are overexpressed in various tumors and essential for cancer cell growth. In this review, we describe the rationale for using the sulindac scaffold to design-out COX inhibitory activity, while improving potency and selectivity to inhibit PDE5 and PDE10 that activate cGMP/PKG signaling to suppress Wnt/β-catenin transcription, cancer cell growth, and tumor immunity.
Collapse
Affiliation(s)
- Gary A Piazza
- Drug Discovery Research Center, Department of Pharmacology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA.
| | - Antonio Ward
- Drug Discovery Research Center, Department of Pharmacology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Xi Chen
- Drug Discovery Research Center, Department of Pharmacology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Yulia Maxuitenko
- Drug Discovery Research Center, Department of Pharmacology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Alex Coley
- Drug Discovery Research Center, Department of Pharmacology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | | | - Donald J Buchsbaum
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Adam B Keeton
- Drug Discovery Research Center, Department of Pharmacology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Gang Zhou
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| |
Collapse
|
10
|
Kirtonia A, Gala K, Fernandes SG, Pandya G, Pandey AK, Sethi G, Khattar E, Garg M. Repurposing of drugs: An attractive pharmacological strategy for cancer therapeutics. Semin Cancer Biol 2020; 68:258-278. [PMID: 32380233 DOI: 10.1016/j.semcancer.2020.04.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/20/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
Human malignancies are one of the major health-related issues though out the world and anticipated to rise in the future. The development of novel drugs/agents requires a huge amount of cost and time that represents a major challenge for drug discovery. In the last three decades, the number of FDA approved drugs has dropped down and this led to increasing interest in drug reposition or repurposing. The present review focuses on recent concepts and therapeutic opportunities for the utilization of antidiabetics, antibiotics, antifungal, anti-inflammatory, antipsychotic, PDE inhibitors and estrogen receptor antagonist, Antabuse, antiparasitic and cardiovascular agents/drugs as an alternative approach against human malignancies. The repurposing of approved non-cancerous drugs is an effective strategy to develop new therapeutic options for the treatment of cancer patients at an affordable cost in clinics. In the current scenario, most of the countries throughout the globe are unable to meet the medical needs of cancer patients because of the high cost of the available cancerous drugs. Some of these drugs displayed potential anti-cancer activity in preclinic and clinical studies by regulating several key molecular mechanisms and oncogenic pathways in human malignancies. The emerging pieces of evidence indicate that repurposing of drugs is crucial to the faster and cheaper discovery of anti-cancerous drugs.
Collapse
Affiliation(s)
- Anuradha Kirtonia
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida, 201313, India; Equal contribution
| | - Kavita Gala
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India; Equal contribution
| | - Stina George Fernandes
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India; Equal contribution
| | - Gouri Pandya
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida, 201313, India; Equal contribution
| | - Amit Kumar Pandey
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Haryana, 122413, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India.
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida, 201313, India.
| |
Collapse
|
11
|
Jordan P, Gonçalves V, Matos P. A New Twist to Ibuprofen: Alternative Action in Alternative Splicing. EUROPEAN MEDICAL JOURNAL 2019. [DOI: 10.33590/emj/10311656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ibuprofen is a nonsteroidal anti-inflammatory drug (NSAID) and is a widely used medication. One indication of NSAID use is long-term chemoprevention to decrease the risk of developing various types of cancer, in particular colorectal cancer. The molecular mechanism behind the antitumour properties of NSAID has been largely attributed to inhibition of the enzyme cyclooxygenase. In this review article, the authors highlight that additional mechanisms of NSAID, especially ibuprofen, action exist that are related to cell signalling and the modulation of gene expression, including alternative splicing. For example, the authors describe how ibuprofen inhibits expression of the tumour-related splicing variant RAC1b, which is overexpressed in a specific subset of colorectal tumours. The mechanism involves changes in the phosphorylation of splicing factors that regulate this alternative splicing event. According to recent studies, ibuprofen interferes with signal transmission via protein kinases, a process which is frequently altered in cancer cells.
Collapse
Affiliation(s)
- Peter Jordan
- Department of Human Genetics, National Health Institute ‘Dr Ricardo Jorge’, Lisbon, Portugal; Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Vânia Gonçalves
- Department of Human Genetics, National Health Institute ‘Dr Ricardo Jorge’, Lisbon, Portugal; Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Paulo Matos
- Department of Human Genetics, National Health Institute ‘Dr Ricardo Jorge’, Lisbon, Portugal; Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal; Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
12
|
Poondla N, Chandrasekaran AP, Heese K, Kim KS, Ramakrishna S. CRISPR-mediated upregulation of DR5 and downregulation of cFLIP synergistically sensitize HeLa cells to TRAIL-mediated apoptosis. Biochem Biophys Res Commun 2019; 512:60-65. [PMID: 30862357 DOI: 10.1016/j.bbrc.2019.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/03/2019] [Indexed: 12/17/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has received attention as an anticancer therapy because it mediates apoptosis of several cancer cell types but not normal human cell types. In this study, we implemented genome editing techniques to upregulate DR5 and downregulate cFLIP in HeLa cells to stimulate TRAIL-induced apoptosis. We designed and validated sgRNAs to enrich the endogenous level of DR5 by dead Cas9 (dCas9). Similarly, we designed two sgRNAs to disrupt the cFLIP gene by CRISPR/Cas9. We analyzed the effect of TRAIL on tumor cells by co-transfecting HeLa cells with the best combinations of sgRNAs regulating DR5 and cFLIP genes. TRAIL-induced apoptosis in HeLa cells was evaluated by the γH2AX foci formation assay to check for double-strand break and propidium iodide and Annexin V staining to quantify apoptotic cells. Viable cells were identified by CCK-8 assay, and cleaved-PARP level was evaluated by Western blot. This is the first study to demonstrate that genome editing techniques can be used as an effective combinatorial treatment strategy to induce apoptosis of cancer cells. In particular, enhancement of DR5 expression and inhibition of cFLIP expression by genome editing had a synergistic effect of inhibiting proliferation and inducing apoptosis in TRAIL-resistant HeLa cells. These results suggest that combinatorial treatment strategies mediated by the CRISPR/Cas9 system may be effective for design of other human TRAIL-resistant cell types.
Collapse
Affiliation(s)
- Naresh Poondla
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | | | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea.
| |
Collapse
|
13
|
Menacher G, Steinritz D, Schmidt A, Popp T, Worek F, Gudermann T, Thiermann H, Balszuweit F. Effects of anti-inflammatory compounds on sulfur mustard injured cells: Recommendations and caveats suggested by in vitro cell culture models. Toxicol Lett 2018; 293:91-97. [DOI: 10.1016/j.toxlet.2017.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/07/2017] [Accepted: 09/11/2017] [Indexed: 11/27/2022]
|
14
|
Bittermann A, Gao S, Rezvani S, Li J, Sikes KJ, Sandy J, Wang V, Lee S, Holmes G, Lin J, Plaas A. Oral Ibuprofen Interferes with Cellular Healing Responses in a Murine Model of Achilles Tendinopathy. ACTA ACUST UNITED AC 2018; 4. [PMID: 30687812 PMCID: PMC6347402 DOI: 10.23937/2572-3243.1510049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: The attempted healing of tendon after acute injury (overloading, partial tear or complete rupture) proceeds via the normal wound healing cascade involving hemostasis, inflammation, matrix synthesis and matrix remodeling. Depending on the degree of trauma and the nature of the post-injury milieu, a variable degree of healing and recovery of function occurs. Post-injury analgesia is often achieved with NSAIDs such as Ibuprofen, however there is increasing evidence that NSAID usage may interfere with the healing process. This study aimed to investigate the cellular mechanism by which IBU therapy might lead to a worsening of tendon pathology. Methods: We have examined the effect of oral Ibuprofen, on Achilles tendon healing in a TGFb1-induced murine tendinopathy model. Dosing was started 3 days after initial injury (acute cellular response phase) and continued for 22 days or started at 9 days after injury (transition to matrix regeneration phase) and given for 16 days. Cellular changes in tendon and surrounding peritenon were assessed using Hematoxylin/Eosin, chondroid accumulation with Safranin O and anti-aggrecan immunohistochemistry, and neo-vessel formation with GSI Lectin histochemistry. Markers of inflammation included histochemical localization of hyaluronan, immunohistochemistry of heavy chain 1 and TNFα-stimulated glycoprotein-6 (TSG6). Cell responses were further examined by RT-qPCR of 84 NFκB target genes and 84 wound healing genes. Biomechanical properties of tendons were evaluated by tensile testing. Results: At a clinically-relevant dosage, Ibuprofen prevented the process of remodeling/removal of the inflammatory matrix components, hyaluronan, HC1 and TSG6. Furthermore, the aberrant matrix remodeling was accompanied by activation at day 28 of genes (Col1a2, Col5a3, Plat, Ccl12, Itga4, Stat3, Vegfa, Mif, Col4a1, Rhoa, Relb, F8, Cxcl9, Lta, Ltb, Ccl12, Cdkn1a, Ccl22, Sele, Cd80), which were not activated at any time without the drug, and so appear most likely to be involved in the pathology. Of these, Vegfa, Col4a1, F8, Cxcl9 and Sele, have been shown to play a role in vascular remodeling, consistent with the appearance at 25 days of vasculogenic cell groups in the peritenon and fat pad stroma surrounding the Achilles of the drug-dosed mice. Tensile stiffness (p = 0.004) and elastic modulus (p = 0.012) were both decreased (relative to age-matched uninjured and non-dosed mice) in mice dosed with Ibuprofen from day 3 to day 25, whether injured or not. Conclusion: We conclude that the use of Ibuprofen for pain relief during inflammatory phases of tendinopathy, might interfere with the normal processes of extracellular matrix remodeling and cellular control of expression of inflammatory and wound healing genes. It is proposed that the known COX2-mediated anti-inflammatory effect of ibuprofen has detrimental effects on the turnover of a pro-inflammatory HA matrix produced in response to soft-tissue injury, thus preventing the switch to cellular responses associated with functional matrix remodeling and eventual healing.
Collapse
Affiliation(s)
- Adam Bittermann
- Department of Orthopaedic Surgery, Rush University Medical Center, USA.,Department of Orthopaedic Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, USA
| | - Shuguang Gao
- Department of Internal Medicine (Rheumatology), Rush University Medical Center, USA
| | - Sabah Rezvani
- Department of Biomedical Engineering, Virginia Tech, USA
| | - Jun Li
- Department of Internal Medicine (Rheumatology), Rush University Medical Center, USA
| | - Katie J Sikes
- Department of Clinical Sciences, Colorado State University, USA
| | - John Sandy
- Department of Orthopaedic Surgery, Rush University Medical Center, USA
| | - Vincent Wang
- Department of Biomedical Engineering, Virginia Tech, USA
| | - Simon Lee
- Department of Orthopaedic Surgery, Rush University Medical Center, USA
| | - George Holmes
- Department of Orthopaedic Surgery, Rush University Medical Center, USA
| | - Johnny Lin
- Department of Orthopaedic Surgery, Rush University Medical Center, USA
| | - Anna Plaas
- Department of Orthopaedic Surgery, Rush University Medical Center, USA.,Department of Internal Medicine (Rheumatology), Rush University Medical Center, USA
| |
Collapse
|
15
|
Mert U, Sanlioglu AD. Intracellular localization of DR5 and related regulatory pathways as a mechanism of resistance to TRAIL in cancer. Cell Mol Life Sci 2017; 74:245-255. [PMID: 27510421 PMCID: PMC11107773 DOI: 10.1007/s00018-016-2321-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 07/19/2016] [Accepted: 08/02/2016] [Indexed: 10/21/2022]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) is a prominent cytokine capable of inducing apoptosis. It can bind to five different cognate receptors, through which diverse intracellular pathways can be activated. TRAIL's ability to preferentially kill transformed cells makes it a promising potential weapon for targeted tumor therapy. However, recognition of several resistance mechanisms to TRAIL-induced apoptosis has indicated that a thorough understanding of the details of TRAIL biology is still essential before this weapon can be confidently unleashed. Critical to this aim is revealing the functions and regulation mechanisms of TRAIL's potent death receptor DR5. Although expression and signaling mechanisms of DR5 have been extensively studied, other aspects, such as its subcellular localization, non-signaling functions, and regulation of its membrane transport, have only recently attracted attention. Here, we discuss different aspects of TRAIL/DR5 biology, with a particular emphasis on the factors that seem to influence the cell surface expression pattern of DR5, along with factors that lead to its nuclear localization. Disturbance of this balance apparently affects the sensitivity of cancer cells to TRAIL-mediated apoptosis, thus constituting an eligible target for potential new therapeutic agents.
Collapse
Affiliation(s)
- Ufuk Mert
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, 07058, Antalya, Turkey
| | - Ahter Dilsad Sanlioglu
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, 07058, Antalya, Turkey.
- Center for Gene and Cell Therapy, Akdeniz University, 07058, Antalya, Turkey.
| |
Collapse
|
16
|
Du J, Wang Y, Chen D, Ji G, Ma Q, Liao S, Zheng Y, Zhang J, Hou Y. BAY61-3606 potentiates the anti-tumor effects of TRAIL against colon cancer through up-regulating DR4 and down-regulating NF-κB. Cancer Lett 2016; 383:145-153. [DOI: 10.1016/j.canlet.2016.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 09/28/2016] [Accepted: 10/02/2016] [Indexed: 02/02/2023]
|
17
|
Repositioning of drugs for intervention in tumor progression and metastasis: Old drugs for new targets. Drug Resist Updat 2016; 26:10-27. [PMID: 27180307 DOI: 10.1016/j.drup.2016.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 02/07/2023]
Abstract
The increasing unraveling of the molecular basis of cancer offers manifold novel options for intervention strategies. However, the discovery and development of new drugs for potential clinical applications is a tremendously time-consuming and costly process. Translating a novel lead candidate compound into an approved clinical drug takes often more than a decade, and the success rate is very low due to versatile efforts including defining its pharmacokinetics, pharmacodynamics, side effects as well as lack of sufficient efficacy. Thus, strategies are needed to minimize time and costs, while maximizing success rates. A very attractive strategy for novel cancer therapeutic options is the repositioning of already approved drugs. These medicines, approved for the treatment of non-malignant disorders, have already passed some early costs and time, have been tested in humans and are ready for clinical trials as anti-cancer drugs. Here we discuss the repositioning of nonsteroidal anti-inflammatory drugs (NSAID), statins, anti-psychotic drugs, anti-helminthic drugs and vitamin D as anti-tumor agents. We focus on their novel actions and potential for inhibition of cancer growth and metastasis by interfering with target molecules and pathways, which drive these malignant processes. Furthermore, important pre-clinical and clinical data are reviewed herein, which elucidate their therapeutic mechanisms which enable their repositioning for cancer therapy and disruption of metastasis.
Collapse
|
18
|
Fermented Brown Rice Extract Causes Apoptotic Death of Human Acute Lymphoblastic Leukemia Cells via Death Receptor Pathway. Appl Biochem Biotechnol 2016; 178:1599-611. [DOI: 10.1007/s12010-015-1970-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 12/28/2015] [Indexed: 12/31/2022]
|
19
|
A new ibuprofen derivative inhibits platelet aggregation and ROS mediated platelet apoptosis. PLoS One 2014; 9:e107182. [PMID: 25238069 PMCID: PMC4169656 DOI: 10.1371/journal.pone.0107182] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/06/2014] [Indexed: 12/17/2022] Open
Abstract
Thrombocytopenia is a serious issue connected with the pathogenesis of several human diseases including chronic inflammation, arthritis, Alzheimer's disease, cardiovascular diseases (CVDs) and other oxidative stress-associated pathologies. The indiscriminate use of antibiotics and other biological drugs are reported to result in thrombocytopenia, which is often neglected during the treatment regime. In addition, augmented oxidative stress induced by drugs and pathological conditions has also been shown to induce thrombocytopenia, which seems to be the most obvious consequence of elevated rate of platelet apoptosis. Thus, blocking oxidative stress-induced platelet apoptosis would be of prime importance in order to negotiate thrombocytopenia and associated human pathologies. The current study presents the synthesis and platelet protective nature of novel ibuprofen derivatives. The potent anti-oxidant ibuprofen derivative 4f was selected for the study and the platelet protective efficacy and platelet aggregation inhibitory property has been demonstrated. The compound 4f dose dependently mitigates the oxidative stress-induced platelet apoptosis in both platelet rich plasma and washed platelets. The platelet protective nature of compound 4f was determined by assessing various apoptotic markers such as ROS generation, cytosolic Ca2+ levels, PS externalization, cytochrome C translocation, Caspase activation, mitochondrial membrane depolarization, cytotoxicity, LDH leakage and tyrosine phosphorylation of cytosolic proteins. Furthermore, compound 4f dose dependently ameliorated agonist induced platelet aggregation. Therefore, compound 4f can be estimated as a potential candidate in the treatment regime of pathological disorders associated with platelet activation and apoptosis. In addition, compound 4f can be used as an auxiliary therapeutic agent in pathologies associated with thrombocytopenia.
Collapse
|