1
|
Masood M, Masood MBE, Us Subah N, Shabbir M, Paracha RZ, Rafiq M. Investigating isoform switching in RHBDF2 and its role in neoplastic growth in breast cancer. PeerJ 2022; 10:e14124. [PMID: 36452073 PMCID: PMC9703992 DOI: 10.7717/peerj.14124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 09/06/2022] [Indexed: 11/27/2022] Open
Abstract
Background Breast cancer is the second leading cause of cancer-related deaths globally, and its prevalence rates are increasing daily. In the past, studies predicting therapeutic drug targets for cancer therapy focused on the assumption that one gene is responsible for producing one protein. Therefore, there is always an immense need to find promising and novel anti-cancer drug targets. Furthermore, proteases have an integral role in cell proliferation and growth because the proteolysis mechanism is an irreversible process that aids in regulating cellular growth during tumorigenesis. Therefore, an inactive rhomboid protease known as iRhom2 encoded by the gene RHBDF2 can be considered an important target for cancer treatment. Speculatively, previous studies on gene expression analysis of RHBDF2 showed heterogenous behaviour during tumorigenesis. Consistent with this, several studies have reported the antagonistic role of iRhom2 in tumorigenesis, i.e., either they are involved in negative regulation of EGFR ligands via the ERAD pathway or positively regulate EGFR ligands via the EGFR signalling pathway. Additionally, different opinions suggest iRhom2 mediated cleavage of EGFR ligands takes place TACE dependently or TACE independently. However, reconciling these seemingly opposing roles is still unclear and might be attributed to more than one transcript isoform of iRhom2. Methods To observe the differences at isoform resolution, the current strategy identified isoform switching in RHBDF2 via differential transcript usage using RNA-seq data during breast cancer initiation and progression. Furthermore, interacting partners were found via correlation and enriched to explain their antagonistic role. Results Isoform switching was observed at DCIS, grade 2 and grade 3, from canonical to the cub isoform. Neither EGFR nor ERAD was found enriched. However, pathways leading to TACE-dependent EGFR signalling pathways were more observant, specifically MAPK signalling pathways, GPCR signalling pathways, and toll-like receptor pathways. Nevertheless, it was noteworthy that during CTCs, the cub isoform switches back to the canonical isoform, and the proteasomal degradation pathway and cytoplasmic ribosomal protein pathways were significantly enriched. Therefore, it could be inferred that cub isoform functions during cancer initiation in EGFR signalling. In contrast, during metastasis, where invasion is the primary task, the isoform switches back to the canonical isoform.
Collapse
Affiliation(s)
- Mehar Masood
- School of Interdisciplinary Engineering and Sciences, National University of Sciences and Technology, Islamabad, Pakistan,Faculty of Rehabilitation & Allied Health Sciences, Riphah International University, Islamabad, Pakistan
| | - Madahiah Bint E Masood
- School of Interdisciplinary Engineering and Sciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Noor Us Subah
- School of Interdisciplinary Engineering and Sciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Maria Shabbir
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Rehan Zafar Paracha
- School of Interdisciplinary Engineering and Sciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Mehak Rafiq
- School of Interdisciplinary Engineering and Sciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
2
|
Weber SM, Carroll SL. The Role of R-Ras Proteins in Normal and Pathologic Migration and Morphologic Change. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1499-1510. [PMID: 34111428 PMCID: PMC8420862 DOI: 10.1016/j.ajpath.2021.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022]
Abstract
The contributions that the R-Ras subfamily [R-Ras, R-Ras2/teratocarcinoma 21 (TC21), and M-Ras] of small GTP-binding proteins make to normal and aberrant cellular functions have historically been poorly understood. However, this has begun to change with the realization that all three R-Ras subfamily members are occasionally mutated in Noonan syndrome (NS), a RASopathy characterized by the development of hematopoietic neoplasms and abnormalities affecting the immune, cardiovascular, and nervous systems. Consistent with the abnormalities seen in NS, a host of new studies have implicated R-Ras proteins in physiological and pathologic changes in cellular morphology, adhesion, and migration in the cardiovascular, immune, and nervous systems. These changes include regulating the migration and homing of mature and immature immune cells, vascular stabilization, clotting, and axonal and dendritic outgrowth during nervous system development. Dysregulated R-Ras signaling has also been linked to the pathogenesis of cardiovascular disease, intellectual disabilities, and human cancers. This review discusses the structure and regulation of R-Ras proteins and our current understanding of the signaling pathways that they regulate. It explores the phenotype of NS patients and their implications for the R-Ras subfamily functions. Next, it covers recent discoveries regarding physiological and pathologic R-Ras functions in key organ systems. Finally, it discusses how R-Ras signaling is dysregulated in cancers and mechanisms by which this may promote neoplasia.
Collapse
Affiliation(s)
- Shannon M Weber
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Steven L Carroll
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
3
|
Jia Y, Shi L, Yun F, Liu X, Chen Y, Wang M, Chen C, Ren Y, Bao Y, Wang L. Transcriptome sequencing profiles reveal lncRNAs may involve in breast cancer (ER/PR positive type) by interaction with RAS associated genes. Pathol Res Pract 2019; 215:152405. [PMID: 30981459 DOI: 10.1016/j.prp.2019.03.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/18/2019] [Accepted: 03/31/2019] [Indexed: 01/22/2023]
Abstract
To reveal novel lncRNAs and explore how could lncRNA affect the ER/PR positive type breast cancer, 16 different lncRNA transcriptomes (8 breast cancer tissues and 8 normal breast tissues) were successfully sequenced. In total, 8,954 high quality lncRNAs, including 5,516 lncRNAs reported in the previous studies and 3,438 novel lncRNAs, were annotated. The highest expressed lncRNAs were MALAT1, SCARNA10, RP11-206M11.7 and NEAT1, and the highest expressing mRNAs were RPL19, SCGB2A2, FTL and TMSB4 × . Of the 615 differentially expressed lncRNAs, 323 showed up regulated (P < 0.05) expression patterns in breast cancer, and 292 showed down regulated expression patterns. Of the 8,954 genes, 5,516 genes were upregulated in breast cancer, and 3,438 were downregulated. In total, the targets of 238 lncRNAs were confirmed by two lncRNA target prediction programs. Within these genes, Ras responsive element binding protein 1, Ras association domain family member 6, Ras association domain family member 8, Ras protein specific guanine nucleotide releasing factor 1and other 10 different Ras associated different expressed genes were predicted as targets of lncRNAs. These different expressed lncRNAs which could regulate the Ras gene families and ECM pathway may be another mechanism why the expression pattern of Ras genes changed in breast cancer. All these cancer-related genes (Ras genes) were annotated as targets of lncRNAs in the breast cancer transcriptome may provide us with a new way to understand the occurrence and development of breast cancer.
Collapse
Affiliation(s)
- Yongfeng Jia
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China; Department of Pathology, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Lin Shi
- Department of Pathology, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Fen Yun
- Department of Pathology, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xia Liu
- Department of Pathology, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yongxia Chen
- Tumor Molecular Diagnostic Laboratory, The Inner Mongolia Cancer Hospital, Hohhot, Inner Mongolia, China
| | - Minjie Wang
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Chen Chen
- Department of Pathology, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yanni Ren
- Department of Pathology, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yulong Bao
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
| | - Li Wang
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
4
|
Huang M, Wang Y. Roles of Small GTPases in Acquired Tamoxifen Resistance in MCF-7 Cells Revealed by Targeted, Quantitative Proteomic Analysis. Anal Chem 2018; 90:14551-14560. [PMID: 30431262 DOI: 10.1021/acs.analchem.8b04526] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Development of tamoxifen resistance remains a tremendous challenge for the treatment of estrogen-receptor (ER)-positive breast cancer. Small GTPases of the Ras superfamily play crucial roles in intracellular trafficking and cell signaling, and aberrant small-GTPase signaling is implicated in many types of cancer. In this study, we employed a targeted, quantitative proteomic approach that relies on stable-isotope labeling by amino acids in cell culture (SILAC), gel fractionation, and scheduled multiple-reaction-monitoring (MRM) analysis, to assess the differential expression of small GTPases in MCF-7 and the paired tamoxifen-resistant breast cancer cells. The method displayed superior sensitivity and reproducibility over the shotgun-proteomic approach, and it facilitated the quantification of 96 small GTPases. Among them, 13 and 10 proteins were significantly down- and up-regulated (with >1.5-fold change), respectively, in the tamoxifen-resistant line relative to in the parental line. In particular, we observed a significant down-regulation of RAB31 in tamoxifen-resistant cells, which, in combination with bioinformatic analysis and downstream validation experiments, supported a role for RAB31 in tamoxifen resistance in ER-positive breast-cancer cells. Together, our results demonstrated that the targeted proteomic method constituted a powerful approach for revealing the role of small GTPases in therapeutic resistance.
Collapse
|
5
|
Feist PE, Loughran EA, Stack MS, Hummon AB. Quantitative proteomic analysis of murine white adipose tissue for peritoneal cancer metastasis. Anal Bioanal Chem 2017; 410:1583-1594. [PMID: 29282499 DOI: 10.1007/s00216-017-0813-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/30/2017] [Accepted: 12/06/2017] [Indexed: 12/15/2022]
Abstract
Cancer metastasis risk increases in older individuals, but the mechanisms for this risk increase are unclear. Many peritoneal cancers, including ovarian cancer, preferentially metastasize to peritoneal fat depots. However, there is a dearth of studies exploring aged peritoneal adipose tissue in the context of cancer. Because adipose tissue produces signals which influence several diseases including cancer, proteomics of adipose tissue in aged and young mice may provide insight into metastatic mechanisms. We analyzed mesenteric, omental, and uterine adipose tissue groups from the peritoneal cavities of young and aged C57BL/6J mouse cohorts with a low-fraction SDS-PAGE gelLC-MS/MS method. We identified 2308 protein groups and quantified 2167 groups, among which several protein groups showed twofold or greater abundance differences between the aged and young cohorts. Cancer-related gene products previously identified as significant in another age-related study were found altered in this study. Several gene products known to suppress proliferation and cellular invasion were found downregulated in the aged cohort, including R-Ras, Arid1a, and heat shock protein β1. In addition, multiple protein groups were identified within single cohorts, including the proteins Cd11a, Stat3, and Ptk2b. These data suggest that adipose tissue is a strong candidate for analysis to identify possible contributors to cancer metastasis in older subjects. The results of this study, the first of its kind using uterine adipose tissue, contribute to the understanding of the role of adipose tissue in age-related alteration of oncogenic pathways, which may help elucidate the mechanisms of increased metastatic tumor burden in the aged. Graphical abstract We analyzed mesenteric, omental, and uterine adipose tissue groups from the peritoneal cavities of young and aged C57BL/6J mouse cohorts with a low-fraction SDS-PAGE gelLC-MS/MS method. These fat depots are preferential sites for many peritoneal cancers. The results of this study, the first of its kind using uterine adipose tissue, contribute to the understanding of the role of adipose tissue in age-related alteration of oncogenic pathways, which may help elucidate the mechanisms of increased metastatic tumor burden in the aged.
Collapse
Affiliation(s)
- Peter E Feist
- Integrated Biomedical Sciences Program, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, 251 140B McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Elizabeth A Loughran
- Integrated Biomedical Sciences Program, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, 251 140B McCourtney Hall, Notre Dame, IN, 46556, USA
| | - M Sharon Stack
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, 251 140B McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, 251 140B McCourtney Hall, Notre Dame, IN, 46556, USA.
| |
Collapse
|
6
|
A thirty-year quest for a role of R-Ras in cancer: from an oncogene to a multitasking GTPase. Cancer Lett 2017; 403:59-65. [DOI: 10.1016/j.canlet.2017.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/28/2017] [Accepted: 06/03/2017] [Indexed: 12/30/2022]
|
7
|
Resistance of R-Ras knockout mice to skin tumour induction. Sci Rep 2015; 5:11663. [PMID: 26133397 PMCID: PMC4488886 DOI: 10.1038/srep11663] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 06/01/2015] [Indexed: 12/14/2022] Open
Abstract
The R-ras gene encodes a small GTPase that is a member of the Ras family. Despite close sequence similarities, R-Ras is functionally distinct from the prototypic Ras proteins; no transformative activity and no activating mutations of R-Ras in human malignancies have been reported for it. R-Ras activity appears inhibitory towards tumour proliferation and invasion, and to promote cellular quiescence. Contrary to this, using mice with a deletion of the R-ras gene, we found that R-Ras facilitates DMBA/TPA-induced skin tumour induction. The tumours appeared in wild-type (WT) mice on average 6 weeks earlier than in R-Ras knockout (R-Ras KO) mice. WT mice developed almost 6 times more tumours than R-Ras KO mice. Despite strong R-Ras protein expression in the dermal blood vessels, no R-Ras could be detected in the epidermis from where the tumours arose. The DMBA/TPA skin tumourigenesis-model is highly dependent upon inflammation, and we found a greatly attenuated skin inflammatory response to DMBA/TPA-treatment in the R-Ras KO mice in the context of leukocyte infiltration and proinflammatory cytokine expression. Thus, these data suggest that despite its characterised role in promoting cellular quiescence, R-Ras is pro-tumourigenic in the DMBA/TPA tumour model and important for the inflammatory response to DMBA/TPA treatment.
Collapse
|
8
|
Sawada J, Li F, Komatsu M. R-Ras protein inhibits autophosphorylation of vascular endothelial growth factor receptor 2 in endothelial cells and suppresses receptor activation in tumor vasculature. J Biol Chem 2015; 290:8133-45. [PMID: 25645912 DOI: 10.1074/jbc.m114.591511] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Abnormal angiogenesis is associated with a broad range of medical conditions, including cancer. The formation of neovasculature with functionally defective blood vessels significantly impacts tumor progression, metastasis, and the efficacy of anticancer therapies. Vascular endothelial growth factor (VEGF) potently induces vascular permeability and vessel growth in the tumor microenvironment, and its inhibition normalizes tumor vasculature. In contrast, the signaling of the small GTPase R-Ras inhibits excessive angiogenic growth and promotes the maturation of regenerating blood vessels. R-Ras signaling counteracts VEGF-induced vessel sprouting, permeability, and invasive activities of endothelial cells. In this study, we investigated the effect of R-Ras on VEGF receptor 2 (VEGFR2) activation by VEGF, the key mechanism for angiogenic stimulation. We show that tyrosine phosphorylation of VEGFR2 is significantly elevated in the tumor vasculature and dermal microvessels of VEGF-injected skin in R-Ras knockout mice. In cultured endothelial cells, R-Ras suppressed the internalization of VEGFR2, which is required for full activation of the receptor by VEGF. Consequently, R-Ras strongly suppressed autophosphorylation of the receptor at all five major tyrosine phosphorylation sites. Conversely, silencing of R-Ras resulted in increased VEGFR2 phosphorylation. This effect of R-Ras on VEGFR2 was, at least in part, dependent on vascular endothelial cadherin. These findings identify a novel function of R-Ras to control the response of endothelial cells to VEGF and suggest an underlying mechanism by which R-Ras regulates angiogenesis.
Collapse
Affiliation(s)
- Junko Sawada
- From the Cardiovascular Pathobiology Program and Tumor Microenvironment and Metastasis Program, Sanford-Burnham Medical Research Institute at Lake Nona, Orlando, Florida 32827
| | - Fangfei Li
- From the Cardiovascular Pathobiology Program and Tumor Microenvironment and Metastasis Program, Sanford-Burnham Medical Research Institute at Lake Nona, Orlando, Florida 32827
| | - Masanobu Komatsu
- From the Cardiovascular Pathobiology Program and Tumor Microenvironment and Metastasis Program, Sanford-Burnham Medical Research Institute at Lake Nona, Orlando, Florida 32827
| |
Collapse
|